Green walls to treat kitchen greywater in urban areas: Performance from a pilot-scale experiment

An increase in water use in urban areas is forcing scientists and policy makers to find alternative solutions for freshwater management, aimed at attaining integrated water resources management. Here, we tested in a 2 year experiment (June 2017–April 2019) the treatment performance of an innovative...

Full description

Autores:
Dal Ferro, Nicola
De Mattia, Chiara
Maucieri, Carmelo
Stevanato, Piergiorgio
Squartini, Andrea
Borin, Maurizio
Gandini Ayerbe, Mario Andrés
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13924
Acceso en línea:
https://hdl.handle.net/10614/13924
https://red.uao.edu.co/
Palabra clave:
Calidad del agua
Water quality
Constructed wetlands
Green infrastructures
Microbial analysis
NGS sequencing
Nutrients
Urban areas
Rights
openAccess
License
Derechos reservados - Elsevier, 2021
id REPOUAO2_3fd683f244e8b79fa43ca6c719f47f99
oai_identifier_str oai:red.uao.edu.co:10614/13924
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Green walls to treat kitchen greywater in urban areas: Performance from a pilot-scale experiment
title Green walls to treat kitchen greywater in urban areas: Performance from a pilot-scale experiment
spellingShingle Green walls to treat kitchen greywater in urban areas: Performance from a pilot-scale experiment
Calidad del agua
Water quality
Constructed wetlands
Green infrastructures
Microbial analysis
NGS sequencing
Nutrients
Urban areas
title_short Green walls to treat kitchen greywater in urban areas: Performance from a pilot-scale experiment
title_full Green walls to treat kitchen greywater in urban areas: Performance from a pilot-scale experiment
title_fullStr Green walls to treat kitchen greywater in urban areas: Performance from a pilot-scale experiment
title_full_unstemmed Green walls to treat kitchen greywater in urban areas: Performance from a pilot-scale experiment
title_sort Green walls to treat kitchen greywater in urban areas: Performance from a pilot-scale experiment
dc.creator.fl_str_mv Dal Ferro, Nicola
De Mattia, Chiara
Maucieri, Carmelo
Stevanato, Piergiorgio
Squartini, Andrea
Borin, Maurizio
Gandini Ayerbe, Mario Andrés
dc.contributor.author.none.fl_str_mv Dal Ferro, Nicola
De Mattia, Chiara
Maucieri, Carmelo
Stevanato, Piergiorgio
Squartini, Andrea
Borin, Maurizio
Gandini Ayerbe, Mario Andrés
dc.subject.armarc.spa.fl_str_mv Calidad del agua
topic Calidad del agua
Water quality
Constructed wetlands
Green infrastructures
Microbial analysis
NGS sequencing
Nutrients
Urban areas
dc.subject.armarc.eng.fl_str_mv Water quality
dc.subject.proposal.eng.fl_str_mv Constructed wetlands
Green infrastructures
Microbial analysis
NGS sequencing
Nutrients
Urban areas
description An increase in water use in urban areas is forcing scientists and policy makers to find alternative solutions for freshwater management, aimed at attaining integrated water resources management. Here, we tested in a 2 year experiment (June 2017–April 2019) the treatment performance of an innovative wall cascade constructed wetland (WCCW) system. The aimwas to combine themultifunctional benefits of greenwalls (e.g. aesthetic, surface area requirements) with those of constructed wetland systems (e.g. high pollutants removal efficiencies, water recycling) to treat kitchen greywaters. The WCCW was a terraced system of six phytoremediation lines, each ofwhichwas composed of three plastic tanks (3 × 0.04m3), filled with lightweight porousmedia, and vegetated with different ornamental species, namely Mentha aquatica L., Oenanthe javanica (Blume) DC., and Lysimachia nummularia L. Physicochemical (temperature, pH, electrical conductivity, dissolved oxygen, turbidity) and chemical parameters (chemical oxygen demand, biochemical oxygen demand, anionic surfactants, Kjeldahl, ammoniumand nitric nitrogen, total orthophosphate)weremonitored at a frequency of at least 15 days, depending on the season andWCCWmanagement. Results showed that theWCCWsignificantly reduced the mainwater pollutants (e.g. organic compounds, nutrients), suggesting its potential application in urban environments for water recycling in the context of green infrastructures and ecological sanitation. A culture-independent taxonomic assessment of suspended bacterial communities before and after the treatment showed clear treatment-related shifts, being the functional ecology attributes changed according to changes in greywater chemical parameters. Future research should attempt to optimize theWCCWsystemmanagement by regulating the nutrients balance to avoidmacronutrients deficiency, and setting themost suitablewater flowdynamics (hydraulic retention time, saturation-desaturation cycles) to improve the greywater treatment
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-02-25
dc.date.accessioned.none.fl_str_mv 2022-05-27T19:57:25Z
dc.date.available.none.fl_str_mv 2022-05-27T19:57:25Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 489697
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13924
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 489697
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/13924
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 757
dc.relation.cites.eng.fl_str_mv Dal Ferro, N., De Mattia, C., Gandini, M. A., Maucieri, C., Stevanato, P., Squartini, A., Borin, M. (2021). Green walls to treat kitchen greywater in urban areas: Performance from a pilot-scale experiment. Science of The Total Environment. 757, 1-11. https://doi.org/10.1016/j.scitotenv.2020.144189
dc.relation.ispartofjournal.eng.fl_str_mv Science of the Total Environment
dc.relation.references.none.fl_str_mv Aragno, M., Schlegel, H.G., 1978. Aquaspirillum autotrophicum, a new species of hydrogenoxidizing, facultatively autotrophic bacteria. Int. J. Syst. Bacteriol. 28, 112–116. https://doi.org/10.1099/00207713-28-1-112.
