Design and analyses of a transdermal drug delivery device (TD3 )
In this paper, we introduce a novel type of transdermal drug delivery device (TD3 ) with a micro-electro-mechanical system (MEMS) design using computer-aided design (CAD) techniques as well as computational fluid dynamics (CFD) simulations regarding the fluid interaction inside the device during the...
- Autores:
-
Fonthal Rico, Faruk
García Cruz, Jennifer
Ríos Afanador, Ismael Alberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13434
- Acceso en línea:
- https://hdl.handle.net/10614/13434
- Palabra clave:
- Sistemas microelectromecánicos
Dispositivos electromecánicos
Sistemas microelectromecánicos
Microelectromechanical systems
Electromechanical devices
Transdermal drug delivery
Micro-electro-mechanical systems (MEMS)
Finite element analysi
Microstructures
Computational fluid dynamic
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2019
id |
REPOUAO2_423925db288d037fd6282f672c4fa1c9 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13434 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Design and analyses of a transdermal drug delivery device (TD3 ) |
title |
Design and analyses of a transdermal drug delivery device (TD3 ) |
spellingShingle |
Design and analyses of a transdermal drug delivery device (TD3 ) Sistemas microelectromecánicos Dispositivos electromecánicos Sistemas microelectromecánicos Microelectromechanical systems Electromechanical devices Transdermal drug delivery Micro-electro-mechanical systems (MEMS) Finite element analysi Microstructures Computational fluid dynamic |
title_short |
Design and analyses of a transdermal drug delivery device (TD3 ) |
title_full |
Design and analyses of a transdermal drug delivery device (TD3 ) |
title_fullStr |
Design and analyses of a transdermal drug delivery device (TD3 ) |
title_full_unstemmed |
Design and analyses of a transdermal drug delivery device (TD3 ) |
title_sort |
Design and analyses of a transdermal drug delivery device (TD3 ) |
dc.creator.fl_str_mv |
Fonthal Rico, Faruk García Cruz, Jennifer Ríos Afanador, Ismael Alberto |
dc.contributor.author.none.fl_str_mv |
Fonthal Rico, Faruk |
dc.contributor.author.spa.fl_str_mv |
García Cruz, Jennifer Ríos Afanador, Ismael Alberto |
dc.subject.armarc.spa.fl_str_mv |
Sistemas microelectromecánicos Dispositivos electromecánicos Sistemas microelectromecánicos |
topic |
Sistemas microelectromecánicos Dispositivos electromecánicos Sistemas microelectromecánicos Microelectromechanical systems Electromechanical devices Transdermal drug delivery Micro-electro-mechanical systems (MEMS) Finite element analysi Microstructures Computational fluid dynamic |
dc.subject.armarc.eng.fl_str_mv |
Microelectromechanical systems Electromechanical devices |
dc.subject.proposal.eng.fl_str_mv |
Transdermal drug delivery Micro-electro-mechanical systems (MEMS) Finite element analysi Microstructures Computational fluid dynamic |
description |
In this paper, we introduce a novel type of transdermal drug delivery device (TD3 ) with a micro-electro-mechanical system (MEMS) design using computer-aided design (CAD) techniques as well as computational fluid dynamics (CFD) simulations regarding the fluid interaction inside the device during the actuation process. For the actuation principles of the chamber and microvalve, both thermopneumatic and piezoelectric principles are employed respectively, originating that the design perfectly integrates those principles through two different components, such as a micropump with integrated microvalves and a microneedle array. The TD3 has shown to be capable of delivering a volumetric flow of 2.92 × 10−5 cm3 /s with a 6.6 Hz membrane stroke frequency. The device only needs 116 Pa to complete the suction process and 2560 Pa to complete the discharge process. A 38-microneedle array with 450 µm in length fulfills the function of permeating skin, allowing that the fluid reaches the desired destination and avoiding any possible pain during the insertion |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-11-11T17:31:25Z |
dc.date.available.none.fl_str_mv |
2021-11-11T17:31:25Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
14243210 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13434 |
