Herramienta software para reconocimiento de objetos como ayuda a los procesos de mercadeo institucional
La presente tesis presenta el desarrollo de una aplicación de aprendizaje profundo, la cual permite identificar lugares o también llamadas estaciones dentro de la Universidad Autónoma de Occidente utilizando la herramienta de Transfer Learning. En el desarrollo del proyecto se creó un Dataset desde...
- Autores:
-
Muñoz Moreno, Javier Andrés
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/11796
- Acceso en línea:
- http://red.uao.edu.co//handle/10614/11796
- Palabra clave:
- Ingeniería Mecatrónica
Redes neurales (Computadores)
Aprendizaje profundo
Neural networks (Computer science)
Transfer learning
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
Summary: | La presente tesis presenta el desarrollo de una aplicación de aprendizaje profundo, la cual permite identificar lugares o también llamadas estaciones dentro de la Universidad Autónoma de Occidente utilizando la herramienta de Transfer Learning. En el desarrollo del proyecto se creó un Dataset desde cero con más de 20.000 imágenes de 18 categorías diferentes gracias a la técnica de Data Augmentation. El desarrollo del código se realizó en Python dentro de la plataforma de Google Colab y la aplicación fue creada en Android Studio, donde se cargó la red neuronal convolucional Mobilenet para el Transfer Learning. Posteriormente se obtuvieron las representaciones de las imágenes procesadas por la red, se entrenó una capa clasificadora de tipo Multi Layer Perceptron con función de activación Softmax para producir las nuevas predicciones. Finalmente, se realizaron pruebas en tiempo real utilizando la aplicación en un dispositivo de sistema operativo Android por las diferentes estaciones del campus, logrando una precisión del 96% |
---|