Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes
This article presents microneedles analyses where the design parameters studied included length and inner and outer diameter ranges. A mathematical model was also used to generalize outer and inner diameter ratios in the obtained ranges. Following this, the range of inner and outer diameters was com...
- Autores:
-
Villota Espinosa, Isabella
Calvo Echeverry, Paulo César
Fonthal Rico, Faruk
Campo Salazar, Oscar Iván
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/14758
- Acceso en línea:
- https://hdl.handle.net/10614/14758
https://red.uao.edu.co/
- Palabra clave:
- Ingeniería biomédica
Ingeniería de materiales
Materials engineering
Biomedical engineering
Microneedles
Transdermal drug delivery
Finite element analysis
3D printing
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2022
id |
REPOUAO2_3c639632e696aa009ca4060a24cc9853 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/14758 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes |
title |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes |
spellingShingle |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes Ingeniería biomédica Ingeniería de materiales Materials engineering Biomedical engineering Microneedles Transdermal drug delivery Finite element analysis 3D printing |
title_short |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes |
title_full |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes |
title_fullStr |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes |
title_full_unstemmed |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes |
title_sort |
Microneedles: One-plane bevel-tipped fabrication by 3d-printing processes |
dc.creator.fl_str_mv |
Villota Espinosa, Isabella Calvo Echeverry, Paulo César Fonthal Rico, Faruk Campo Salazar, Oscar Iván |
dc.contributor.author.none.fl_str_mv |
Villota Espinosa, Isabella Calvo Echeverry, Paulo César Fonthal Rico, Faruk Campo Salazar, Oscar Iván |
dc.subject.armarc.spa.fl_str_mv |
Ingeniería biomédica Ingeniería de materiales |
topic |
Ingeniería biomédica Ingeniería de materiales Materials engineering Biomedical engineering Microneedles Transdermal drug delivery Finite element analysis 3D printing |
dc.subject.armarc.eng.fl_str_mv |
Materials engineering Biomedical engineering |
dc.subject.proposal.eng.fl_str_mv |
Microneedles Transdermal drug delivery Finite element analysis 3D printing |
description |
This article presents microneedles analyses where the design parameters studied included length and inner and outer diameter ranges. A mathematical model was also used to generalize outer and inner diameter ratios in the obtained ranges. Following this, the range of inner and outer diameters was completed by mechanical simulations, ranging from 30 µm to 134 µm as the inner diameter range and 208 µm to 250 µm as the outer diameter range. With these ranges, a mathematical model was made using fourth-order polynomial regressions with a correlation of 0.9993, ensuring a safety factor of four in which von Misses forces of the microneedle are around 17.931 MPa; the ANSYS software was used to analyze the mechanical behavior of the microneedles. In addition, the microneedle concept was made by 3D printing using a biocompatible resin of class 1. The features presented by the microneedle designed in this study make it a promising option for implementation in a transdermal drug-delivery device. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-10-06 |
dc.date.accessioned.none.fl_str_mv |
2023-05-18T13:04:29Z |
dc.date.available.none.fl_str_mv |
2023-05-18T13:04:29Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
14203049 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/14758 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital UAO |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
14203049 Universidad Autónoma de Occidente Repositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/14758 https://red.uao.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
11 |
dc.relation.citationissue.spa.fl_str_mv |
19 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
27 |
dc.relation.cites.spa.fl_str_mv |
Villota Espinosa, I., Calvo Echeverry, P.C., Campo Salazar, O.I., Fonthal Rico, F., Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules, 27(19), 1-11. https://hdl.handle.net/10614/14758 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Molecules |
dc.relation.references.none.fl_str_mv |
Xu, J.; Xu, D.; Xuan, X.; He, H. Advances of microneedles in biomedical applications. Molecules 2021, 26, 5912 Chaurasiya, P.; Ganju, E.; Upmanyu, N.; Ray, S.K.; Jain, P. Transfersomes: A novel technique for transdermal drug delivery. J. Drug Deliv. Ther. 2019, 9, 279–285. Shingade, G.M. Review on: Recent trend on transdermal drug delivery system. J. Drug Deliv. Ther. 2012, 2, 66–75. Economidou, S.N.; Uddin, M.J.; Marques, M.J.; Douroumis, D.; Sow, W.T.; Li, H.; Reid, A.; Windmill, J.F.C.; Podoleanu, A. A novel 3D printed hollow Micr Rogkas, N.; Vakouftsis, C.; Spitas, V.; Lagaros, N.D.; Georgantzinos, S.K. Design aspects of additive manufacturing at microscale: A review. Micromachines 2022, 13, 775. Bora, P.; Kumar, L.; Bansal, A.K. Microneedle technology for advanced drug delivery: Evolving vistas. Crips 2008, 9, 7–10 Wu, M.; Zhang, Y.; Huang, H.; Li, J.; Liu, H.; Guo, Z.; Xue, L.; Liu, S.; Lei, Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C 2020, 117, 111299 Vishnu, B.; Kumar, M.S. Improving productivity through design and development of re-capable needle cover for blood bag needle assembly. Acta Tech. Corviniensis-Bull. Eng. 2015, 8, 61–64 Abolhassani, N.; Patel, R.; Moallem, M. Needle insertion into soft tissue: A survey. Med. Eng. Phys. 2007, 29, 413–431 Ahn, B. Optimal microneedle design for drug delivery based on insertion force experiments with variable geometry. Int. J. Control. Autom. Syst. 2020, 18, 143–149 Saseendran, S.; Wysocki, M.; Varna, J. Cure-state dependent viscoelastic Poisson’s ratio of LY5052 epoxy resin. Adv. Manuf. Polym. Compos. Sci. 2017, 3, 92–100 Surgical Guide Resin, Formlabs/Dental Resin data sheet; Formlabs: Somerville, MA, USA, 2021 Choo, S.; Jin, S. and Jung, J. Fabricating high-resolution and high-dimensional microneedle mold through the resolution improvement of stereolithography 3D printing. Pharmaceutics 2022, 14, 766 |
dc.rights.spa.fl_str_mv |
Derechos reservados - MDPI, 2022 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - MDPI, 2022 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
dc.publisher.place.spa.fl_str_mv |
Basel, Suiza |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/9d8b7227-ab75-4b2a-b731-23f02a5a3ed6/download https://red.uao.edu.co/bitstreams/bd07b467-2b47-4d05-88df-ca6c99e548fe/download https://red.uao.edu.co/bitstreams/20686204-7e84-4837-b732-15a90a8645f8/download https://red.uao.edu.co/bitstreams/610be313-7ffb-4bc0-9440-a3ae7df7856d/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 a41b8a89b712b8b80c3bb04df5621b4d 1aaa20f65949fadf20451250f9da5f8c 93ec54c97ac7eef17fd7ac083f314c1f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259900147040256 |
spelling |
Villota Espinosa, Isabella0adcf378193dc78e133ff634849f149eCalvo Echeverry, Paulo Césarvirtual::983-1Fonthal Rico, Farukvirtual::1745-1Campo Salazar, Oscar Ivánvirtual::147-12023-05-18T13:04:29Z2023-05-18T13:04:29Z2022-10-0614203049https://hdl.handle.net/10614/14758Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/This article presents microneedles analyses where the design parameters studied included length and inner and outer diameter ranges. A mathematical model was also used to generalize outer and inner diameter ratios in the obtained ranges. Following this, the range of inner and outer diameters was completed by mechanical simulations, ranging from 30 µm to 134 µm as the inner diameter range and 208 µm to 250 µm as the outer diameter range. With these ranges, a mathematical model was made using fourth-order polynomial regressions with a correlation of 0.9993, ensuring a safety factor of four in which von Misses forces of the microneedle are around 17.931 MPa; the ANSYS software was used to analyze the mechanical behavior of the microneedles. In addition, the microneedle concept was made by 3D printing using a biocompatible resin of class 1. The features presented by the microneedle designed in this study make it a promising option for implementation in a transdermal drug-delivery device.11 páginasapplication/pdfengMDPIBasel, SuizaDerechos reservados - MDPI, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Microneedles: One-plane bevel-tipped fabrication by 3d-printing processesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Ingeniería biomédicaIngeniería de materialesMaterials engineeringBiomedical engineeringMicroneedlesTransdermal drug deliveryFinite element analysis3D printing1119127Villota Espinosa, I., Calvo Echeverry, P.C., Campo Salazar, O.I., Fonthal Rico, F., Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules, 27(19), 1-11. https://hdl.handle.net/10614/14758MoleculesXu, J.; Xu, D.; Xuan, X.; He, H. Advances of microneedles in biomedical applications. Molecules 2021, 26, 5912Chaurasiya, P.; Ganju, E.; Upmanyu, N.; Ray, S.K.; Jain, P. Transfersomes: A novel technique for transdermal drug delivery. J. Drug Deliv. Ther. 2019, 9, 279–285.Shingade, G.M. Review on: Recent trend on transdermal drug delivery system. J. Drug Deliv. Ther. 2012, 2, 66–75.Economidou, S.N.; Uddin, M.J.; Marques, M.J.; Douroumis, D.; Sow, W.T.; Li, H.; Reid, A.; Windmill, J.F.C.; Podoleanu, A. A novel 3D printed hollow MicrRogkas, N.; Vakouftsis, C.; Spitas, V.; Lagaros, N.D.; Georgantzinos, S.K. Design aspects of additive manufacturing at microscale: A review. Micromachines 2022, 13, 775.Bora, P.; Kumar, L.; Bansal, A.K. Microneedle technology for advanced drug delivery: Evolving vistas. Crips 2008, 9, 7–10Wu, M.; Zhang, Y.; Huang, H.; Li, J.; Liu, H.; Guo, Z.; Xue, L.; Liu, S.; Lei, Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C 2020, 117, 111299Vishnu, B.; Kumar, M.S. Improving productivity through design and development of re-capable needle cover for blood bag needle assembly. Acta Tech. Corviniensis-Bull. Eng. 2015, 8, 61–64Abolhassani, N.; Patel, R.; Moallem, M. Needle insertion into soft tissue: A survey. Med. Eng. Phys. 2007, 29, 413–431Ahn, B. Optimal microneedle design for drug delivery based on insertion force experiments with variable geometry. Int. J. Control. Autom. Syst. 2020, 18, 143–149Saseendran, S.; Wysocki, M.; Varna, J. Cure-state dependent viscoelastic Poisson’s ratio of LY5052 epoxy resin. Adv. Manuf. Polym. Compos. Sci. 2017, 3, 92–100Surgical Guide Resin, Formlabs/Dental Resin data sheet; Formlabs: Somerville, MA, USA, 2021Choo, S.; Jin, S. and Jung, J. Fabricating high-resolution and high-dimensional microneedle mold through the resolution improvement of stereolithography 3D printing. Pharmaceutics 2022, 14, 766Comunidad en generalPublication767bff32-1019-4cc1-a2d8-a8baf8b48240virtual::983-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::1745-1a358342d-0532-401b-97fa-4986de22c9cdvirtual::147-1a358342d-0532-401b-97fa-4986de22c9cdvirtual::147-1767bff32-1019-4cc1-a2d8-a8baf8b48240virtual::983-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::1745-1https://scholar.google.com/citations?user=zxVYtU0AAAAJ&hl=envirtual::1745-1https://scholar.google.com.co/citations?user=selvUiIAAAAJ&hl=envirtual::147-10000-0001-5353-6368virtual::983-10000-0002-9331-0491virtual::1745-1https://orcid.org/0000-0002-5007-9613virtual::147-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000785075virtual::983-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000895857virtual::1745-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000142433virtual::147-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/9d8b7227-ab75-4b2a-b731-23f02a5a3ed6/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALMicroneedles_One_Plane_Bevel_Tipped_Fabrication_by_3D_Printing_Processes.pdfMicroneedles_One_Plane_Bevel_Tipped_Fabrication_by_3D_Printing_Processes.pdftexto completo del artículoapplication/pdf4145450https://red.uao.edu.co/bitstreams/bd07b467-2b47-4d05-88df-ca6c99e548fe/downloada41b8a89b712b8b80c3bb04df5621b4dMD51TEXTMicroneedles_One_Plane_Bevel_Tipped_Fabrication_by_3D_Printing_Processes.pdf.txtMicroneedles_One_Plane_Bevel_Tipped_Fabrication_by_3D_Printing_Processes.pdf.txtExtracted texttext/plain40198https://red.uao.edu.co/bitstreams/20686204-7e84-4837-b732-15a90a8645f8/download1aaa20f65949fadf20451250f9da5f8cMD53THUMBNAILMicroneedles_One_Plane_Bevel_Tipped_Fabrication_by_3D_Printing_Processes.pdf.jpgMicroneedles_One_Plane_Bevel_Tipped_Fabrication_by_3D_Printing_Processes.pdf.jpgGenerated Thumbnailimage/jpeg16124https://red.uao.edu.co/bitstreams/610be313-7ffb-4bc0-9440-a3ae7df7856d/download93ec54c97ac7eef17fd7ac083f314c1fMD5410614/14758oai:red.uao.edu.co:10614/147582024-04-09 16:13:24.949https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |