Herramienta software para reconocimiento de objetos como ayuda a los procesos de mercadeo institucional

La presente tesis presenta el desarrollo de una aplicación de aprendizaje profundo, la cual permite identificar lugares o también llamadas estaciones dentro de la Universidad Autónoma de Occidente utilizando la herramienta de Transfer Learning. En el desarrollo del proyecto se creó un Dataset desde...

Full description

Autores:
Muñoz Moreno, Javier Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/11796
Acceso en línea:
http://red.uao.edu.co//handle/10614/11796
Palabra clave:
Ingeniería Mecatrónica
Redes neurales (Computadores)
Aprendizaje profundo
Neural networks (Computer science)
Transfer learning
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
Description
Summary:La presente tesis presenta el desarrollo de una aplicación de aprendizaje profundo, la cual permite identificar lugares o también llamadas estaciones dentro de la Universidad Autónoma de Occidente utilizando la herramienta de Transfer Learning. En el desarrollo del proyecto se creó un Dataset desde cero con más de 20.000 imágenes de 18 categorías diferentes gracias a la técnica de Data Augmentation. El desarrollo del código se realizó en Python dentro de la plataforma de Google Colab y la aplicación fue creada en Android Studio, donde se cargó la red neuronal convolucional Mobilenet para el Transfer Learning. Posteriormente se obtuvieron las representaciones de las imágenes procesadas por la red, se entrenó una capa clasificadora de tipo Multi Layer Perceptron con función de activación Softmax para producir las nuevas predicciones. Finalmente, se realizaron pruebas en tiempo real utilizando la aplicación en un dispositivo de sistema operativo Android por las diferentes estaciones del campus, logrando una precisión del 96%