Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime

The thermal behavior of commercial chicken, beef, and pork cartilage, were studied using thermal analysis techniques. We use thermogravimetry (TGA) to study their thermal stability between room temperature and 500 °C; differential scanning calorimetry (DSC) in a temperature range between - 50 °C and...

Full description

Autores:
Aparicio Rojas, Gladis Miriam
Andrade, Lina Juliana
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/15529
Acceso en línea:
https://hdl.handle.net/10614/15529
https://doi.org/10.1016/j.heliyon.2023.e14853
https://red.uao.edu.co/
Palabra clave:
Cartilage
Chicken
Beef
Pork
Thermal analysis
Lifetime
Thermogravimetry
Difference
Scanning calorimetry
Activation energy
Rights
openAccess
License
Derechos reservados - Elsevier, 2023
id REPOUAO2_3b87dd1da780215c6686c50f6660991f
oai_identifier_str oai:red.uao.edu.co:10614/15529
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime
title Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime
spellingShingle Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime
Cartilage
Chicken
Beef
Pork
Thermal analysis
Lifetime
Thermogravimetry
Difference
Scanning calorimetry
Activation energy
title_short Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime
title_full Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime
title_fullStr Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime
title_full_unstemmed Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime
title_sort Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime
dc.creator.fl_str_mv Aparicio Rojas, Gladis Miriam
Andrade, Lina Juliana
dc.contributor.author.none.fl_str_mv Aparicio Rojas, Gladis Miriam
Andrade, Lina Juliana
dc.subject.proposal.eng.fl_str_mv Cartilage
Chicken
Beef
Pork
Thermal analysis
Lifetime
Thermogravimetry
Difference
Scanning calorimetry
Activation energy
topic Cartilage
Chicken
Beef
Pork
Thermal analysis
Lifetime
Thermogravimetry
Difference
Scanning calorimetry
Activation energy
description The thermal behavior of commercial chicken, beef, and pork cartilage, were studied using thermal analysis techniques. We use thermogravimetry (TGA) to study their thermal stability between room temperature and 500 °C; differential scanning calorimetry (DSC) in a temperature range between - 50 °C and 300 °C to determine their phase changes associated with endothermic or exothermic processes, and mass spectrometry coupled to TGA to determine the release of elements as they are heated; the results are similar for the three samples. In the thermogravimetric analysis, three different phases were found corresponding to the stages of dehydration (21 °C < T < 100 °C), decomposition (100 °C < T < 300 °C, and degradation (300 °C < T < 500 °C). The DSC study shows two endothermic anomalies corresponding to melting of the aqueous content (−25 °C < T < 25 °C) and evaporation of the aqueous content (27 °C < T < 175 °C), with required enthalpies of 137.30 J/g and 1193 J/g, respectively. Mass spectrometry evidenced the release of molecules such as nitrogen, oxygen, carbon dioxide, and calcium. This study intends to give an approximation to the possible behavior of commercial cartilage that is stored for use in surgery, in no way is it intended to simulate the behavior within the human body, since the biological and physicochemical parameters inside the body are not studied. From the TGA results for different heating rates, we calculated the activation energies required in each of the phases, whose values are 3250,95 J/mol in the dehydration stage, 5130,63 J/mol for decomposition, and 22,677,52 J/mol for degradation. With the activation energies and following the Toops theory (TOOP, 1971) [13], we proceeded to calculate the lifetime in the completion of the three stages or what in thermogravimetric analysis, is known as useful life per stage, finding that a sample of cartilage stored under ambient conditions, after 62 days it loses its initial properties. Which provides an important parameter for the storage of possible synthetic biomaterials with properties similar to cartilage. It is clear that here the useful life or the change of the original properties due to temperature effects is studied, which under the Arrhenius theory is transferred to the kinetic study over time