identifier_str_mv |
14243210 |
url |
https://hdl.handle.net/10614/13434 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 19, número 23 (2019) |
dc.relation.citationendpage.spa.fl_str_mv |
11 |
dc.relation.citationissue.spa.fl_str_mv |
23 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
19 |
dc.relation.cites.eng.fl_str_mv |
García, J., Ríos, I., Fonthal Rico F. (2019). Design and analyses of a transdermal drug delivery device (TD3). Sensors. (Vol. 19 (23), pp. 1-11. https://doi.org/10.3390/s19235090 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Sensors |
dc.relation.references.none.fl_str_mv |
1. Hood, R.R.; Kendall, E.L.; DeVoe, D.L.; Quezado, Z.; Junqueira, M.J.; Finkel, C.; Vreeland, W.N. Microfluidic formation of nanoscale liposomes for passive transdermal drug delivery. In Proceedings of the Microsystems for Measurement and Instrumentation (MAMNA), Gaithersburg, MD, USA, 14 May 2013; pp. 12–15. 2. Dolz˙an, T.; Vrtacˇnik, D.; Resnik, D.; Aljancˇicˇ, U.; Moz˙ ek, M.; Pecˇar, B.; Amon, S. Design of transdermal drug delivery system with PZT actuated micropump. In Proceedings of the 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 26–30 May 2014; pp. 96–99. 3. Lee, H.; Song, C.; Baik, S.; Kim, D.; Hyeon, T.; Kim, D.H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 2018, 127, 35–45. [CrossRef] [PubMed] 4. Mousoulis, C.; Ochoa, M.; Papageorgiou, D.; Ziaie, B. A Skin-Contact-Actuated Micropump for Transdermal Drug Delivery. IEEE Trans. Biomed. Eng. 2011, 58, 1492–1498. [CrossRef] [PubMed] 5. Camovic´, M.; Bišcˇevic´, A.; Brcˇic´, I.; Borcˇak, K.; Bušatlic´, S.; C´ enanovic´, N.; Mulalic´, A.; Osmanlic´, M.; Sirbubalo, M.; Tucak, A.; et al. Coated 3d printed PLA microneedles as transdermal drug delivery systems. IFMBE Proc. 2020, 73, 735–742. [CrossRef] 6. Wang, W.; Soper, S.A. Bio-MEMS Technologies and Applications, 1st ed.; CRC Press: Boca Raton, NY, USA, 2006; pp. 7–237. ISBN 9780849335327. 7. Ashraf, M.W.; Tayyaba, S.; Afzulpurkr, N. Tapered tip hollow silicon microneedles for transdermal drug delivery. In Proceedings of the 2nd International Conference on Mechanical and Electronics Engineering (ICMEE), Kyoto, Japan, 1–3 August 2010. 8. Jurcicek, P.; Zou, H.; Zhang, S.; Liu, C. Design and fabrication of hollow out-of-plane silicon microneedles. IET Micro Nano Lett. 2013, 8, 78–81. [CrossRef] 9. Varadan, V.K.; Vinoy, K.J.; Gopalakrishnan, S. Smart Material Systems and MEMS: Design and Development Methodologies, 1st ed.; JohnWiley & Sons: Chichester, UK, 2006; ISBN 9780470093610. 10. Cong, W.; Jin-seong, K.; Jungyul, P. Micro check valve integrated magnetically actuated micropump for implantable drug delivery. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 1711–1713. 11. Shoji, E. Fabrication of a diaphragm micropump system utilizing the ionomer-based polymer actuator. Sens. Actuators B Chem. 2016, 237, 660–665. [CrossRef] 12. Garcia, J.; Rios, I.; Fonthal, F. Structural and microfluidic analysis of microneedle array for drug delivery. In Proceedings of the 31st Symposium on Microelectronics Technology and Devices IEEE SBMicro 2016, Belo Horizonte, Brazil, 29 August–3 September 2016; pp. 1–4. 13. Kawun, P.; Leahy, S.; Lai, Y. A thin PDMS nozzle/di user micropump for biomedical applications. Sens. Actuators B Chem. 2016, 249, 149–154. [CrossRef] 14. Singh, S.; Kumar, N.; George, D.; Sen, A.K. Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump. Sens. Actuators B Chem. 2015, 225, 81–94. [CrossRef] 15. Nguyen, N.T.; Mousavi, S.A.; Kashaninejad, N.; Phan, D.T. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv. Drug Deliv. Rev. 2013, 65, 1403–1419. [CrossRef] [PubMed] 16. Davis, S.P.; Martanto,W.; Allen, M.G.; Prausnitz, M.R. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans. Biomed. Eng. 2005, 52, 909–915. [CrossRef] [PubMed] 17. Roxhed, N.T.; Gasser, C.; Griss, P.; Holzapfel, G.A.; Stemme, G. Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for e cient transdermal drug delivery. J. Microelectromech. Syst. 2007, 16, 1429–1440. [CrossRef] 18. Sanjay, S.T.; Zhou,W.; Dou, M.; Tavakoli, H.; Ma, L.; Xu, F.; Li, X. Recent advances of controlled drug delivery using microfluidic platforms. Adv. Drug Deliv. Rev. 2018, 128, 3–28. [CrossRef] [PubMed] 19. Bao, S.J.; Xie, D.L.; Zhang, J.P.; Chang, W.R.; Liang, D.C. Crystal structure of desheptapeptide (B24–B30) insulin at 1.6 Å resolution: Implications for receptor binding. Proc. Natl. Acad. Sci. USA 1997, 94, 2975–2980. [CrossRef] [PubMed] |