Borin, M., Milani, M., Salvato, M., Toscano, A., 2011. Evaluation of Phragmites australis (Cav.) Trin. evapotranspiration in northern and southern Italy. Ecol. Eng. 37, 721–728.
Bortolini, L., Zanin, G., 2018. Hydrological behaviour of rain gardens and plant suitability: a study in the Veneto plain (north-eastern Italy) conditions. Urban For. Urban Green. 34, 121–133. https://doi.org/10.1016/j.ufug.2018.06.007.
Bortolini, L.,Maucieri, C., Borin,M., 2018. A tool for the evaluation of irrigation water quality in the arid and semi-arid regions. Agronomy 8 (23). https://doi.org/10.3390/ agronomy8020023.
Compeau, G.C., Bartha, R., 1985. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl. Environ. Microbiol. 50, 498–502. https:// doi.org/10.1128/aem.50.2.498-502.1985.
da Cunha, J.A.C., Arias, C.A., Carvalho, P., Rysulova, M., Canals, J.M., Pérez, G., Bosch, M.G., Morató, J.F., 2018. “WETWALL” — an innovative design concept for the treatment of wastewater at an urban scale. Desalin. Water Treat. 109, 205–220. https://doi.org/ 10.5004/dwt.2018.22143.
Dimitrova, S., Taneva, N., Bojilova, K., Zaharieva, V., Lazarova, S., Koleva, M., Arsov, R., Venelinov, T., 2013. Comparison of spectrophotometric methods using cuvette tests and national standard methods for analysis of wastewater samples. Int. J. Water Resour. Environ. Eng. 5, 482–488. https://doi.org/10.5897/IJWREE2012.0405.
Dotro, G., Langergraber, G., Molle, P., Nivala, J., Puigagut, J., Stein, O., von Sperling, M., 2017. Treatment Wetlands. Volume Seven. IWA Publishing, London.
Eriksson, E., 2002. Potential and Problems Related to Reuse ofWater in Households. Technical University of Denmark.
Foladori, P., Ruaben, J., Ortigara, A.R.C., 2013. Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater. Bioresour. Technol. 149, 398–405. https://doi.org/10.1016/j.biortech.2013.09.099.
Fowdar, H.S., Hatt, B.E., Breen, P., Cook, P.L.M., Deletic, A., 2017. Designing living walls for greywater treatment. Water Res. 110, 218–232. https://doi.org/10.1016/j. watres.2016.12.018.
Gagnon, V., Chazarenc, F., Kõiv, M., Brisson, J., 2012. Effect of plant species on water quality at the outlet of a sludge treatment wetland. Water Res. 46, 5305–5315.
Ghaitidak, D.M., Yadav, K.D., 2013. Characteristics and treatment of greywater-a review. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-013-1533-0.
Ghosh, D., Gopal, B., 2010. Effect of hydraulic retention time on the treatment of secondary effluent in a subsurface flow constructed wetland. Ecol. Eng. 36, 1044–1051. https://doi.org/10.1016/j.ecoleng.2010.04.017.
Gilbert, R., 1987. Statistical Methods for Environmental Pollution Monitoring. van Nostrand Reinhold, New York.
Haynes, R.J., 1990. Active ion uptake and maintenance of cation-anion balance: a critical examination of their role in regulating rhizosphere pH. Plant Soil 126, 247–264. https://doi.org/10.1007/BF00012828.
