Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes

This article presents microneedles analyses where the design parameters studied included length and inner and outer diameter ranges. A mathematical model was also used to generalize outer and inner diameter ratios in the obtained ranges. Following this, the range of inner and outer diameters was com...

Full description

Autores:
Villota Espinosa, Isabella
Calvo Echeverry, Paulo César
Fonthal Rico, Faruk
Campo Salazar, Oscar Iván
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/14758
Acceso en línea:
https://hdl.handle.net/10614/14758
https://red.uao.edu.co/
Palabra clave:
Ingeniería biomédica
Ingeniería de materiales
Materials engineering
Biomedical engineering
Microneedles
Transdermal drug delivery
Finite element analysis
3D printing
Rights
openAccess
License
Derechos reservados - MDPI, 2022
id REPOUAO2_3c639632e696aa009ca4060a24cc9853
oai_identifier_str oai:red.uao.edu.co:10614/14758
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
title Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
spellingShingle Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
Ingeniería biomédica
Ingeniería de materiales
Materials engineering
Biomedical engineering
Microneedles
Transdermal drug delivery
Finite element analysis
3D printing
title_short Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
title_full Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
title_fullStr Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
title_full_unstemmed Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
title_sort Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
dc.creator.fl_str_mv Villota Espinosa, Isabella
Calvo Echeverry, Paulo César
Fonthal Rico, Faruk
Campo Salazar, Oscar Iván
dc.contributor.author.none.fl_str_mv Villota Espinosa, Isabella
Calvo Echeverry, Paulo César
Fonthal Rico, Faruk
Campo Salazar, Oscar Iván
dc.subject.armarc.spa.fl_str_mv Ingeniería biomédica
Ingeniería de materiales
topic Ingeniería biomédica
Ingeniería de materiales
Materials engineering
Biomedical engineering
Microneedles
Transdermal drug delivery
Finite element analysis
3D printing
dc.subject.armarc.eng.fl_str_mv Materials engineering
Biomedical engineering
dc.subject.proposal.eng.fl_str_mv Microneedles
Transdermal drug delivery
Finite element analysis
3D printing
description This article presents microneedles analyses where the design parameters studied included length and inner and outer diameter ranges. A mathematical model was also used to generalize outer and inner diameter ratios in the obtained ranges. Following this, the range of inner and outer diameters was completed by mechanical simulations, ranging from 30 µm to 134 µm as the inner diameter range and 208 µm to 250 µm as the outer diameter range. With these ranges, a mathematical model was made using fourth-order polynomial regressions with a correlation of 0.9993, ensuring a safety factor of four in which von Misses forces of the microneedle are around 17.931 MPa; the ANSYS software was used to analyze the mechanical behavior of the microneedles. In addition, the microneedle concept was made by 3D printing using a biocompatible resin of class 1. The features presented by the microneedle designed in this study make it a promising option for implementation in a transdermal drug-delivery device.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-10-06
dc.date.accessioned.none.fl_str_mv 2023-05-18T13:04:29Z
dc.date.available.none.fl_str_mv 2023-05-18T13:04:29Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 14203049
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/14758
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital UAO
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 14203049
Universidad Autónoma de Occidente
Repositorio Educativo Digital UAO
url https://hdl.handle.net/10614/14758
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationissue.spa.fl_str_mv 19
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 27
dc.relation.cites.spa.fl_str_mv Villota Espinosa, I., Calvo Echeverry, P.C., Campo Salazar, O.I., Fonthal Rico, F., Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules, 27(19), 1-11. https://hdl.handle.net/10614/14758
dc.relation.ispartofjournal.eng.fl_str_mv Molecules
dc.relation.references.none.fl_str_mv Xu, J.; Xu, D.; Xuan, X.; He, H. Advances of microneedles in biomedical applications. Molecules 2021, 26, 5912
Chaurasiya, P.; Ganju, E.; Upmanyu, N.; Ray, S.K.; Jain, P. Transfersomes: A novel technique for transdermal drug delivery. J. Drug Deliv. Ther. 2019, 9, 279–285.
Shingade, G.M. Review on: Recent trend on transdermal drug delivery system. J. Drug Deliv. Ther. 2012, 2, 66–75.
Economidou, S.N.; Uddin, M.J.; Marques, M.J.; Douroumis, D.; Sow, W.T.; Li, H.; Reid, A.; Windmill, J.F.C.; Podoleanu, A. A novel 3D printed hollow Micr
Rogkas, N.; Vakouftsis, C.; Spitas, V.; Lagaros, N.D.; Georgantzinos, S.K. Design aspects of additive manufacturing at microscale: A review. Micromachines 2022, 13, 775.
Bora, P.; Kumar, L.; Bansal, A.K. Microneedle technology for advanced drug delivery: Evolving vistas. Crips 2008, 9, 7–10
Wu, M.; Zhang, Y.; Huang, H.; Li, J.; Liu, H.; Guo, Z.; Xue, L.; Liu, S.; Lei, Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C 2020, 117, 111299
Vishnu, B.; Kumar, M.S. Improving productivity through design and development of re-capable needle cover for blood bag needle assembly. Acta Tech. Corviniensis-Bull. Eng. 2015, 8, 61–64
Abolhassani, N.; Patel, R.; Moallem, M. Needle insertion into soft tissue: A survey. Med. Eng. Phys. 2007, 29, 413–431
Ahn, B. Optimal microneedle design for drug delivery based on insertion force experiments with variable geometry. Int. J. Control. Autom. Syst. 2020, 18, 143–149
Saseendran, S.; Wysocki, M.; Varna, J. Cure-state dependent viscoelastic Poisson’s ratio of LY5052 epoxy resin. Adv. Manuf. Polym. Compos. Sci. 2017, 3, 92–100
Surgical Guide Resin, Formlabs/Dental Resin data sheet; Formlabs: Somerville, MA, USA, 2021
Choo, S.; Jin, S. and Jung, J. Fabricating high-resolution and high-dimensional microneedle mold through the resolution improvement of stereolithography 3D printing. Pharmaceutics 2022, 14, 766
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 2022
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.publisher.place.spa.fl_str_mv Basel, Suiza
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/9d8b7227-ab75-4b2a-b731-23f02a5a3ed6/download
https://red.uao.edu.co/bitstreams/bd07b467-2b47-4d05-88df-ca6c99e548fe/download
https://red.uao.edu.co/bitstreams/20686204-7e84-4837-b732-15a90a8645f8/download
https://red.uao.edu.co/bitstreams/610be313-7ffb-4bc0-9440-a3ae7df7856d/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
a41b8a89b712b8b80c3bb04df5621b4d
1aaa20f65949fadf20451250f9da5f8c
93ec54c97ac7eef17fd7ac083f314c1f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259900147040256
spelling Villota Espinosa, Isabella0adcf378193dc78e133ff634849f149eCalvo Echeverry, Paulo Césarvirtual::983-1Fonthal Rico, Farukvirtual::1745-1Campo Salazar, Oscar Ivánvirtual::147-12023-05-18T13:04:29Z2023-05-18T13:04:29Z2022-10-0614203049https://hdl.handle.net/10614/14758Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/This article presents microneedles analyses where the design parameters studied included length and inner and outer diameter ranges. A mathematical model was also used to generalize outer and inner diameter ratios in the obtained ranges. Following this, the range of inner and outer diameters was completed by mechanical simulations, ranging from 30 µm to 134 µm as the inner diameter range and 208 µm to 250 µm as the outer diameter range. With these ranges, a mathematical model was made using fourth-order polynomial regressions with a correlation of 0.9993, ensuring a safety factor of four in which von Misses forces of the microneedle are around 17.931 MPa; the ANSYS software was used to analyze the mechanical behavior of the microneedles. In addition, the microneedle concept was made by 3D printing using a biocompatible resin of class 1. The features presented by the microneedle designed in this study make it a promising option for implementation in a transdermal drug-delivery device.11 páginasapplication/pdfengMDPIBasel, SuizaDerechos reservados - MDPI, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Microneedles: One-plane bevel-tipped fabrication by 3d-printing processesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Ingeniería biomédicaIngeniería de materialesMaterials engineeringBiomedical engineeringMicroneedlesTransdermal drug deliveryFinite element analysis3D printing1119127Villota Espinosa, I., Calvo Echeverry, P.C., Campo Salazar, O.I., Fonthal Rico, F., Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules, 27(19), 1-11. https://hdl.handle.net/10614/14758MoleculesXu, J.; Xu, D.; Xuan, X.; He, H. Advances of microneedles in biomedical applications. Molecules 2021, 26, 5912Chaurasiya, P.; Ganju, E.; Upmanyu, N.; Ray, S.K.; Jain, P. Transfersomes: A novel technique for transdermal drug delivery. J. Drug Deliv. Ther. 2019, 9, 279–285.Shingade, G.M. Review on: Recent trend on transdermal drug delivery system. J. Drug Deliv. Ther. 2012, 2, 66–75.Economidou, S.N.; Uddin, M.J.; Marques, M.J.; Douroumis, D.; Sow, W.T.; Li, H.; Reid, A.; Windmill, J.F.C.; Podoleanu, A. A novel 3D printed hollow MicrRogkas, N.; Vakouftsis, C.; Spitas, V.; Lagaros, N.D.; Georgantzinos, S.K. Design aspects of additive manufacturing at microscale: A review. Micromachines 2022, 13, 775.Bora, P.; Kumar, L.; Bansal, A.K. Microneedle technology for advanced drug delivery: Evolving vistas. Crips 2008, 9, 7–10Wu, M.; Zhang, Y.; Huang, H.; Li, J.; Liu, H.; Guo, Z.; Xue, L.; Liu, S.; Lei, Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C 2020, 117, 111299Vishnu, B.; Kumar, M.S. Improving productivity through design and development of re-capable needle cover for blood bag needle assembly. Acta Tech. Corviniensis-Bull. Eng. 2015, 8, 61–64Abolhassani, N.; Patel, R.; Moallem, M. Needle insertion into soft tissue: A survey. Med. Eng. Phys. 2007, 29, 413–431Ahn, B. Optimal microneedle design for drug delivery based on insertion force experiments with variable geometry. Int. J. Control. Autom. Syst. 2020, 18, 143–149Saseendran, S.; Wysocki, M.; Varna, J. Cure-state dependent viscoelastic Poisson’s ratio of LY5052 epoxy resin. Adv. Manuf. Polym. Compos. Sci. 2017, 3, 92–100Surgical Guide Resin, Formlabs/Dental Resin data sheet; Formlabs: Somerville, MA, USA, 2021Choo, S.; Jin, S. and Jung, J. Fabricating high-resolution and high-dimensional microneedle mold through the resolution improvement of stereolithography 3D printing. Pharmaceutics 2022, 14, 766Comunidad en generalPublication767bff32-1019-4cc1-a2d8-a8baf8b48240virtual::983-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::1745-1a358342d-0532-401b-97fa-4986de22c9cdvirtual::147-1a358342d-0532-401b-97fa-4986de22c9cdvirtual::147-1767bff32-1019-4cc1-a2d8-a8baf8b48240virtual::983-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::1745-1https://scholar.google.com/citations?user=zxVYtU0AAAAJ&hl=envirtual::1745-1https://scholar.google.com.co/citations?user=selvUiIAAAAJ&hl=envirtual::147-10000-0001-5353-6368virtual::983-10000-0002-9331-0491virtual::1745-1https://orcid.org/0000-0002-5007-9613virtual::147-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000785075virtual::983-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000895857virtual::1745-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000142433virtual::147-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/9d8b7227-ab75-4b2a-b731-23f02a5a3ed6/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALMicroneedles_One_Plane_Bevel_Tipped_Fabrication_by_3D_Printing_Processes.pdfMicroneedles_One_Plane_Bevel_Tipped_Fabrication_by_3D_Printing_Processes.pdftexto completo del artículoapplication/pdf4145450https://red.uao.edu.co/bitstreams/bd07b467-2b47-4d05-88df-ca6c99e548fe/downloada41b8a89b712b8b80c3bb04df5621b4dMD51TEXTMicroneedles_One_Plane_Bevel_Tipped_Fabrication_by_3D_Printing_Processes.pdf.txtMicroneedles_One_Plane_Bevel_Tipped_Fabrication_by_3D_Printing_Processes.pdf.txtExtracted texttext/plain40198https://red.uao.edu.co/bitstreams/20686204-7e84-4837-b732-15a90a8645f8/download1aaa20f65949fadf20451250f9da5f8cMD53THUMBNAILMicroneedles_One_Plane_Bevel_Tipped_Fabrication_by_3D_Printing_Processes.pdf.jpgMicroneedles_One_Plane_Bevel_Tipped_Fabrication_by_3D_Printing_Processes.pdf.jpgGenerated Thumbnailimage/jpeg16124https://red.uao.edu.co/bitstreams/610be313-7ffb-4bc0-9440-a3ae7df7856d/download93ec54c97ac7eef17fd7ac083f314c1fMD5410614/14758oai:red.uao.edu.co:10614/147582024-04-09 16:13:24.949https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K