Subwavelength twin ultrasound focused (STUF) beam generated by shear-to-longitudinal mode conversion in a triangular prism

Focusing ultrasound fields in regions below the incident wavelength using elementary objects (such as spherical and cylindrical) as acoustic lenses have been successfully demonstrated over the last five years. This unique way to tightly concentrate the energy of acoustic fields is interesting for th...

Full description

Autores:
Burbano, Carlos A.
Buiochi, Flavio
Lopes de Andrade, Jorge Henrique
Franco Guzmán, Ediguer Enrique
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/14796
Acceso en línea:
https://hdl.handle.net/10614/14796
https://doi.org/10.1016/j.sna.2022.113704
https://red.uao.edu.co/
Palabra clave:
Ultrasonido
Ultrasonics
Acoustic beam
Subwavelength
Triangular prism
Mode conversion
Shear wave
Rights
openAccess
License
Derechos reservados - Elsevier, 2022
id REPOUAO2_3dc788e40bb279a9f9d13c8a604cf211
oai_identifier_str oai:red.uao.edu.co:10614/14796
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Subwavelength twin ultrasound focused (STUF) beam generated by shear-to-longitudinal mode conversion in a triangular prism
title Subwavelength twin ultrasound focused (STUF) beam generated by shear-to-longitudinal mode conversion in a triangular prism
spellingShingle Subwavelength twin ultrasound focused (STUF) beam generated by shear-to-longitudinal mode conversion in a triangular prism
Ultrasonido
Ultrasonics
Acoustic beam
Subwavelength
Triangular prism
Mode conversion
Shear wave
title_short Subwavelength twin ultrasound focused (STUF) beam generated by shear-to-longitudinal mode conversion in a triangular prism
title_full Subwavelength twin ultrasound focused (STUF) beam generated by shear-to-longitudinal mode conversion in a triangular prism
title_fullStr Subwavelength twin ultrasound focused (STUF) beam generated by shear-to-longitudinal mode conversion in a triangular prism
title_full_unstemmed Subwavelength twin ultrasound focused (STUF) beam generated by shear-to-longitudinal mode conversion in a triangular prism
title_sort Subwavelength twin ultrasound focused (STUF) beam generated by shear-to-longitudinal mode conversion in a triangular prism
dc.creator.fl_str_mv Burbano, Carlos A.
Buiochi, Flavio
Lopes de Andrade, Jorge Henrique
Franco Guzmán, Ediguer Enrique
dc.contributor.author.none.fl_str_mv Burbano, Carlos A.
Buiochi, Flavio
Lopes de Andrade, Jorge Henrique
Franco Guzmán, Ediguer Enrique
dc.contributor.corporatename.spa.fl_str_mv Elsevier
dc.subject.armarc.spa.fl_str_mv Ultrasonido
topic Ultrasonido
Ultrasonics
Acoustic beam
Subwavelength
Triangular prism
Mode conversion
Shear wave
dc.subject.armarc.eng.fl_str_mv Ultrasonics
dc.subject.proposal.eng.fl_str_mv Acoustic beam
Subwavelength
Triangular prism
Mode conversion
Shear wave
description Focusing ultrasound fields in regions below the incident wavelength using elementary objects (such as spherical and cylindrical) as acoustic lenses have been successfully demonstrated over the last five years. This unique way to tightly concentrate the energy of acoustic fields is interesting for the development of new high resolution ultrasound systems. Usually, an incident longitudinal beam interacts with these lenses to produce a subwavelength beams at its shadow region. However, no shear-wave beam has been reported to produce subwavelength beams using objects as acoustic lenses. In this work, we numerically and experimentally report the generation of a subwavelength twin ultrasound focusing (STUF) beam using a 1 MHz shear transducer coupled to a Rexolite triangular prism. Numerical simulations were performed in order to study the generated field as a function of the apical angle of the prism and to find the mechanical configuration for the experimental validation. The results show that by changing the apical angle of the triangular prism, the main features of the STUF beams can be changed. To validate the numerical model, a prism with apical angle of 90o was built and the acoustic field distribution was measured by a needle hydrophone. A STUF beam with width of 0.8λ and depth of focus (DOF) 3λ was generated. A good agreement between numerical and experimental results was reported. The proposed system open new possibilities to design and built a simple and low cost acoustic system for microparticle trapping applications.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-09-01
dc.date.accessioned.none.fl_str_mv 2023-05-26T15:19:41Z
dc.date.available.none.fl_str_mv 2023-05-26T15:19:41Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 09244247
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/14796
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.sna.2022.113704
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital UAO
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 09244247
Universidad Autónoma de Occidente
Repositorio Educativo Digital UAO
url https://hdl.handle.net/10614/14796
https://doi.org/10.1016/j.sna.2022.113704
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 8
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 344
dc.relation.cites.spa.fl_str_mv Franco, E.E., Burbano, C.A., Buiochi, F., Lopes de Andrade, J.H. (2022) Subwavelength twin ultrasound focused (STUF) beam generated by shear-to-longitudinal mode conversion in a triangular prism. Sensors And Actuators A-Physical, vol. 344,pp.1-8. https://doi.org/10.1016/j.sna.2022.113704
dc.relation.ispartofjournal.eng.fl_str_mv Sensors and Actuators A: Physical
dc.relation.references.none.fl_str_mv M. Li, G. Hayward Ultrasound nondestructive evaluation (nde) imaging with transducer arrays and adaptive processing Sensors, 12 (1) (2012), pp. 42-54, 10.3390/s120100042 〈https://www.mdpi.com/1424-8220/12/1/42
A. Webb, G.C. Kagadis Introduction to biomedical imaging 2267-2267 Med. Phys., 30 (8) (2003), 10.1118/1.1589017 2267-2267 〈https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.1589017〉
J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, F.J. Garcia-Vidal A holey-structured metamaterial for acoustic deep-subwavelength imaging Nat. Commun., 7 (2011), pp. 52-55
X. Zhou, M.B. Assouar, M. Oudich Acoustic superfocusing by solid phononic crystals Appl. Phys. Lett., 105 (23) (2014), Article 233506, 10.1063/1.4904262
J.H. Lopes, M.A.B. Andrade, J.P. LeãoNeto, J.C. Adamowski, I.V. Minin, G.T. Silva Focusing acoustic beams with a ball-shaped lens beyond the diffraction limit Phys. Rev. Appl., 8 (2017), Article 024013, 10.1103/PhysRevApplied.8.024013 〈https://link.aps.org/doi/10.1103/PhysRevApplied.8.024013〉
F. Ma, Z. Huang, C. Liu, J.H. Wu Acoustic focusing and imaging via phononic crystal and acoustic metamaterials J. Appl. Phys., 131 (1) (2022), Article 011103, 10.1063/5.0074503
S. Castiñeira-Ibáñez, D. Tarrazó-Serrano, A. Uris, C. Rubio, O.V. Minin, I.V. Minin Cylindrical 3d printed configurable ultrasonic lens for subwavelength focusing enhancement Sci. Rep., 10 (1) (. 2020), 10.1038/s41598-020-77165-0
Z. Lin, X. Guo, J. Tu, Q. Ma, J. Wu, D. Zhang Acoustic non-diffracting airy beam J. Appl. Phys., 117 (10) (2015), Article 104503, 10.1063/1.4914295
H. Miao, F. Li Shear horizontal wave transducers for structural health monitoring and nondestructive testing: a review Ultrasonics, 114 (2021), Article 106355, 10.1016/j.ultras.2021.106355 〈https://www.sciencedirect.com/science/article/pii/S0041624×21000032
C.R.P. Courtney, C.E.M. Demore, H. Wu, A. Grinenko, P.D. Wilcox, S. Cochran, B.W. Drinkwater Independent trapping and manipulation of microparticles using dexterous acoustic tweezers Appl. Phys. Lett., 104 (15) (2014), Article 154103, 10.1063/1.4870489
A. Oliner Microwave network methods for guided elastic waves IEEE Trans. Microw. Theory Tech., 17 (11) (1969), pp. 812-826, 10.1109/TMTT.1969.1127071
dc.rights.spa.fl_str_mv Derechos reservados - Elsevier, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsevier, 2022
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 8 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/99976edc-d727-4cc0-93d2-bd669bd95b06/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260242556387328
spelling Burbano, Carlos A.3575dc27b80d6f2539ef796a1510df44Buiochi, Flavio2b42ed6c20832f7486b414492c250fcfLopes de Andrade, Jorge Henriquef3c12e2b2a5842bfe7cb1c176bc599a7Franco Guzmán, Ediguer Enriquevirtual::1806-1Elsevier2023-05-26T15:19:41Z2023-05-26T15:19:41Z2022-09-0109244247https://hdl.handle.net/10614/14796https://doi.org/10.1016/j.sna.2022.113704Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/Focusing ultrasound fields in regions below the incident wavelength using elementary objects (such as spherical and cylindrical) as acoustic lenses have been successfully demonstrated over the last five years. This unique way to tightly concentrate the energy of acoustic fields is interesting for the development of new high resolution ultrasound systems. Usually, an incident longitudinal beam interacts with these lenses to produce a subwavelength beams at its shadow region. However, no shear-wave beam has been reported to produce subwavelength beams using objects as acoustic lenses. In this work, we numerically and experimentally report the generation of a subwavelength twin ultrasound focusing (STUF) beam using a 1 MHz shear transducer coupled to a Rexolite triangular prism. Numerical simulations were performed in order to study the generated field as a function of the apical angle of the prism and to find the mechanical configuration for the experimental validation. The results show that by changing the apical angle of the triangular prism, the main features of the STUF beams can be changed. To validate the numerical model, a prism with apical angle of 90o was built and the acoustic field distribution was measured by a needle hydrophone. A STUF beam with width of 0.8λ and depth of focus (DOF) 3λ was generated. A good agreement between numerical and experimental results was reported. The proposed system open new possibilities to design and built a simple and low cost acoustic system for microparticle trapping applications.8 páginasapplication/pdfengElsevierDerechos reservados - Elsevier, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Subwavelength twin ultrasound focused (STUF) beam generated by shear-to-longitudinal mode conversion in a triangular prismArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85UltrasonidoUltrasonicsAcoustic beamSubwavelengthTriangular prismMode conversionShear wave81344Franco, E.E., Burbano, C.A., Buiochi, F., Lopes de Andrade, J.H. (2022) Subwavelength twin ultrasound focused (STUF) beam generated by shear-to-longitudinal mode conversion in a triangular prism. Sensors And Actuators A-Physical, vol. 344,pp.1-8. https://doi.org/10.1016/j.sna.2022.113704Sensors and Actuators A: PhysicalM. Li, G. Hayward Ultrasound nondestructive evaluation (nde) imaging with transducer arrays and adaptive processing Sensors, 12 (1) (2012), pp. 42-54, 10.3390/s120100042 〈https://www.mdpi.com/1424-8220/12/1/42A. Webb, G.C. Kagadis Introduction to biomedical imaging 2267-2267 Med. Phys., 30 (8) (2003), 10.1118/1.1589017 2267-2267 〈https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.1589017〉J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, F.J. Garcia-Vidal A holey-structured metamaterial for acoustic deep-subwavelength imaging Nat. Commun., 7 (2011), pp. 52-55X. Zhou, M.B. Assouar, M. Oudich Acoustic superfocusing by solid phononic crystals Appl. Phys. Lett., 105 (23) (2014), Article 233506, 10.1063/1.4904262J.H. Lopes, M.A.B. Andrade, J.P. LeãoNeto, J.C. Adamowski, I.V. Minin, G.T. Silva Focusing acoustic beams with a ball-shaped lens beyond the diffraction limit Phys. Rev. Appl., 8 (2017), Article 024013, 10.1103/PhysRevApplied.8.024013 〈https://link.aps.org/doi/10.1103/PhysRevApplied.8.024013〉F. Ma, Z. Huang, C. Liu, J.H. Wu Acoustic focusing and imaging via phononic crystal and acoustic metamaterials J. Appl. Phys., 131 (1) (2022), Article 011103, 10.1063/5.0074503S. Castiñeira-Ibáñez, D. Tarrazó-Serrano, A. Uris, C. Rubio, O.V. Minin, I.V. Minin Cylindrical 3d printed configurable ultrasonic lens for subwavelength focusing enhancement Sci. Rep., 10 (1) (. 2020), 10.1038/s41598-020-77165-0Z. Lin, X. Guo, J. Tu, Q. Ma, J. Wu, D. Zhang Acoustic non-diffracting airy beam J. Appl. Phys., 117 (10) (2015), Article 104503, 10.1063/1.4914295H. Miao, F. Li Shear horizontal wave transducers for structural health monitoring and nondestructive testing: a review Ultrasonics, 114 (2021), Article 106355, 10.1016/j.ultras.2021.106355 〈https://www.sciencedirect.com/science/article/pii/S0041624×21000032C.R.P. Courtney, C.E.M. Demore, H. Wu, A. Grinenko, P.D. Wilcox, S. Cochran, B.W. Drinkwater Independent trapping and manipulation of microparticles using dexterous acoustic tweezers Appl. Phys. Lett., 104 (15) (2014), Article 154103, 10.1063/1.4870489A. Oliner Microwave network methods for guided elastic waves IEEE Trans. Microw. Theory Tech., 17 (11) (1969), pp. 812-826, 10.1109/TMTT.1969.1127071Comunidad generalPublicationff78380a-274b-4973-8760-dee857b38a0dvirtual::1806-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1806-1https://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::1806-10000-0001-7518-704Xvirtual::1806-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::1806-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/99976edc-d727-4cc0-93d2-bd669bd95b06/download20b5ba22b1117f71589c7318baa2c560MD5210614/14796oai:red.uao.edu.co:10614/147962024-04-01 11:15:18.356https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2022metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K