Hunter, W.J., 2014. A rhizobium selenitireducens protein showing selenite reductase activity. Curr. Microbiol. 68, 311–316. https://doi.org/10.1007/s00284-013-0474-7.
Kadewa, W.W., 2010. Small-Scale Constructed Wetland for Onsite Light Grey Water Treatment and Recycling. Cranfield University.
Kadlec, R.H., Wallace, S.D., 2008. Treatment Wetlands. Second edition. CRC press, Boca raton, Florida, USA. Kaiser, H.F., 1960. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151. https://doi.org/10.1177/001316446002000116.
Kaiser, H.F., 1974. An index of factorial simplicity. Psychometrika 39, 31–36. https://doi. org/10.1007/BF02291575.
Keath, N.A., Brown, R.R., 2009. Extreme events: being prepared for the pitfalls with progressing sustainable urban water management. Water Sci. Technol. 59, 1271–1280. https://doi.org/10.2166/wst.2009.136.
Kim, S.H., Cho, J.S., Park, J.H., Heo, J.S., Ok, Y.S., Delaune, R.D., Seo, D.C., 2016. Long-term performance of vertical-flow and horizontal-flow constructed wetlands as affected by season, N load, and operating stage for treating nitrogen from domestic sewage. Environ. Sci. Pollut. Res. 23, 1108–1119. https://doi.org/10.1007/s11356-015-5214-z.
Kivaisi, A.K., 2001. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol. Eng. 16, 545–560. https://doi.org/ 10.1016/S0925-8574(00)00113-0.
Latimer, G.W., 2012. Official Methods of Analysis of AOAC International. AOAC international, Gaithersburg, MD, USA.
Leifson, E., 1962. The bacterial flora of distilled and stored water. III. New species of the genera Corynebacterium, Flavobacterium, Spirillum and Pseudomonas. Int. Bull. Bacteriol. Nomencl. Taxon. 12, 161–170. https://doi.org/10.1099/0096266x-12-4- 161.
Li, F., Wichmann, K., Otterpohl, R., 2009. Review of the technological approaches for grey water treatment and reuses. Sci. Total Environ 15, 3439–3449. https://doi.org/ 10.1016/j.scitotenv.2009.02.004.
Manso, M., Castro-Gomes, J., 2015. Green wall systems: a review of their characteristics. Renew. Sustain. Energy Rev 41, 863–871. https://doi.org/10.1016/j.rser.2014.07.203.
Masi, F., Bresciani, R., Rizzo, A., Edathoot, A., Patwardhan, N., Panse, D., Langergraber, G., 2016. Green walls for greywater treatment and recycling in dense urban areas: a case-study in Pune. J. Water Sanit. Hyg. Dev. 6, 342–347. https://doi.org/10.2166/ washdev.2016.019.
Morari, F., Dal Ferro, N., Cocco, E., 2015.Municipal wastewater treatment with Phragmites australis L. and Typha latifolia L. for irrigation reuse. Boron and heavy metals. Water Air Soil Pollut. 226, 56. https://doi.org/10.1007/s11270-015-2336-3.
Morel, A., Diener, S., 2006. GreywaterManagement in Low and Middle-income Countries, Review of Different Treatment Systems for Households or Neighbourhoods. Sandec Report No. 14/06. Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland.
Nicoletto, C., Zanin, G., Sambo, P., Dalla Costa, L., 2019. Quality assessment of typical common bean genotypes cultivated in temperate climate conditions and different growth locations. Sci. Hortic. (Amsterdam) 256, 108599. https://doi.org/ 10.1016/j.scienta.2019.108599.
Nishiyama, T., Ueki, A., Kaku, N., Watanabe, K., Ueki, K., 2009. Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int. J. Syst. Evol.Microbiol. 59, 1901–1907. https://doi. org/10.1099/ijs.0.008268-0.
Noutsopoulos, C., Andreadakis, A., Kouris, N., Charchousi, D., Mendrinou, P., Galani, A., Mantziaras, I., Koumaki, E., 2018. Greywater characterization and loadings – physicochemical treatment to promote onsite reuse. J. Environ. Manag. 216, 337–346. https://doi.org/10.1016/j.jenvman.2017.05.094.
Panagopoulos, T., González Duque, J.A., Bostenaru Dan, M., 2016. Urban planning with respect to environmental quality and human well-being. Environ. Pollut. 208, 137–144. https://doi.org/10.1016/j.envpol.2015.07.038.
Perini, K., Ottelé, M., Haas, E.M., Raiteri, R., 2011. Greening the building envelope, facade greening and living wall systems. Open J. Ecol. 01, 1–8. https://doi.org/10.4236/ oje.2011.11001.
Picard, C.R., Fraser, L.H., Steer, D., 2005. The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms. Bioresour. Technol. 96 (9), 1039–1047. https://doi.org/10.1016/j.biortech.2004.09.007.
Prinčič, A., Mahne, I., Megušar, F., Paul, E.A., Tiedje, J.M., 1998. Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl. Environ. Microbiol. 64, 3584–3590. https://doi.org/10.1128/ aem.64.10.3584-3590.1998.
Prochaska, C.A., Zouboulis, A.I., Eskridge, K.M., 2007. Performance of pilot-scale verticalflow constructed wetlands, as affected by season, substrate, hydraulic load and frequency of application of simulated urban sewage. Ecol. Eng. 31, 57–66. https://doi. org/10.1016/j.ecoleng.2007.05.007.
Prodanovic, V., Hatt, B., McCarthy, D., Zhang, K., Deletic, A., 2017. Green walls for greywater reuse: understanding the role of media on pollutant removal. Ecol. Eng. 102, 625–635. https://doi.org/10.1016/j.ecoleng.2017.02.045.
Prodanovic, V., McCarthy, D., Hatt, B., Deletic, A., 2019. Designing green walls for greywater treatment: the role of plants and operational factors on nutrient removal. Ecol. Eng. 130, 184–195. https://doi.org/10.1016/j.ecoleng.2019.02.019.
Prodanovic, V., Hatt, B., McCarthy, D., Deletic, A., 2020. Green wall height and design optimisation for effective greywater pollution treatment and reuse. J. Environ. Manag. 261, 110173. https://doi.org/10.1016/j.jenvman.2020.110173.
Saha, P., Chakrabarti, T., 2006. Aeromonas sharmana sp. nov., isolated fromawarmspring. Int. J. Syst. Evol. Microbiol. 56, 1905–1909. https://doi.org/10.1099/ijs.0.63972-0.
Salgot, M., Huertas, E.,Weber, S., Dott,W., Hollender, J., 2006.Wastewater reuse and risk: definition of key objectives. Desalination 187, 29–40. https://doi.org/10.1016/j. desal.2005.04.065.
Savvas, D., Gianquinto, G.P., Tüzel, Y., Gruda, N., 2013. Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas. FAO Plant Production and Protection Paper 217. Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy.
Siegel, S., Castellan Jr., N.J., 1988. Nonparametric Statistics for the Behavioral Sciences. 2nd edition. McGraw-Hill, New York, USA.
Tamiazzo, J., Breschigliaro, S., Salvato, M., Borin, M., 2015. Performance of a wall cascade constructed wetland treating surfactant-polluted water. Environ. Sci. Pollut. Res. 22, 12816–12828. https://doi.org/10.1007/s11356-014-4063-5.
Tchobanoglous, G., Burton, F.L., Stensel, H.D., 1991. Wastewater Engineering: Treatment, Disposal, and Reuse. Fourth edition. McGraw-Hill, New York, USA.
Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., James, P., 2007. Promoting ecosystem and human health in urban areas using green infrastructure: a literature review. Landsc. Urban Plan. https://doi.org/10.1016/j.landurbplan.2007.02.001.
Ueki, A., Akasaka, H., Satoh, A., Suzuki, D., Ueki, K., 2007. Prevotella paludivivens sp. nov., a novel strictly anaerobic, gram-negative, hemicellulose-decomposing bacterium isolated from plant residue and rice roots in irrigated rice-field soil. Int. J. Syst. Evol. Microbiol. 57, 1803–1809. https://doi.org/10.1099/ijs.0.64914-0.
Vähäoja, P., Piltonen, P., Hyvönen, A., Niinimäki, J., Jalonen, J., Kuokkanen, T., 2005. Biodegradability studies of certain wood preservatives in groundwater as determined by the respirometric BOD OxiTop method. Water Air Soil Pollut. 165, 313–324. https:// doi.org/10.1007/s11270-005-6912-9.
Vymazal, J., 2019. Is removal of organics and suspended solids in horizontal sub-surface flow constructed wetlands sustainable for twenty and more years? Chem. Eng. J. 378, 122117. https://doi.org/10.1016/j.cej.2019.122117.
Young, C.C., Ho,M.J., Arun, A.B., Chen,W.M., Lai, W.A., Shen, F.T., Rekha, P.D., Yassin, A.F., 2007. Pseudoxanthomonas spadix sp. nov., isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 57, 1823–1827. https://doi.org/10.1099/ ijs.0.65053-0.
