Machine learning estimation of an arterial pressure model using electrical impedance

Cardiovascular System Diseases (CVD) are among the most common causes of death and illness in the world. Arterial pressures is a good indicator of CVD existence. However, measuring arterial pressure commonly involves either invasive techniques that require catheter insertion, or noninvasive oscillom...

Full description

Autores:
Romero Beltrán, César Augusto
Murillo Riascos, Yan Carlos
González Vargas, Andrés Mauricio
Cabrera Lopez, John Jairo
Tipo de recurso:
Conferencia (Ponencia)
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/14803
Acceso en línea:
https://hdl.handle.net/10614/14803
https://red.uao.edu.co/
Palabra clave:
Ingeniería biomédica
Biomedical engineering
Arterial pressure
Machine learning
Regression
Bioinstrumentation
Physiological models
Rights
openAccess
License
Derechos reservados - IEEE, 2022
id REPOUAO2_455331b59367b03496074471c9a33dc3
oai_identifier_str oai:red.uao.edu.co:10614/14803
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Machine learning estimation of an arterial pressure model using electrical impedance
title Machine learning estimation of an arterial pressure model using electrical impedance
spellingShingle Machine learning estimation of an arterial pressure model using electrical impedance
Ingeniería biomédica
Biomedical engineering
Arterial pressure
Machine learning
Regression
Bioinstrumentation
Physiological models
title_short Machine learning estimation of an arterial pressure model using electrical impedance
title_full Machine learning estimation of an arterial pressure model using electrical impedance
title_fullStr Machine learning estimation of an arterial pressure model using electrical impedance
title_full_unstemmed Machine learning estimation of an arterial pressure model using electrical impedance
title_sort Machine learning estimation of an arterial pressure model using electrical impedance
dc.creator.fl_str_mv Romero Beltrán, César Augusto
Murillo Riascos, Yan Carlos
González Vargas, Andrés Mauricio
Cabrera Lopez, John Jairo
dc.contributor.author.none.fl_str_mv Romero Beltrán, César Augusto
Murillo Riascos, Yan Carlos
González Vargas, Andrés Mauricio
Cabrera Lopez, John Jairo
dc.subject.armarc.spa.fl_str_mv Ingeniería biomédica
topic Ingeniería biomédica
Biomedical engineering
Arterial pressure
Machine learning
Regression
Bioinstrumentation
Physiological models
dc.subject.armarc.eng.fl_str_mv Biomedical engineering
dc.subject.proposal.eng.fl_str_mv Arterial pressure
Machine learning
Regression
Bioinstrumentation
Physiological models
description Cardiovascular System Diseases (CVD) are among the most common causes of death and illness in the world. Arterial pressures is a good indicator of CVD existence. However, measuring arterial pressure commonly involves either invasive techniques that require catheter insertion, or noninvasive oscillometric techniques that require inflating a cuff around the arm and don’t provide continuous information. Recently, new methods are being develop to provide continuous, reliable and comfortable measuring of arterial pressure. One promising technique involves using Electrical Impedance (EI) in a highly vascularized segment of the body (such as an arm) to estimate the arterial pressure in that segment. In this paper, we present an experimental setup which includes a gelatin model that emulates some physical and electrical properties of the forearm, an automated system to control pressure and measure EI in such model, and a computational method that makes use of regression algorithms in order to predict the pressure value based on the EI magnitude and phase values
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-07
dc.date.accessioned.none.fl_str_mv 2023-05-29T15:16:46Z
dc.date.available.none.fl_str_mv 2023-05-29T15:16:46Z
dc.type.spa.fl_str_mv Documento de Conferencia
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_8544
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/lecture
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_8544
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/14803
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital UAO
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
url https://hdl.handle.net/10614/14803
https://red.uao.edu.co/
identifier_str_mv Universidad Autónoma de Occidente
Repositorio Educativo Digital UAO
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.cites.spa.fl_str_mv Romero Beltrán, C.A., Murillo Riascos, Y.C., González Vargas, A.M., Cabrera López, J.J. Machine learning estimation of an arterial pressure model using electrical impedance. 2022 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI), pp. 1-6 . doi: 10.1109/ColCACI56938.2022.9905315.
dc.relation.conferencedate.spa.fl_str_mv 27-29 julio 2022
dc.relation.conferenceplace.spa.fl_str_mv Cali
dc.relation.ispartofconference.eng.fl_str_mv 2022 IEEE Colombian Conference on Applications of computational Intelligence
dc.relation.references.none.fl_str_mv "Technical package for cardiovascular disease management in primary health care", Report, pp. 73, 2016.
J. Schneider, M. Schroth, M. Holzhey, T. Blocher and W. Stork, "An approach to improve impedance plethysmography on the wrist by using adaptive feedback control", 2017 IEEE Sensors Applications Symposium (SAS), pp. 1-6, 2017
M. Metshein, P. Annus, R. Land, M. Min and A. Aabloo, "Availability and variations of cardiac activity in the case of measuring the bioimpedance of wrist", 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1-5, 2018.
H. Ji Jer, H. Yang Min and C. Ming Wen, "Using bioimpedance plethysmography for measuring the pulse wave velocity of peripheral vascular", 2016 13th International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), pp. 1-5, Jun. 2016
E. Piuzzi et al., "Impedance plethysmography system with inertial measurement units for motion artefact reduction: Application to continuous breath activity monitoring", 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, pp. 386-390, May 2015
P. U. P. K. Ram, N. PM. R. K. V. J. Joseph and M. Sivaprakasam, "Blood Pressure Estimation using Arterial Diameter: Exploring Different Machine Learning Methods", 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1-6, Jun. 2020
M. Kachuee, M. M. Kiani, H. Mohammadzade and M. Shabany, "Cuff- less high-accuracy calibration-free blood pressure estimation using pulse transit time", 2015 IEEE International Symposium on Circuits and Systems (ISCAS), vol. 2015, no. 2, pp. 1006-1009, May 2015
J. J. Cabrera Lopez and J. Velasco Medina, "Structured Approach and Impedance Spectroscopy Microsystem for Fractional-Order Electrical Characterization of Vegetable Tissues", IEEE Trans. Instrum. Meas, vol. 69, no. 2, pp. 469-478, Feb. 2020.
Ø. G. Grimnes and Sverre Martinsen, Bioimpedance and Bioelectricity Basics, 2015.
dc.rights.spa.fl_str_mv Derechos reservados - IEEE, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - IEEE, 2022
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 6 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
dc.publisher.place.spa.fl_str_mv Cali
dc.source.spa.fl_str_mv 10.1109/ColCACI56938.2022.9905315
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/dbb721e7-5cbd-4112-8cb5-5b17aaa272b3/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260113042571264
spelling Romero Beltrán, César Augustoaee993912526e61fa10eec873c015177Murillo Riascos, Yan Carlose3e32cbede3365ef537d535e6d7b338cGonzález Vargas, Andrés Mauriciovirtual::2106-1Cabrera Lopez, John Jairovirtual::746-12023-05-29T15:16:46Z2023-05-29T15:16:46Z2022-07https://hdl.handle.net/10614/14803Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/Cardiovascular System Diseases (CVD) are among the most common causes of death and illness in the world. Arterial pressures is a good indicator of CVD existence. However, measuring arterial pressure commonly involves either invasive techniques that require catheter insertion, or noninvasive oscillometric techniques that require inflating a cuff around the arm and don’t provide continuous information. Recently, new methods are being develop to provide continuous, reliable and comfortable measuring of arterial pressure. One promising technique involves using Electrical Impedance (EI) in a highly vascularized segment of the body (such as an arm) to estimate the arterial pressure in that segment. In this paper, we present an experimental setup which includes a gelatin model that emulates some physical and electrical properties of the forearm, an automated system to control pressure and measure EI in such model, and a computational method that makes use of regression algorithms in order to predict the pressure value based on the EI magnitude and phase values6 páginasapplication/pdfengIEEECaliDerechos reservados - IEEE, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf210.1109/ColCACI56938.2022.9905315Machine learning estimation of an arterial pressure model using electrical impedanceDocumento de Conferenciahttp://purl.org/coar/resource_type/c_8544Textinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Ingeniería biomédicaBiomedical engineeringArterial pressureMachine learningRegressionBioinstrumentationPhysiological modelsRomero Beltrán, C.A., Murillo Riascos, Y.C., González Vargas, A.M., Cabrera López, J.J. Machine learning estimation of an arterial pressure model using electrical impedance. 2022 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI), pp. 1-6 . doi: 10.1109/ColCACI56938.2022.9905315.27-29 julio 2022Cali2022 IEEE Colombian Conference on Applications of computational Intelligence"Technical package for cardiovascular disease management in primary health care", Report, pp. 73, 2016.J. Schneider, M. Schroth, M. Holzhey, T. Blocher and W. Stork, "An approach to improve impedance plethysmography on the wrist by using adaptive feedback control", 2017 IEEE Sensors Applications Symposium (SAS), pp. 1-6, 2017M. Metshein, P. Annus, R. Land, M. Min and A. Aabloo, "Availability and variations of cardiac activity in the case of measuring the bioimpedance of wrist", 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1-5, 2018.H. Ji Jer, H. Yang Min and C. Ming Wen, "Using bioimpedance plethysmography for measuring the pulse wave velocity of peripheral vascular", 2016 13th International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), pp. 1-5, Jun. 2016E. Piuzzi et al., "Impedance plethysmography system with inertial measurement units for motion artefact reduction: Application to continuous breath activity monitoring", 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, pp. 386-390, May 2015P. U. P. K. Ram, N. PM. R. K. V. J. Joseph and M. Sivaprakasam, "Blood Pressure Estimation using Arterial Diameter: Exploring Different Machine Learning Methods", 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1-6, Jun. 2020M. Kachuee, M. M. Kiani, H. Mohammadzade and M. Shabany, "Cuff- less high-accuracy calibration-free blood pressure estimation using pulse transit time", 2015 IEEE International Symposium on Circuits and Systems (ISCAS), vol. 2015, no. 2, pp. 1006-1009, May 2015J. J. Cabrera Lopez and J. Velasco Medina, "Structured Approach and Impedance Spectroscopy Microsystem for Fractional-Order Electrical Characterization of Vegetable Tissues", IEEE Trans. Instrum. Meas, vol. 69, no. 2, pp. 469-478, Feb. 2020.Ø. G. Grimnes and Sverre Martinsen, Bioimpedance and Bioelectricity Basics, 2015.Comunidad generalPublication6053e64e-a34d-4652-8fa2-6c0440556f15virtual::2106-15f003138-bfcd-4407-904b-9b9a0010990cvirtual::746-15f003138-bfcd-4407-904b-9b9a0010990cvirtual::746-16053e64e-a34d-4652-8fa2-6c0440556f15virtual::2106-1https://scholar.google.com.co/citations?user=oj5Tle8AAAAJ&hl=esvirtual::2106-1https://scholar.google.com/citations?user=dkpsiDsAAAAJ&hl=esvirtual::746-10000-0001-6393-7130virtual::2106-10000-0002-2608-755Xvirtual::746-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001345355virtual::2106-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000821276virtual::746-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/dbb721e7-5cbd-4112-8cb5-5b17aaa272b3/download20b5ba22b1117f71589c7318baa2c560MD5210614/14803oai:red.uao.edu.co:10614/148032024-04-15 14:18:20.896https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - IEEE, 2022metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K