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-04
dc.date.accessioned.none.fl_str_mv 2024-04-12T19:15:35Z
dc.date.available.none.fl_str_mv 2024-04-12T19:15:35Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Aparicio Rojas, G. M.; Andrade, L. J. (2023). Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime. Heliyon. 9(4). p.p. 1-10. https://doi.org/10.1016/j.heliyon.2023.e14853
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15529
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.heliyon.2023.e14853
dc.identifier.eissn.spa.fl_str_mv 2405-8440
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Aparicio Rojas, G. M.; Andrade, L. J. (2023). Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime. Heliyon. 9(4). p.p. 1-10. https://doi.org/10.1016/j.heliyon.2023.e14853
2405-8440
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/15529
https://doi.org/10.1016/j.heliyon.2023.e14853
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 10
dc.relation.citationissue.none.fl_str_mv 4
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 9
dc.relation.ispartofjournal.en.fl_str_mv Heliyon
dc.relation.references.none.fl_str_mv [1] D. Primorac, V. Molnar, V. Matiˇsi´c, D. Hudetz, Z. ˇ Jeleˇc, E. Rod, F. Cukelj, ˇ D. Vidovi´c, T. Vrdoljak, B. Dobriˇci´c, D. Ca´ ´ci´c, I. Bori´c, Comprehensive review of knee osteoarthritis pharmacological treatment and the latest professional societies, Guidelines 2 (3) (2021) 205, 14.
[2] Z. Joutoku, T. Onodera, M. Matsuoka, K. Homan, D. Momma, R. Baba, N. Iwasaki, CCL21/CCR7 axis regulating juvenile cartilage repair can enhance cartilage healing in adults”, Sci. Rep. 9 (2019) 5165.
[3] A. Cui, H. Li, D. Wang, J. Zhong, Y. Chen, H. Lu, Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies”, E Clin. Med. (2021) 29–30.
[4] J.G. Quicke, P.G. Conaghan, N. Corp, G. Peat, Osteoarthritis year in review 2021, epidemiology & therapy”, Osteoarthritis Cartilage 30 (2) (2021) 196–206.
[5] S.V. Bala, M. Andersson, K. Forslind, B. Svensson, I. Hafstrom, ¨ Reported disability in relation to observed activity limitation, grip strength and physical function in women and men with rheumatoid arthritis”, BMC Rheumatol. 5 (1) (2021) 13.
[6] N. Østerås, I.B. Blaker, T. Hjortland, et al., Improving osteoarthritis management in primary healthcare: results from a quasi-experimental study”, BMC Muscoskel. Disord. 22 (2021) 79.
[7] J.N. Katz, K.R. Arant, R.F. Loeser, Diagnosis and Treatment of Hip and knee osteoarthritis A review, JAMA 325 (6) (2021) 568–578.
[8] W. Hermann, S. Lambova, U. Muller-Ladner, Current treatment options for osteoarthritis”, Curr. Rheumatol. Rev. 14 (2) (2019) 108–116.
[9] J. Richmond, D. Hunter, J. Irrgang, M.H. Jones, B. Levy, R. Marx, L. Snyder-Mackler, W.C. Watters, R.H. Haralson, St Turkelson, J. Andre, P. Sluka, R. McGowan, American Academy of Orthopaedic Surgeons, Treatment of osteoarthritis of the knee (nonarthroplasty)”, J. Am. Acad. Orthop. Surg. 17 (9) (2020) 591–600.
[10] S. Gr¨ assel, D. Muschter, Recent Advances in the Treatment of Osteoarthritis, F1000Research 9 (2021). F1000 Faculty Rev-325.
[11] I. Blanco, V. Siracusa, The use of thermal techniques in the characterization of bio-sourced polymers”, Materials 14 (7) (2021) 1686.
[12] J.H. Flynn, A. Wall, A. Quick, Direct method for the determination of activation energy from thermogravimetric data”, Polym. Lett. 4 (1966) 323.
[13] D.J. Toop, Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamels”, IEEE Trans. Electr. Insul. 1 (1971) 2.
[14] G. Aparicio, T. Florez, Thermal characterization and lifetime estimation of the humus lombricospt, Am. J. Anal. Chem. 5 (2) (2014) 45–49.
[15] C. Zhu, C. Huang, W. Zhang, X. Ding, Y. Yang, Biodegradable-glass-fiber reinforced hydrogel composite with enhanced mechanical performance and cell proliferation for potential cartilage repair”, Int. J. Mol. Sci. 23 (2022) 8717.
[16] D. Zheng, T. Chen, L. Han, et al., Synergetic integrations of bone marrow stem cells and transforming growth factorβ1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue”, Int. Wound J. 19 (5) (2022).
[17] I. Szabo, ´ B. Patzai, D. Lorinczy, ˝ Effects of long-term deep freezing on human femoral cartilage: differential scanning calorimetric (DSC) analysis and histopathological evaluations”, J. Therm. Anal. Calorim. 147 (2022) 7793–7797.
[18] Huang, Ching-Cheng, “Newly designed decellularized scaffolds for scaffold-based gene therapy from elastic cartilages via supercritical carbon dioxide fluid and Al-kaline/Protease treatments”, Curr. Gene Ther., Vol. 22, Issue 2, Pages 162 – 167.
[19] C.-C. Huang, Microstructure and thermal property of designed alginate-based polymeric composite foam materials containing biomimetic decellularized elastic cartilage microscaffolds”, Materials 15 (2022) 258.
[20] Sanja Novak, Josip Madunic, Laura Shum, et al., PDGF inhibits BMP2-induced bone healing”, NPJ Regen. Med. 8 (2023) 3.
[21] Sotozawa, et al., Bevacizumab suppressed degenerative changes in articular cartilage explants from patients with osteoarthritis of the knee” Journal of Orthopaedic Surgery and, Research 18 (2023) 25.
[22] Akai, et al., Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study” BMC, Med. Imaging 23 (2023) 5.
[23] Zhang, et al., Efficacy and safety of Glucocorticoid injections into InfrapaTellar faT pad in patients with knee ostEoarthRitiS: protocol for the GLITTERS randomized controlled trial, Trials 24 (2023) 6.
[24] J. Yang, et al., Physicochemical, structural characterization, and antioxidant activities of chondroitin sulfate from Oreochromis niloticus bones”, Food Sci. Hum. Wellness 12 (2023) 1102–11081 (Introduction Oreochromis.
[25] S.K. Grissom, et al., Role Of Cartilage and Bone Matrix Regulation in Early Equine Osteochondrosis” Bone Reports, 18, 2023, 101653.
dc.rights.spa.fl_str_mv Derechos reservados - Elsevier, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsevier, 2023
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Países bajos
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/6f010880-1e9e-4016-a9df-bfd737ae9b94/download
bitstream.checksum.fl_str_mv 6987b791264a2b5525252450f99b10d1
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260153481953280
spelling Aparicio Rojas, Gladis Miriamvirtual::5323-1Andrade, Lina Juliana2024-04-12T19:15:35Z2024-04-12T19:15:35Z2023-04Aparicio Rojas, G. M.; Andrade, L. J. (2023). Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime. Heliyon. 9(4). p.p. 1-10. https://doi.org/10.1016/j.heliyon.2023.e14853https://hdl.handle.net/10614/15529https://doi.org/10.1016/j.heliyon.2023.e148532405-8440Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/The thermal behavior of commercial chicken, beef, and pork cartilage, were studied using thermal analysis techniques. We use thermogravimetry (TGA) to study their thermal stability between room temperature and 500 °C; differential scanning calorimetry (DSC) in a temperature range between - 50 °C and 300 °C to determine their phase changes associated with endothermic or exothermic processes, and mass spectrometry coupled to TGA to determine the release of elements as they are heated; the results are similar for the three samples. In the thermogravimetric analysis, three different phases were found corresponding to the stages of dehydration (21 °C < T < 100 °C), decomposition (100 °C < T < 300 °C, and degradation (300 °C < T < 500 °C). The DSC study shows two endothermic anomalies corresponding to melting of the aqueous content (−25 °C < T < 25 °C) and evaporation of the aqueous content (27 °C < T < 175 °C), with required enthalpies of 137.30 J/g and 1193 J/g, respectively. Mass spectrometry evidenced the release of molecules such as nitrogen, oxygen, carbon dioxide, and calcium. This study intends to give an approximation to the possible behavior of commercial cartilage that is stored for use in surgery, in no way is it intended to simulate the behavior within the human body, since the biological and physicochemical parameters inside the body are not studied. From the TGA results for different heating rates, we calculated the activation energies required in each of the phases, whose values are 3250,95 J/mol in the dehydration stage, 5130,63 J/mol for decomposition, and 22,677,52 J/mol for degradation. With the activation energies and following the Toops theory (TOOP, 1971) [13], we proceeded to calculate the lifetime in the completion of the three stages or what in thermogravimetric analysis, is known as useful life per stage, finding that a sample of cartilage stored under ambient conditions, after 62 days it loses its initial properties. Which provides an important parameter for the storage of possible synthetic biomaterials with properties similar to cartilage. It is clear that here the useful life or the change of the original properties due to temperature effects is studied, which under the Arrhenius theory is transferred to the kinetic study over time10 páginasapplication/pdfengElsevierPaíses bajosDerechos reservados - Elsevier, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetimeArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8510419Heliyon[1] D. Primorac, V. Molnar, V. Matiˇsi´c, D. Hudetz, Z. ˇ Jeleˇc, E. Rod, F. Cukelj, ˇ D. Vidovi´c, T. Vrdoljak, B. Dobriˇci´c, D. Ca´ ´ci´c, I. Bori´c, Comprehensive review of knee osteoarthritis pharmacological treatment and the latest professional societies, Guidelines 2 (3) (2021) 205, 14.[2] Z. Joutoku, T. Onodera, M. Matsuoka, K. Homan, D. Momma, R. Baba, N. Iwasaki, CCL21/CCR7 axis regulating juvenile cartilage repair can enhance cartilage healing in adults”, Sci. Rep. 9 (2019) 5165.[3] A. Cui, H. Li, D. Wang, J. Zhong, Y. Chen, H. Lu, Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies”, E Clin. Med. (2021) 29–30.[4] J.G. Quicke, P.G. Conaghan, N. Corp, G. Peat, Osteoarthritis year in review 2021, epidemiology & therapy”, Osteoarthritis Cartilage 30 (2) (2021) 196–206.[5] S.V. Bala, M. Andersson, K. Forslind, B. Svensson, I. Hafstrom, ¨ Reported disability in relation to observed activity limitation, grip strength and physical function in women and men with rheumatoid arthritis”, BMC Rheumatol. 5 (1) (2021) 13.[6] N. Østerås, I.B. Blaker, T. Hjortland, et al., Improving osteoarthritis management in primary healthcare: results from a quasi-experimental study”, BMC Muscoskel. Disord. 22 (2021) 79.[7] J.N. Katz, K.R. Arant, R.F. Loeser, Diagnosis and Treatment of Hip and knee osteoarthritis A review, JAMA 325 (6) (2021) 568–578.[8] W. Hermann, S. Lambova, U. Muller-Ladner, Current treatment options for osteoarthritis”, Curr. Rheumatol. Rev. 14 (2) (2019) 108–116.[9] J. Richmond, D. Hunter, J. Irrgang, M.H. Jones, B. Levy, R. Marx, L. Snyder-Mackler, W.C. Watters, R.H. Haralson, St Turkelson, J. Andre, P. Sluka, R. McGowan, American Academy of Orthopaedic Surgeons, Treatment of osteoarthritis of the knee (nonarthroplasty)”, J. Am. Acad. Orthop. Surg. 17 (9) (2020) 591–600.[10] S. Gr¨ assel, D. Muschter, Recent Advances in the Treatment of Osteoarthritis, F1000Research 9 (2021). F1000 Faculty Rev-325.[11] I. Blanco, V. Siracusa, The use of thermal techniques in the characterization of bio-sourced polymers”, Materials 14 (7) (2021) 1686.[12] J.H. Flynn, A. Wall, A. Quick, Direct method for the determination of activation energy from thermogravimetric data”, Polym. Lett. 4 (1966) 323.[13] D.J. Toop, Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamels”, IEEE Trans. Electr. Insul. 1 (1971) 2.[14] G. Aparicio, T. Florez, Thermal characterization and lifetime estimation of the humus lombricospt, Am. J. Anal. Chem. 5 (2) (2014) 45–49.[15] C. Zhu, C. Huang, W. Zhang, X. Ding, Y. Yang, Biodegradable-glass-fiber reinforced hydrogel composite with enhanced mechanical performance and cell proliferation for potential cartilage repair”, Int. J. Mol. Sci. 23 (2022) 8717.[16] D. Zheng, T. Chen, L. Han, et al., Synergetic integrations of bone marrow stem cells and transforming growth factorβ1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue”, Int. Wound J. 19 (5) (2022).[17] I. Szabo, ´ B. Patzai, D. Lorinczy, ˝ Effects of long-term deep freezing on human femoral cartilage: differential scanning calorimetric (DSC) analysis and histopathological evaluations”, J. Therm. Anal. Calorim. 147 (2022) 7793–7797.[18] Huang, Ching-Cheng, “Newly designed decellularized scaffolds for scaffold-based gene therapy from elastic cartilages via supercritical carbon dioxide fluid and Al-kaline/Protease treatments”, Curr. Gene Ther., Vol. 22, Issue 2, Pages 162 – 167.[19] C.-C. Huang, Microstructure and thermal property of designed alginate-based polymeric composite foam materials containing biomimetic decellularized elastic cartilage microscaffolds”, Materials 15 (2022) 258.[20] Sanja Novak, Josip Madunic, Laura Shum, et al., PDGF inhibits BMP2-induced bone healing”, NPJ Regen. Med. 8 (2023) 3.[21] Sotozawa, et al., Bevacizumab suppressed degenerative changes in articular cartilage explants from patients with osteoarthritis of the knee” Journal of Orthopaedic Surgery and, Research 18 (2023) 25.[22] Akai, et al., Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study” BMC, Med. Imaging 23 (2023) 5.[23] Zhang, et al., Efficacy and safety of Glucocorticoid injections into InfrapaTellar faT pad in patients with knee ostEoarthRitiS: protocol for the GLITTERS randomized controlled trial, Trials 24 (2023) 6.[24] J. Yang, et al., Physicochemical, structural characterization, and antioxidant activities of chondroitin sulfate from Oreochromis niloticus bones”, Food Sci. Hum. Wellness 12 (2023) 1102–11081 (Introduction Oreochromis.[25] S.K. Grissom, et al., Role Of Cartilage and Bone Matrix Regulation in Early Equine Osteochondrosis” Bone Reports, 18, 2023, 101653.CartilageChickenBeefPorkThermal analysisLifetimeThermogravimetryDifferenceScanning calorimetryActivation energyComunidad generalPublicationb4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::5323-1b4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::5323-1https://scholar.google.com/citations?user=WtTqM8IAAAAJ&hl=esvirtual::5323-10000-0002-7158-1223virtual::5323-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000112399virtual::5323-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/6f010880-1e9e-4016-a9df-bfd737ae9b94/download6987b791264a2b5525252450f99b10d1MD51ORIGINAL10614/15529oai:red.uao.edu.co:10614/155292024-04-22 15:56:18.545https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2023metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==