Zanin, G., Bortolini, L., Borin, M., 2018. Assessing stormwater nutrient and heavy metal plant uptake in an experimental bioretention pond. Land 7, 150. https://doi.org/ 10.3390/land7040150.
Zanin, G., Maucieri, C., Dal Ferro, N., Bortolini, L., Borin, M., 2020. Evaluating a controlledrelease fertilizer for plant establishment in floating elements for bioretention ponds. Agronomy 10, 199. https://doi.org/10.3390/agronomy10020199.
Zhang, K., Chui, T.F.M., 2019. Linking hydrological and bioecological benefits of green infrastructures across spatial scales – a literature review. Sci. Total Environ. https://doi. org/10.1016/j.scitotenv.2018.07.355
dc.rights.spa.fl_str_mv Derechos reservados - Elsevier, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsevier, 2021
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.source.eng.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0048969720377202#!
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/ee8cecf6-3083-44c0-8f9d-18251926d7f3/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259975300579328
spelling Dal Ferro, Nicola59ca04ef9e7297377e7a8400833efadcDe Mattia, Chiarac233601fefbd6e3b236bd78aceebb412Maucieri, Carmelo20ff7d7c1cf4d2d57b5a8dc003fe917dStevanato, Piergiorgio176cea71f821d7a924fe47ac2d00feb1Squartini, Andread0ef085f160e147e8dcdef995d3f2170Borin, Maurizioe29e6c4319a07ddcb66881b9b828d142Gandini Ayerbe, Mario Andrésvirtual::1858-12022-05-27T19:57:25Z2022-05-27T19:57:25Z2021-02-25489697https://hdl.handle.net/10614/13924Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/An increase in water use in urban areas is forcing scientists and policy makers to find alternative solutions for freshwater management, aimed at attaining integrated water resources management. Here, we tested in a 2 year experiment (June 2017–April 2019) the treatment performance of an innovative wall cascade constructed wetland (WCCW) system. The aimwas to combine themultifunctional benefits of greenwalls (e.g. aesthetic, surface area requirements) with those of constructed wetland systems (e.g. high pollutants removal efficiencies, water recycling) to treat kitchen greywaters. The WCCW was a terraced system of six phytoremediation lines, each ofwhichwas composed of three plastic tanks (3 × 0.04m3), filled with lightweight porousmedia, and vegetated with different ornamental species, namely Mentha aquatica L., Oenanthe javanica (Blume) DC., and Lysimachia nummularia L. Physicochemical (temperature, pH, electrical conductivity, dissolved oxygen, turbidity) and chemical parameters (chemical oxygen demand, biochemical oxygen demand, anionic surfactants, Kjeldahl, ammoniumand nitric nitrogen, total orthophosphate)weremonitored at a frequency of at least 15 days, depending on the season andWCCWmanagement. Results showed that theWCCWsignificantly reduced the mainwater pollutants (e.g. organic compounds, nutrients), suggesting its potential application in urban environments for water recycling in the context of green infrastructures and ecological sanitation. A culture-independent taxonomic assessment of suspended bacterial communities before and after the treatment showed clear treatment-related shifts, being the functional ecology attributes changed according to changes in greywater chemical parameters. Future research should attempt to optimize theWCCWsystemmanagement by regulating the nutrients balance to avoidmacronutrients deficiency, and setting themost suitablewater flowdynamics (hydraulic retention time, saturation-desaturation cycles) to improve the greywater treatment12 páginasapplication/pdfengElsevierDerechos reservados - Elsevier, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S0048969720377202#!Green walls to treat kitchen greywater in urban areas: Performance from a pilot-scale experimentArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Calidad del aguaWater qualityConstructed wetlandsGreen infrastructuresMicrobial analysisNGS sequencingNutrientsUrban areas111757Dal Ferro, N., De Mattia, C., Gandini, M. A., Maucieri, C., Stevanato, P., Squartini, A., Borin, M. (2021). Green walls to treat kitchen greywater in urban areas: Performance from a pilot-scale experiment. Science of The Total Environment. 757, 1-11. https://doi.org/10.1016/j.scitotenv.2020.144189Science of the Total EnvironmentAragno, M., Schlegel, H.G., 1978. Aquaspirillum autotrophicum, a new species of hydrogenoxidizing, facultatively autotrophic bacteria. Int. J. Syst. Bacteriol. 28, 112–116. https://doi.org/10.1099/00207713-28-1-112.Borin, M., Milani, M., Salvato, M., Toscano, A., 2011. Evaluation of Phragmites australis (Cav.) Trin. evapotranspiration in northern and southern Italy. Ecol. Eng. 37, 721–728.Bortolini, L., Zanin, G., 2018. Hydrological behaviour of rain gardens and plant suitability: a study in the Veneto plain (north-eastern Italy) conditions. Urban For. Urban Green. 34, 121–133. https://doi.org/10.1016/j.ufug.2018.06.007.Bortolini, L.,Maucieri, C., Borin,M., 2018. A tool for the evaluation of irrigation water quality in the arid and semi-arid regions. Agronomy 8 (23). https://doi.org/10.3390/ agronomy8020023.Compeau, G.C., Bartha, R., 1985. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl. Environ. Microbiol. 50, 498–502. https:// doi.org/10.1128/aem.50.2.498-502.1985.da Cunha, J.A.C., Arias, C.A., Carvalho, P., Rysulova, M., Canals, J.M., Pérez, G., Bosch, M.G., Morató, J.F., 2018. “WETWALL” — an innovative design concept for the treatment of wastewater at an urban scale. Desalin. Water Treat. 109, 205–220. https://doi.org/ 10.5004/dwt.2018.22143.Dimitrova, S., Taneva, N., Bojilova, K., Zaharieva, V., Lazarova, S., Koleva, M., Arsov, R., Venelinov, T., 2013. Comparison of spectrophotometric methods using cuvette tests and national standard methods for analysis of wastewater samples. Int. J. Water Resour. Environ. Eng. 5, 482–488. https://doi.org/10.5897/IJWREE2012.0405.Dotro, G., Langergraber, G., Molle, P., Nivala, J., Puigagut, J., Stein, O., von Sperling, M., 2017. Treatment Wetlands. Volume Seven. IWA Publishing, London.Eriksson, E., 2002. Potential and Problems Related to Reuse ofWater in Households. Technical University of Denmark.Foladori, P., Ruaben, J., Ortigara, A.R.C., 2013. Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater. Bioresour. Technol. 149, 398–405. https://doi.org/10.1016/j.biortech.2013.09.099.Fowdar, H.S., Hatt, B.E., Breen, P., Cook, P.L.M., Deletic, A., 2017. Designing living walls for greywater treatment. Water Res. 110, 218–232. https://doi.org/10.1016/j. watres.2016.12.018.Gagnon, V., Chazarenc, F., Kõiv, M., Brisson, J., 2012. Effect of plant species on water quality at the outlet of a sludge treatment wetland. Water Res. 46, 5305–5315.Ghaitidak, D.M., Yadav, K.D., 2013. Characteristics and treatment of greywater-a review. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-013-1533-0.Ghosh, D., Gopal, B., 2010. Effect of hydraulic retention time on the treatment of secondary effluent in a subsurface flow constructed wetland. Ecol. Eng. 36, 1044–1051. https://doi.org/10.1016/j.ecoleng.2010.04.017.Gilbert, R., 1987. Statistical Methods for Environmental Pollution Monitoring. van Nostrand Reinhold, New York.Haynes, R.J., 1990. Active ion uptake and maintenance of cation-anion balance: a critical examination of their role in regulating rhizosphere pH. Plant Soil 126, 247–264. https://doi.org/10.1007/BF00012828.Hunter, W.J., 2014. A rhizobium selenitireducens protein showing selenite reductase activity. Curr. Microbiol. 68, 311–316. https://doi.org/10.1007/s00284-013-0474-7.Kadewa, W.W., 2010. Small-Scale Constructed Wetland for Onsite Light Grey Water Treatment and Recycling. Cranfield University.Kadlec, R.H., Wallace, S.D., 2008. Treatment Wetlands. Second edition. CRC press, Boca raton, Florida, USA. Kaiser, H.F., 1960. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151. https://doi.org/10.1177/001316446002000116.Kaiser, H.F., 1974. An index of factorial simplicity. Psychometrika 39, 31–36. https://doi. org/10.1007/BF02291575.Keath, N.A., Brown, R.R., 2009. Extreme events: being prepared for the pitfalls with progressing sustainable urban water management. Water Sci. Technol. 59, 1271–1280. https://doi.org/10.2166/wst.2009.136.Kim, S.H., Cho, J.S., Park, J.H., Heo, J.S., Ok, Y.S., Delaune, R.D., Seo, D.C., 2016. Long-term performance of vertical-flow and horizontal-flow constructed wetlands as affected by season, N load, and operating stage for treating nitrogen from domestic sewage. Environ. Sci. Pollut. Res. 23, 1108–1119. https://doi.org/10.1007/s11356-015-5214-z.Kivaisi, A.K., 2001. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol. Eng. 16, 545–560. https://doi.org/ 10.1016/S0925-8574(00)00113-0.Latimer, G.W., 2012. Official Methods of Analysis of AOAC International. AOAC international, Gaithersburg, MD, USA.Leifson, E., 1962. The bacterial flora of distilled and stored water. III. New species of the genera Corynebacterium, Flavobacterium, Spirillum and Pseudomonas. Int. Bull. Bacteriol. Nomencl. Taxon. 12, 161–170. https://doi.org/10.1099/0096266x-12-4- 161.Li, F., Wichmann, K., Otterpohl, R., 2009. Review of the technological approaches for grey water treatment and reuses. Sci. Total Environ 15, 3439–3449. https://doi.org/ 10.1016/j.scitotenv.2009.02.004.Manso, M., Castro-Gomes, J., 2015. Green wall systems: a review of their characteristics. Renew. Sustain. Energy Rev 41, 863–871. https://doi.org/10.1016/j.rser.2014.07.203.Masi, F., Bresciani, R., Rizzo, A., Edathoot, A., Patwardhan, N., Panse, D., Langergraber, G., 2016. Green walls for greywater treatment and recycling in dense urban areas: a case-study in Pune. J. Water Sanit. Hyg. Dev. 6, 342–347. https://doi.org/10.2166/ washdev.2016.019.Morari, F., Dal Ferro, N., Cocco, E., 2015.Municipal wastewater treatment with Phragmites australis L. and Typha latifolia L. for irrigation reuse. Boron and heavy metals. Water Air Soil Pollut. 226, 56. https://doi.org/10.1007/s11270-015-2336-3.Morel, A., Diener, S., 2006. GreywaterManagement in Low and Middle-income Countries, Review of Different Treatment Systems for Households or Neighbourhoods. Sandec Report No. 14/06. Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland.Nicoletto, C., Zanin, G., Sambo, P., Dalla Costa, L., 2019. Quality assessment of typical common bean genotypes cultivated in temperate climate conditions and different growth locations. Sci. Hortic. (Amsterdam) 256, 108599. https://doi.org/ 10.1016/j.scienta.2019.108599.Nishiyama, T., Ueki, A., Kaku, N., Watanabe, K., Ueki, K., 2009. Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int. J. Syst. Evol.Microbiol. 59, 1901–1907. https://doi. org/10.1099/ijs.0.008268-0.Noutsopoulos, C., Andreadakis, A., Kouris, N., Charchousi, D., Mendrinou, P., Galani, A., Mantziaras, I., Koumaki, E., 2018. Greywater characterization and loadings – physicochemical treatment to promote onsite reuse. J. Environ. Manag. 216, 337–346. https://doi.org/10.1016/j.jenvman.2017.05.094.Panagopoulos, T., González Duque, J.A., Bostenaru Dan, M., 2016. Urban planning with respect to environmental quality and human well-being. Environ. Pollut. 208, 137–144. https://doi.org/10.1016/j.envpol.2015.07.038.Perini, K., Ottelé, M., Haas, E.M., Raiteri, R., 2011. Greening the building envelope, facade greening and living wall systems. Open J. Ecol. 01, 1–8. https://doi.org/10.4236/ oje.2011.11001.Picard, C.R., Fraser, L.H., Steer, D., 2005. The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms. Bioresour. Technol. 96 (9), 1039–1047. https://doi.org/10.1016/j.biortech.2004.09.007.Prinčič, A., Mahne, I., Megušar, F., Paul, E.A., Tiedje, J.M., 1998. Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl. Environ. Microbiol. 64, 3584–3590. https://doi.org/10.1128/ aem.64.10.3584-3590.1998.Prochaska, C.A., Zouboulis, A.I., Eskridge, K.M., 2007. Performance of pilot-scale verticalflow constructed wetlands, as affected by season, substrate, hydraulic load and frequency of application of simulated urban sewage. Ecol. Eng. 31, 57–66. https://doi. org/10.1016/j.ecoleng.2007.05.007.Prodanovic, V., Hatt, B., McCarthy, D., Zhang, K., Deletic, A., 2017. Green walls for greywater reuse: understanding the role of media on pollutant removal. Ecol. Eng. 102, 625–635. https://doi.org/10.1016/j.ecoleng.2017.02.045.Prodanovic, V., McCarthy, D., Hatt, B., Deletic, A., 2019. Designing green walls for greywater treatment: the role of plants and operational factors on nutrient removal. Ecol. Eng. 130, 184–195. https://doi.org/10.1016/j.ecoleng.2019.02.019.Prodanovic, V., Hatt, B., McCarthy, D., Deletic, A., 2020. Green wall height and design optimisation for effective greywater pollution treatment and reuse. J. Environ. Manag. 261, 110173. https://doi.org/10.1016/j.jenvman.2020.110173.Saha, P., Chakrabarti, T., 2006. Aeromonas sharmana sp. nov., isolated fromawarmspring. Int. J. Syst. Evol. Microbiol. 56, 1905–1909. https://doi.org/10.1099/ijs.0.63972-0.Salgot, M., Huertas, E.,Weber, S., Dott,W., Hollender, J., 2006.Wastewater reuse and risk: definition of key objectives. Desalination 187, 29–40. https://doi.org/10.1016/j. desal.2005.04.065.Savvas, D., Gianquinto, G.P., Tüzel, Y., Gruda, N., 2013. Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas. FAO Plant Production and Protection Paper 217. Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy.Siegel, S., Castellan Jr., N.J., 1988. Nonparametric Statistics for the Behavioral Sciences. 2nd edition. McGraw-Hill, New York, USA.Tamiazzo, J., Breschigliaro, S., Salvato, M., Borin, M., 2015. Performance of a wall cascade constructed wetland treating surfactant-polluted water. Environ. Sci. Pollut. Res. 22, 12816–12828. https://doi.org/10.1007/s11356-014-4063-5.Tchobanoglous, G., Burton, F.L., Stensel, H.D., 1991. Wastewater Engineering: Treatment, Disposal, and Reuse. Fourth edition. McGraw-Hill, New York, USA.Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., James, P., 2007. Promoting ecosystem and human health in urban areas using green infrastructure: a literature review. Landsc. Urban Plan. https://doi.org/10.1016/j.landurbplan.2007.02.001.Ueki, A., Akasaka, H., Satoh, A., Suzuki, D., Ueki, K., 2007. Prevotella paludivivens sp. nov., a novel strictly anaerobic, gram-negative, hemicellulose-decomposing bacterium isolated from plant residue and rice roots in irrigated rice-field soil. Int. J. Syst. Evol. Microbiol. 57, 1803–1809. https://doi.org/10.1099/ijs.0.64914-0.Vähäoja, P., Piltonen, P., Hyvönen, A., Niinimäki, J., Jalonen, J., Kuokkanen, T., 2005. Biodegradability studies of certain wood preservatives in groundwater as determined by the respirometric BOD OxiTop method. Water Air Soil Pollut. 165, 313–324. https:// doi.org/10.1007/s11270-005-6912-9.Vymazal, J., 2019. Is removal of organics and suspended solids in horizontal sub-surface flow constructed wetlands sustainable for twenty and more years? Chem. Eng. J. 378, 122117. https://doi.org/10.1016/j.cej.2019.122117.Young, C.C., Ho,M.J., Arun, A.B., Chen,W.M., Lai, W.A., Shen, F.T., Rekha, P.D., Yassin, A.F., 2007. Pseudoxanthomonas spadix sp. nov., isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 57, 1823–1827. https://doi.org/10.1099/ ijs.0.65053-0.Zanin, G., Bortolini, L., Borin, M., 2018. Assessing stormwater nutrient and heavy metal plant uptake in an experimental bioretention pond. Land 7, 150. https://doi.org/ 10.3390/land7040150.Zanin, G., Maucieri, C., Dal Ferro, N., Bortolini, L., Borin, M., 2020. Evaluating a controlledrelease fertilizer for plant establishment in floating elements for bioretention ponds. Agronomy 10, 199. https://doi.org/10.3390/agronomy10020199.Zhang, K., Chui, T.F.M., 2019. Linking hydrological and bioecological benefits of green infrastructures across spatial scales – a literature review. Sci. Total Environ. https://doi. org/10.1016/j.scitotenv.2018.07.355Comunidad generalPublication1b7ae0bb-d40b-4d15-94ee-5d8949aad3c5virtual::1858-11b7ae0bb-d40b-4d15-94ee-5d8949aad3c5virtual::1858-10000-0002-6430-2601virtual::1858-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000952028virtual::1858-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/ee8cecf6-3083-44c0-8f9d-18251926d7f3/download20b5ba22b1117f71589c7318baa2c560MD5210614/13924oai:red.uao.edu.co:10614/139242024-03-05 11:38:27.303https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2021metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K