dc.rights.spa.fl_str_mv |
Derechos reservados - MDPI, 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - MDPI, 2019 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
dc.publisher.place.eng.fl_str_mv |
Basel, Switzerland |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/89960119-dae9-4b75-b76b-f6dc37e52eac/download https://red.uao.edu.co/bitstreams/ad18288f-2bc4-41c2-91c9-2855a2b81312/download https://red.uao.edu.co/bitstreams/69213a26-8c16-4893-a2bc-c4bf2161fcc5/download https://red.uao.edu.co/bitstreams/5183a783-82b2-4483-a07c-96ae26d18b2d/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 b832f9be6a633448d1f017a21183a8ff 8ab25f258e050e88281cb2137e0df32c e1cdbe45547470ea26a85e7808d99fb3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260117344878592 |
spelling |
Fonthal Rico, Farukvirtual::1746-1García Cruz, Jennifer678452ac098b2be6b666ccb001c2c900Ríos Afanador, Ismael Alberto16cdba7f27db3c91a2232509f87ea2672021-11-11T17:31:25Z2021-11-11T17:31:25Z201914243210https://hdl.handle.net/10614/13434In this paper, we introduce a novel type of transdermal drug delivery device (TD3 ) with a micro-electro-mechanical system (MEMS) design using computer-aided design (CAD) techniques as well as computational fluid dynamics (CFD) simulations regarding the fluid interaction inside the device during the actuation process. For the actuation principles of the chamber and microvalve, both thermopneumatic and piezoelectric principles are employed respectively, originating that the design perfectly integrates those principles through two different components, such as a micropump with integrated microvalves and a microneedle array. The TD3 has shown to be capable of delivering a volumetric flow of 2.92 × 10−5 cm3 /s with a 6.6 Hz membrane stroke frequency. The device only needs 116 Pa to complete the suction process and 2560 Pa to complete the discharge process. A 38-microneedle array with 450 µm in length fulfills the function of permeating skin, allowing that the fluid reaches the desired destination and avoiding any possible pain during the insertion11 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos reservados - MDPI, 2019https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Design and analyses of a transdermal drug delivery device (TD3 )Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Sistemas microelectromecánicosDispositivos electromecánicosSistemas microelectromecánicosMicroelectromechanical systemsElectromechanical devicesTransdermal drug deliveryMicro-electro-mechanical systems (MEMS)Finite element analysiMicrostructuresComputational fluid dynamicVolumen 19, número 23 (2019)1123119García, J., Ríos, I., Fonthal Rico F. (2019). Design and analyses of a transdermal drug delivery device (TD3). Sensors. (Vol. 19 (23), pp. 1-11. https://doi.org/10.3390/s19235090Sensors1. Hood, R.R.; Kendall, E.L.; DeVoe, D.L.; Quezado, Z.; Junqueira, M.J.; Finkel, C.; Vreeland, W.N. Microfluidic formation of nanoscale liposomes for passive transdermal drug delivery. In Proceedings of the Microsystems for Measurement and Instrumentation (MAMNA), Gaithersburg, MD, USA, 14 May 2013; pp. 12–15.2. Dolz˙an, T.; Vrtacˇnik, D.; Resnik, D.; Aljancˇicˇ, U.; Moz˙ ek, M.; Pecˇar, B.; Amon, S. Design of transdermal drug delivery system with PZT actuated micropump. In Proceedings of the 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 26–30 May 2014; pp. 96–99.3. Lee, H.; Song, C.; Baik, S.; Kim, D.; Hyeon, T.; Kim, D.H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 2018, 127, 35–45. [CrossRef] [PubMed]4. Mousoulis, C.; Ochoa, M.; Papageorgiou, D.; Ziaie, B. A Skin-Contact-Actuated Micropump for Transdermal Drug Delivery. IEEE Trans. Biomed. Eng. 2011, 58, 1492–1498. [CrossRef] [PubMed]5. Camovic´, M.; Bišcˇevic´, A.; Brcˇic´, I.; Borcˇak, K.; Bušatlic´, S.; C´ enanovic´, N.; Mulalic´, A.; Osmanlic´, M.; Sirbubalo, M.; Tucak, A.; et al. Coated 3d printed PLA microneedles as transdermal drug delivery systems. IFMBE Proc. 2020, 73, 735–742. [CrossRef]6. Wang, W.; Soper, S.A. Bio-MEMS Technologies and Applications, 1st ed.; CRC Press: Boca Raton, NY, USA, 2006; pp. 7–237. ISBN 9780849335327.7. Ashraf, M.W.; Tayyaba, S.; Afzulpurkr, N. Tapered tip hollow silicon microneedles for transdermal drug delivery. In Proceedings of the 2nd International Conference on Mechanical and Electronics Engineering (ICMEE), Kyoto, Japan, 1–3 August 2010.8. Jurcicek, P.; Zou, H.; Zhang, S.; Liu, C. Design and fabrication of hollow out-of-plane silicon microneedles. IET Micro Nano Lett. 2013, 8, 78–81. [CrossRef]9. Varadan, V.K.; Vinoy, K.J.; Gopalakrishnan, S. Smart Material Systems and MEMS: Design and Development Methodologies, 1st ed.; JohnWiley & Sons: Chichester, UK, 2006; ISBN 9780470093610.10. Cong, W.; Jin-seong, K.; Jungyul, P. Micro check valve integrated magnetically actuated micropump for implantable drug delivery. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 1711–1713.11. Shoji, E. Fabrication of a diaphragm micropump system utilizing the ionomer-based polymer actuator. Sens. Actuators B Chem. 2016, 237, 660–665. [CrossRef]12. Garcia, J.; Rios, I.; Fonthal, F. Structural and microfluidic analysis of microneedle array for drug delivery. In Proceedings of the 31st Symposium on Microelectronics Technology and Devices IEEE SBMicro 2016, Belo Horizonte, Brazil, 29 August–3 September 2016; pp. 1–4.13. Kawun, P.; Leahy, S.; Lai, Y. A thin PDMS nozzle/di user micropump for biomedical applications. Sens. Actuators B Chem. 2016, 249, 149–154. [CrossRef]14. Singh, S.; Kumar, N.; George, D.; Sen, A.K. Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump. Sens. Actuators B Chem. 2015, 225, 81–94. [CrossRef]15. Nguyen, N.T.; Mousavi, S.A.; Kashaninejad, N.; Phan, D.T. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv. Drug Deliv. Rev. 2013, 65, 1403–1419. [CrossRef] [PubMed]16. Davis, S.P.; Martanto,W.; Allen, M.G.; Prausnitz, M.R. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans. Biomed. Eng. 2005, 52, 909–915. [CrossRef] [PubMed]17. Roxhed, N.T.; Gasser, C.; Griss, P.; Holzapfel, G.A.; Stemme, G. Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for e cient transdermal drug delivery. J. Microelectromech. Syst. 2007, 16, 1429–1440. [CrossRef]18. Sanjay, S.T.; Zhou,W.; Dou, M.; Tavakoli, H.; Ma, L.; Xu, F.; Li, X. Recent advances of controlled drug delivery using microfluidic platforms. Adv. Drug Deliv. Rev. 2018, 128, 3–28. [CrossRef] [PubMed]19. Bao, S.J.; Xie, D.L.; Zhang, J.P.; Chang, W.R.; Liang, D.C. Crystal structure of desheptapeptide (B24–B30) insulin at 1.6 Å resolution: Implications for receptor binding. Proc. Natl. Acad. Sci. USA 1997, 94, 2975–2980. [CrossRef] [PubMed]GeneralPublication2bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::1746-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::1746-1https://scholar.google.com/citations?user=zxVYtU0AAAAJ&hl=envirtual::1746-10000-0002-9331-0491virtual::1746-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000895857virtual::1746-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/89960119-dae9-4b75-b76b-f6dc37e52eac/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALDesign and analyses of a transdermal drug delivery device (TD3).pdfDesign and analyses of a transdermal drug delivery device (TD3).pdfTexto archivo completo del artículo de revista, PDFapplication/pdf796032https://red.uao.edu.co/bitstreams/ad18288f-2bc4-41c2-91c9-2855a2b81312/downloadb832f9be6a633448d1f017a21183a8ffMD53TEXTDesign and analyses of a transdermal drug delivery device (TD3).pdf.txtDesign and analyses of a transdermal drug delivery device (TD3).pdf.txtExtracted texttext/plain35575https://red.uao.edu.co/bitstreams/69213a26-8c16-4893-a2bc-c4bf2161fcc5/download8ab25f258e050e88281cb2137e0df32cMD54THUMBNAILDesign and analyses of a transdermal drug delivery device (TD3).pdf.jpgDesign and analyses of a transdermal drug delivery device (TD3).pdf.jpgGenerated Thumbnailimage/jpeg14724https://red.uao.edu.co/bitstreams/5183a783-82b2-4483-a07c-96ae26d18b2d/downloade1cdbe45547470ea26a85e7808d99fb3MD5510614/13434oai:red.uao.edu.co:10614/134342024-03-12 14:43:22.334https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2019open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |