Bio-inspired navigation and exploration system for a hexapod robotic platform
This paper presents a biologically inspired system for guiding and controlling a virtual hexapod robot. Our navigation and exploration system is composed of subsystems that execute processes of path integration, action selection, actuator control and correction of the robot’s orientation. For the su...
- Autores:
-
Pardo Cabrera, Josh
Rivero Ortega, Jesús David
Hurtado López, Julián
Ramírez Moreno, David Fernando
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/14721
- Acceso en línea:
- https://hdl.handle.net/10614/14721
https://red.uao.edu.co/
- Palabra clave:
- Neural networks
Path integration
Central pattern generator
Orientation correction
Vector summation
Bio-inspired robotics
- Rights
- openAccess
- License
- Derechos reservados - IOP Publishing, 2022
id |
REPOUAO2_3c2b7b690a28bf0c27bf86c02c044c3e |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/14721 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Bio-inspired navigation and exploration system for a hexapod robotic platform |
title |
Bio-inspired navigation and exploration system for a hexapod robotic platform |
spellingShingle |
Bio-inspired navigation and exploration system for a hexapod robotic platform Neural networks Path integration Central pattern generator Orientation correction Vector summation Bio-inspired robotics |
title_short |
Bio-inspired navigation and exploration system for a hexapod robotic platform |
title_full |
Bio-inspired navigation and exploration system for a hexapod robotic platform |
title_fullStr |
Bio-inspired navigation and exploration system for a hexapod robotic platform |
title_full_unstemmed |
Bio-inspired navigation and exploration system for a hexapod robotic platform |
title_sort |
Bio-inspired navigation and exploration system for a hexapod robotic platform |
dc.creator.fl_str_mv |
Pardo Cabrera, Josh Rivero Ortega, Jesús David Hurtado López, Julián Ramírez Moreno, David Fernando |
dc.contributor.author.none.fl_str_mv |
Pardo Cabrera, Josh Rivero Ortega, Jesús David Hurtado López, Julián Ramírez Moreno, David Fernando |
dc.subject.proposal.eng.fl_str_mv |
Neural networks Path integration Central pattern generator Orientation correction Vector summation Bio-inspired robotics |
topic |
Neural networks Path integration Central pattern generator Orientation correction Vector summation Bio-inspired robotics |
description |
This paper presents a biologically inspired system for guiding and controlling a virtual hexapod robot. Our navigation and exploration system is composed of subsystems that execute processes of path integration, action selection, actuator control and correction of the robot’s orientation. For the subsystem that serves the path integration function we modified an existing model of bio-inspired vector summation by adding the capability of performing online calculation. For the action selection subsystem that allows to switch between the behaviors of exploration, approaching a target and homing we modified an existing model of decision making for mediating social behaviors in mice. We added an additional circuit that projects a signal to the units representing each of the behaviors. In the case of the actuator control subsystem, the structure of a central pattern generator model that incorporates feedback and adaptation was used as the base for generating and transforming signals for the actuators. Finally, the orientation correction subsystem is a novel model that determines an error value from a desired and the current orientations. The proposed models were simulated as independent scripts and then implemented as ROS (Robot Operating System) nodes for controlling a robot simulation in Gazebo |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-05-16 |
dc.date.accessioned.none.fl_str_mv |
2023-05-09T14:57:08Z |
dc.date.available.none.fl_str_mv |
2023-05-09T14:57:08Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
26318695 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/14721 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital UAO |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
26318695 Universidad Autónoma de Occidente Repositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/14721 https://red.uao.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
18 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
4 |
dc.relation.cites.spa.fl_str_mv |
Pardo Cabrera, J., Rivero Ortega, J.D., Hurtado López, J., Ramírez Moreno, D.F. (2022). Bio-inspired navigation and exploration system for a hexapod robotic platform. Engineering Research Express, 4(2), 1-18. https://hdl.handle.net/10614/14721 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Engineering Research Express |
dc.relation.references.none.fl_str_mv |
[1] Patek S and Summers A 2017 Invertebrate biomechanics Current Biology 27 R371–5 [2] Gao Z, Shi Q, Fukuda T, Li C and Huang Q 2019 An overview of biomimetic robots with animal behaviors Neurocomputing 332 339–50 [3] Bagheri Z M, Cazzolato B S, Grainger S, O’Carroll D C and Wiederman S D 2017 An Autonomous Robot Inspired by Insect Neurophysiology Pursues Moving Features in Natural Environments 14 046030 [4] Floreano D, Ijspeert A J and Schaal S 2014 Robotics and neuroscience Current Biology 24 R910–20 [5] Yang G-Z et al 2018 The grand challenges ofScience robotics Science Robotics 3 eaar7650 [6] Selverston A I 2010 Invertebrate central pattern generator circuits Philosophical Transactions of the Royal Society B: Biological Sciences 365 2329–45 [7] Mombaur Ket al 2017 Chapter 4—control of motion and compliance Bioinspired Legged Locomotion ed M A Sharbafi and A Seyfarth (United Kingdom: Butterworth-Heinemann) pp 135–346 [8] Ijspeert A J 2008 Central pattern generators for locomotion control in animals and robots: a review Neural Netw. 21 642–53 [9] Popovic M B, Lamkin-Kennard K A and Bowers M P 2019 5-control and physical intelligence Biomechatronics ed M B Popovic (New York, NY: Academic) pp 109–38 [10] Zhou S, Guo Z, Wong K, Zhu H, Huang Y, Hu X and Zheng Y-P 2021 Pathway-Specific Cortico-Muscular Coherence in Proximal-toDistal Compensation During Fine Motor Control of Finger Extension After Stroke 18 056034 [11] Tedeschi F and Carbone G 2014 Design issues for hexapod walking robots Robotics 3 181–206 [12] Raibert M H 1986 Legged Robots That Balance(Massachusetts, MA: Massachusetts Institute of Technology) [13] Yongtian H, Eguren D, Azorín J M, Grossman R G, Luu T P and Contreras-Vidal J L 2018 Brain-Machine Interfaces for Controlling Lower-Limb Powered Robotic Systems 15 021004 [14] Böttcher S 2006Principles of Robot Locomotion (https://www2.cs.siu.edu/~hexmoor/classes/CS404-S09/RobotLocomotion.pdf) [15] Sprowitz A, ajallooeian M, Tuleu A and Ijspeert A 2014 Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs Frontiers in Computational Neuroscience 8 27 [16] Moro F L, Spröwitz A, Tuleu A, Vespignani M, Tsagarakis N G, Ijspeert A J and Caldwell D G 2013 Horse-like walking, trotting, and galloping derived from kinematic motion primitives(kMPs) and their application to walk/trot transitions in a compliant quadruped robot Biol. Cybern. 107 309–20 [17] Mysore S P and Kothari N B 2020 Mechanisms of competitive selection: a canonical neural circuit framework eLife 9 e51473 [18] Hoke K L, Hebets E A and Shizuka D 2017 Neural circuitry for target selection and action selection in animal behaviorIntegr. Comp. Biol. 57 808–19 [19] Héricé C, Khalil R, Moftah M, Boraud T, Guthrie M and Garenne A 2016 Decision making under uncertainty in a spiking neural network model of the basal ganglia Journal of Integrative Neuroscience 15 515–38 [20] Hurtado-López J, Ramirez-Moreno D F and Sejnowski T J 2017 Decision-making neural circuits mediating social behaviorsJ. Comput. Neurosci. 43 127–42 [21] Barron-Zambrano J H, Torres-Huitzil C and Girau B 2015 Perception-driven adaptive cpg-based locomotion for hexapod robots Neurocomputing 170 63–78 advances on Biological Rhythmic Pattern Generation: Experiments, Algorithms and Applications Selected Papers from the 2013 International Conference on Intelligence Science and Big Data Engineering (IScIDE 2013)Computational Energy Management in Smart Grids [22] Kim J, Sharma G and Iyengar S S 2010 Famper: a fully autonomous mobile robot for pipeline exploration 2010 IEEE International Conference on Industrial Technology pp 517–23 [23] Murphy R R 2004 Human-robot interaction in rescue roboticsIEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 34 138–53 [24] Heinze S, Narendra A and Cheung A 2018 Principles of insect path integration Current Biology : CB 28 R1043–58 [25] Stone T, Webb B, Adden A, Weddig N B, Honkanen A, Templin R, Wcislo W, Scimeca L, Warrant E and Heinze S 2017 An anatomically constrained model for path integration in the bee brain Current Biology (https://doi.org/10.1016/j.cub.2017.08.052) [26] Issa J B and Zhang K 2012 Universal conditions for exact path integration in neural systems Proc. Natl Acad. Sci. 109 6716–20 [27] Page H J I and Jeffery K J 2018 Landmark-based updating of the head direction system by retrosplenial cortex: a computational model Frontiers in Cellular Neuroscience 12 191 [28] Savelli F and Knierim J J 2019 Origin and role of path integration in the cognitive representations of the hippocampus: computational insights into open questionsJ. Exp. Biol. 222 [29] Zeng T, Li X and Si B 2020 Stereoneurobayesslam: a neurobiologically inspired stereo visual slam system based on direct sparse method arXiv:2003.03091 [30] Saranli U, Buehler M and Koditschek D E 2001 Rhex: a simple and highly mobile hexapod robot The International Journal of Robotics Research 20 616–31 [31] Wilson H R 1999 Spikes, Decisions and Actions (Oxford: Oxford University Press) [32] Trappenberg T 2010 Fundamentals of Computational Neuroscience(New York, NY: Oxford University Press) [33] Lee H, Kim D-W, Remedios R, Anthony T, Chang A, Madisen L, Zeng H and Anderson D 2014 Scalable control of mounting and attack by esr1 neurons in the ventromedial hypothalamus Nature 509 |
dc.rights.spa.fl_str_mv |
Derechos reservados - IOP Publishing, 2022 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - IOP Publishing, 2022 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
18 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IOP Publishing Ltd |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/eb75406d-ca93-444d-8f60-707bb18038c4/download https://red.uao.edu.co/bitstreams/6e8d09a5-62c9-466d-8556-0881fd95fc0f/download https://red.uao.edu.co/bitstreams/e8b0f2a3-4083-405f-b103-539cd8f3b97d/download https://red.uao.edu.co/bitstreams/0c35ed46-a95e-4126-a949-4f41c5774ef9/download |
bitstream.checksum.fl_str_mv |
2e00136ef4d5bc7a548ab8edac7982fb 20b5ba22b1117f71589c7318baa2c560 69ec1daa79661c11285589933a0463b3 fbcd24dc150a322ae7281711f655c196 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259841641742336 |
spelling |
Pardo Cabrera, Josh30c867ef64a739b68d65110b9b0df9abRivero Ortega, Jesús David7b77a86ada033a49b73eaa7ab7bb80dcHurtado López, Juliánvirtual::2355-1Ramírez Moreno, David Fernandovirtual::4307-12023-05-09T14:57:08Z2023-05-09T14:57:08Z2022-05-1626318695https://hdl.handle.net/10614/14721Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/This paper presents a biologically inspired system for guiding and controlling a virtual hexapod robot. Our navigation and exploration system is composed of subsystems that execute processes of path integration, action selection, actuator control and correction of the robot’s orientation. For the subsystem that serves the path integration function we modified an existing model of bio-inspired vector summation by adding the capability of performing online calculation. For the action selection subsystem that allows to switch between the behaviors of exploration, approaching a target and homing we modified an existing model of decision making for mediating social behaviors in mice. We added an additional circuit that projects a signal to the units representing each of the behaviors. In the case of the actuator control subsystem, the structure of a central pattern generator model that incorporates feedback and adaptation was used as the base for generating and transforming signals for the actuators. Finally, the orientation correction subsystem is a novel model that determines an error value from a desired and the current orientations. The proposed models were simulated as independent scripts and then implemented as ROS (Robot Operating System) nodes for controlling a robot simulation in Gazebo18 páginasapplication/pdfengIOP Publishing LtdDerechos reservados - IOP Publishing, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Bio-inspired navigation and exploration system for a hexapod robotic platformArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8518214Pardo Cabrera, J., Rivero Ortega, J.D., Hurtado López, J., Ramírez Moreno, D.F. (2022). Bio-inspired navigation and exploration system for a hexapod robotic platform. Engineering Research Express, 4(2), 1-18. https://hdl.handle.net/10614/14721Engineering Research Express[1] Patek S and Summers A 2017 Invertebrate biomechanics Current Biology 27 R371–5[2] Gao Z, Shi Q, Fukuda T, Li C and Huang Q 2019 An overview of biomimetic robots with animal behaviors Neurocomputing 332 339–50[3] Bagheri Z M, Cazzolato B S, Grainger S, O’Carroll D C and Wiederman S D 2017 An Autonomous Robot Inspired by Insect Neurophysiology Pursues Moving Features in Natural Environments 14 046030[4] Floreano D, Ijspeert A J and Schaal S 2014 Robotics and neuroscience Current Biology 24 R910–20[5] Yang G-Z et al 2018 The grand challenges ofScience robotics Science Robotics 3 eaar7650[6] Selverston A I 2010 Invertebrate central pattern generator circuits Philosophical Transactions of the Royal Society B: Biological Sciences 365 2329–45[7] Mombaur Ket al 2017 Chapter 4—control of motion and compliance Bioinspired Legged Locomotion ed M A Sharbafi and A Seyfarth (United Kingdom: Butterworth-Heinemann) pp 135–346[8] Ijspeert A J 2008 Central pattern generators for locomotion control in animals and robots: a review Neural Netw. 21 642–53[9] Popovic M B, Lamkin-Kennard K A and Bowers M P 2019 5-control and physical intelligence Biomechatronics ed M B Popovic (New York, NY: Academic) pp 109–38[10] Zhou S, Guo Z, Wong K, Zhu H, Huang Y, Hu X and Zheng Y-P 2021 Pathway-Specific Cortico-Muscular Coherence in Proximal-toDistal Compensation During Fine Motor Control of Finger Extension After Stroke 18 056034[11] Tedeschi F and Carbone G 2014 Design issues for hexapod walking robots Robotics 3 181–206[12] Raibert M H 1986 Legged Robots That Balance(Massachusetts, MA: Massachusetts Institute of Technology)[13] Yongtian H, Eguren D, Azorín J M, Grossman R G, Luu T P and Contreras-Vidal J L 2018 Brain-Machine Interfaces for Controlling Lower-Limb Powered Robotic Systems 15 021004[14] Böttcher S 2006Principles of Robot Locomotion (https://www2.cs.siu.edu/~hexmoor/classes/CS404-S09/RobotLocomotion.pdf)[15] Sprowitz A, ajallooeian M, Tuleu A and Ijspeert A 2014 Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs Frontiers in Computational Neuroscience 8 27[16] Moro F L, Spröwitz A, Tuleu A, Vespignani M, Tsagarakis N G, Ijspeert A J and Caldwell D G 2013 Horse-like walking, trotting, and galloping derived from kinematic motion primitives(kMPs) and their application to walk/trot transitions in a compliant quadruped robot Biol. Cybern. 107 309–20[17] Mysore S P and Kothari N B 2020 Mechanisms of competitive selection: a canonical neural circuit framework eLife 9 e51473[18] Hoke K L, Hebets E A and Shizuka D 2017 Neural circuitry for target selection and action selection in animal behaviorIntegr. Comp. Biol. 57 808–19[19] Héricé C, Khalil R, Moftah M, Boraud T, Guthrie M and Garenne A 2016 Decision making under uncertainty in a spiking neural network model of the basal ganglia Journal of Integrative Neuroscience 15 515–38[20] Hurtado-López J, Ramirez-Moreno D F and Sejnowski T J 2017 Decision-making neural circuits mediating social behaviorsJ. Comput. Neurosci. 43 127–42[21] Barron-Zambrano J H, Torres-Huitzil C and Girau B 2015 Perception-driven adaptive cpg-based locomotion for hexapod robots Neurocomputing 170 63–78 advances on Biological Rhythmic Pattern Generation: Experiments, Algorithms and Applications Selected Papers from the 2013 International Conference on Intelligence Science and Big Data Engineering (IScIDE 2013)Computational Energy Management in Smart Grids[22] Kim J, Sharma G and Iyengar S S 2010 Famper: a fully autonomous mobile robot for pipeline exploration 2010 IEEE International Conference on Industrial Technology pp 517–23[23] Murphy R R 2004 Human-robot interaction in rescue roboticsIEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 34 138–53[24] Heinze S, Narendra A and Cheung A 2018 Principles of insect path integration Current Biology : CB 28 R1043–58[25] Stone T, Webb B, Adden A, Weddig N B, Honkanen A, Templin R, Wcislo W, Scimeca L, Warrant E and Heinze S 2017 An anatomically constrained model for path integration in the bee brain Current Biology (https://doi.org/10.1016/j.cub.2017.08.052)[26] Issa J B and Zhang K 2012 Universal conditions for exact path integration in neural systems Proc. Natl Acad. Sci. 109 6716–20[27] Page H J I and Jeffery K J 2018 Landmark-based updating of the head direction system by retrosplenial cortex: a computational model Frontiers in Cellular Neuroscience 12 191[28] Savelli F and Knierim J J 2019 Origin and role of path integration in the cognitive representations of the hippocampus: computational insights into open questionsJ. Exp. Biol. 222[29] Zeng T, Li X and Si B 2020 Stereoneurobayesslam: a neurobiologically inspired stereo visual slam system based on direct sparse method arXiv:2003.03091[30] Saranli U, Buehler M and Koditschek D E 2001 Rhex: a simple and highly mobile hexapod robot The International Journal of Robotics Research 20 616–31[31] Wilson H R 1999 Spikes, Decisions and Actions (Oxford: Oxford University Press)[32] Trappenberg T 2010 Fundamentals of Computational Neuroscience(New York, NY: Oxford University Press)[33] Lee H, Kim D-W, Remedios R, Anthony T, Chang A, Madisen L, Zeng H and Anderson D 2014 Scalable control of mounting and attack by esr1 neurons in the ventromedial hypothalamus Nature 509Neural networksPath integrationCentral pattern generatorOrientation correctionVector summationBio-inspired roboticsComunidad generalPublication77636374-92e2-4d63-9b49-bdb0a2ea1182virtual::2355-161e20236-82c5-4dcc-b05c-0eaa9ac06b11virtual::4307-177636374-92e2-4d63-9b49-bdb0a2ea1182virtual::2355-161e20236-82c5-4dcc-b05c-0eaa9ac06b11virtual::4307-1https://scholar.google.com/citations?user=7Pqx31YAAAAJ&hl=esvirtual::2355-1https://scholar.google.com/citations?user=RTce1fkAAAAJ&hl=esvirtual::4307-10000-0002-3773-0598virtual::2355-10000-0003-2372-3554virtual::4307-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000828963virtual::2355-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000353744virtual::4307-1ORIGINALBio_inspired_navigation_and_exploration_system_for_a_hexapod.pdfBio_inspired_navigation_and_exploration_system_for_a_hexapod.pdftexto completo del artículoapplication/pdf1663679https://red.uao.edu.co/bitstreams/eb75406d-ca93-444d-8f60-707bb18038c4/download2e00136ef4d5bc7a548ab8edac7982fbMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/6e8d09a5-62c9-466d-8556-0881fd95fc0f/download20b5ba22b1117f71589c7318baa2c560MD52TEXTBio_inspired_navigation_and_exploration_system_for_a_hexapod.pdf.txtBio_inspired_navigation_and_exploration_system_for_a_hexapod.pdf.txtExtracted texttext/plain49680https://red.uao.edu.co/bitstreams/e8b0f2a3-4083-405f-b103-539cd8f3b97d/download69ec1daa79661c11285589933a0463b3MD53THUMBNAILBio_inspired_navigation_and_exploration_system_for_a_hexapod.pdf.jpgBio_inspired_navigation_and_exploration_system_for_a_hexapod.pdf.jpgGenerated Thumbnailimage/jpeg14470https://red.uao.edu.co/bitstreams/0c35ed46-a95e-4126-a949-4f41c5774ef9/downloadfbcd24dc150a322ae7281711f655c196MD5410614/14721oai:red.uao.edu.co:10614/147212024-03-22 10:02:08.844https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - IOP Publishing, 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |