Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime
The thermal behavior of commercial chicken, beef, and pork cartilage, were studied using thermal analysis techniques. We use thermogravimetry (TGA) to study their thermal stability between room temperature and 500 °C; differential scanning calorimetry (DSC) in a temperature range between - 50 °C and...
- Autores:
-
Aparicio Rojas, Gladis Miriam
Andrade, Lina Juliana
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/15529
- Acceso en línea:
- https://hdl.handle.net/10614/15529
https://doi.org/10.1016/j.heliyon.2023.e14853
https://red.uao.edu.co/
- Palabra clave:
- Cartilage
Chicken
Beef
Pork
Thermal analysis
Lifetime
Thermogravimetry
Difference
Scanning calorimetry
Activation energy
- Rights
- openAccess
- License
- Derechos reservados - Elsevier, 2023
id |
REPOUAO2_3b87dd1da780215c6686c50f6660991f |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/15529 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime |
title |
Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime |
spellingShingle |
Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime Cartilage Chicken Beef Pork Thermal analysis Lifetime Thermogravimetry Difference Scanning calorimetry Activation energy |
title_short |
Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime |
title_full |
Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime |
title_fullStr |
Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime |
title_full_unstemmed |
Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime |
title_sort |
Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime |
dc.creator.fl_str_mv |
Aparicio Rojas, Gladis Miriam Andrade, Lina Juliana |
dc.contributor.author.none.fl_str_mv |
Aparicio Rojas, Gladis Miriam Andrade, Lina Juliana |
dc.subject.proposal.eng.fl_str_mv |
Cartilage Chicken Beef Pork Thermal analysis Lifetime Thermogravimetry Difference Scanning calorimetry Activation energy |
topic |
Cartilage Chicken Beef Pork Thermal analysis Lifetime Thermogravimetry Difference Scanning calorimetry Activation energy |
description |
The thermal behavior of commercial chicken, beef, and pork cartilage, were studied using thermal analysis techniques. We use thermogravimetry (TGA) to study their thermal stability between room temperature and 500 °C; differential scanning calorimetry (DSC) in a temperature range between - 50 °C and 300 °C to determine their phase changes associated with endothermic or exothermic processes, and mass spectrometry coupled to TGA to determine the release of elements as they are heated; the results are similar for the three samples. In the thermogravimetric analysis, three different phases were found corresponding to the stages of dehydration (21 °C < T < 100 °C), decomposition (100 °C < T < 300 °C, and degradation (300 °C < T < 500 °C). The DSC study shows two endothermic anomalies corresponding to melting of the aqueous content (−25 °C < T < 25 °C) and evaporation of the aqueous content (27 °C < T < 175 °C), with required enthalpies of 137.30 J/g and 1193 J/g, respectively. Mass spectrometry evidenced the release of molecules such as nitrogen, oxygen, carbon dioxide, and calcium. This study intends to give an approximation to the possible behavior of commercial cartilage that is stored for use in surgery, in no way is it intended to simulate the behavior within the human body, since the biological and physicochemical parameters inside the body are not studied. From the TGA results for different heating rates, we calculated the activation energies required in each of the phases, whose values are 3250,95 J/mol in the dehydration stage, 5130,63 J/mol for decomposition, and 22,677,52 J/mol for degradation. With the activation energies and following the Toops theory (TOOP, 1971) [13], we proceeded to calculate the lifetime in the completion of the three stages or what in thermogravimetric analysis, is known as useful life per stage, finding that a sample of cartilage stored under ambient conditions, after 62 days it loses its initial properties. Which provides an important parameter for the storage of possible synthetic biomaterials with properties similar to cartilage. It is clear that here the useful life or the change of the original properties due to temperature effects is studied, which under the Arrhenius theory is transferred to the kinetic study over time |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-04 |
dc.date.accessioned.none.fl_str_mv |
2024-04-12T19:15:35Z |
dc.date.available.none.fl_str_mv |
2024-04-12T19:15:35Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Aparicio Rojas, G. M.; Andrade, L. J. (2023). Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime. Heliyon. 9(4). p.p. 1-10. https://doi.org/10.1016/j.heliyon.2023.e14853 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/15529 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.heliyon.2023.e14853 |
dc.identifier.eissn.spa.fl_str_mv |
2405-8440 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
Aparicio Rojas, G. M.; Andrade, L. J. (2023). Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime. Heliyon. 9(4). p.p. 1-10. https://doi.org/10.1016/j.heliyon.2023.e14853 2405-8440 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/15529 https://doi.org/10.1016/j.heliyon.2023.e14853 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
10 |
dc.relation.citationissue.none.fl_str_mv |
4 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
9 |
dc.relation.ispartofjournal.en.fl_str_mv |
Heliyon |
dc.relation.references.none.fl_str_mv |
[1] D. Primorac, V. Molnar, V. Matiˇsi´c, D. Hudetz, Z. ˇ Jeleˇc, E. Rod, F. Cukelj, ˇ D. Vidovi´c, T. Vrdoljak, B. Dobriˇci´c, D. Ca´ ´ci´c, I. Bori´c, Comprehensive review of knee osteoarthritis pharmacological treatment and the latest professional societies, Guidelines 2 (3) (2021) 205, 14. [2] Z. Joutoku, T. Onodera, M. Matsuoka, K. Homan, D. Momma, R. Baba, N. Iwasaki, CCL21/CCR7 axis regulating juvenile cartilage repair can enhance cartilage healing in adults”, Sci. Rep. 9 (2019) 5165. [3] A. Cui, H. Li, D. Wang, J. Zhong, Y. Chen, H. Lu, Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies”, E Clin. Med. (2021) 29–30. [4] J.G. Quicke, P.G. Conaghan, N. Corp, G. Peat, Osteoarthritis year in review 2021, epidemiology & therapy”, Osteoarthritis Cartilage 30 (2) (2021) 196–206. [5] S.V. Bala, M. Andersson, K. Forslind, B. Svensson, I. Hafstrom, ¨ Reported disability in relation to observed activity limitation, grip strength and physical function in women and men with rheumatoid arthritis”, BMC Rheumatol. 5 (1) (2021) 13. [6] N. Østerås, I.B. Blaker, T. Hjortland, et al., Improving osteoarthritis management in primary healthcare: results from a quasi-experimental study”, BMC Muscoskel. Disord. 22 (2021) 79. [7] J.N. Katz, K.R. Arant, R.F. Loeser, Diagnosis and Treatment of Hip and knee osteoarthritis A review, JAMA 325 (6) (2021) 568–578. [8] W. Hermann, S. Lambova, U. Muller-Ladner, Current treatment options for osteoarthritis”, Curr. Rheumatol. Rev. 14 (2) (2019) 108–116. [9] J. Richmond, D. Hunter, J. Irrgang, M.H. Jones, B. Levy, R. Marx, L. Snyder-Mackler, W.C. Watters, R.H. Haralson, St Turkelson, J. Andre, P. Sluka, R. McGowan, American Academy of Orthopaedic Surgeons, Treatment of osteoarthritis of the knee (nonarthroplasty)”, J. Am. Acad. Orthop. Surg. 17 (9) (2020) 591–600. [10] S. Gr¨ assel, D. Muschter, Recent Advances in the Treatment of Osteoarthritis, F1000Research 9 (2021). F1000 Faculty Rev-325. [11] I. Blanco, V. Siracusa, The use of thermal techniques in the characterization of bio-sourced polymers”, Materials 14 (7) (2021) 1686. [12] J.H. Flynn, A. Wall, A. Quick, Direct method for the determination of activation energy from thermogravimetric data”, Polym. Lett. 4 (1966) 323. [13] D.J. Toop, Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamels”, IEEE Trans. Electr. Insul. 1 (1971) 2. [14] G. Aparicio, T. Florez, Thermal characterization and lifetime estimation of the humus lombricospt, Am. J. Anal. Chem. 5 (2) (2014) 45–49. [15] C. Zhu, C. Huang, W. Zhang, X. Ding, Y. Yang, Biodegradable-glass-fiber reinforced hydrogel composite with enhanced mechanical performance and cell proliferation for potential cartilage repair”, Int. J. Mol. Sci. 23 (2022) 8717. [16] D. Zheng, T. Chen, L. Han, et al., Synergetic integrations of bone marrow stem cells and transforming growth factorβ1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue”, Int. Wound J. 19 (5) (2022). [17] I. Szabo, ´ B. Patzai, D. Lorinczy, ˝ Effects of long-term deep freezing on human femoral cartilage: differential scanning calorimetric (DSC) analysis and histopathological evaluations”, J. Therm. Anal. Calorim. 147 (2022) 7793–7797. [18] Huang, Ching-Cheng, “Newly designed decellularized scaffolds for scaffold-based gene therapy from elastic cartilages via supercritical carbon dioxide fluid and Al-kaline/Protease treatments”, Curr. Gene Ther., Vol. 22, Issue 2, Pages 162 – 167. [19] C.-C. Huang, Microstructure and thermal property of designed alginate-based polymeric composite foam materials containing biomimetic decellularized elastic cartilage microscaffolds”, Materials 15 (2022) 258. [20] Sanja Novak, Josip Madunic, Laura Shum, et al., PDGF inhibits BMP2-induced bone healing”, NPJ Regen. Med. 8 (2023) 3. [21] Sotozawa, et al., Bevacizumab suppressed degenerative changes in articular cartilage explants from patients with osteoarthritis of the knee” Journal of Orthopaedic Surgery and, Research 18 (2023) 25. [22] Akai, et al., Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study” BMC, Med. Imaging 23 (2023) 5. [23] Zhang, et al., Efficacy and safety of Glucocorticoid injections into InfrapaTellar faT pad in patients with knee ostEoarthRitiS: protocol for the GLITTERS randomized controlled trial, Trials 24 (2023) 6. [24] J. Yang, et al., Physicochemical, structural characterization, and antioxidant activities of chondroitin sulfate from Oreochromis niloticus bones”, Food Sci. Hum. Wellness 12 (2023) 1102–11081 (Introduction Oreochromis. [25] S.K. Grissom, et al., Role Of Cartilage and Bone Matrix Regulation in Early Equine Osteochondrosis” Bone Reports, 18, 2023, 101653. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Elsevier, 2023 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Elsevier, 2023 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Elsevier |
dc.publisher.place.spa.fl_str_mv |
Países bajos |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/6f010880-1e9e-4016-a9df-bfd737ae9b94/download |
bitstream.checksum.fl_str_mv |
6987b791264a2b5525252450f99b10d1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260153481953280 |
spelling |
Aparicio Rojas, Gladis Miriamvirtual::5323-1Andrade, Lina Juliana2024-04-12T19:15:35Z2024-04-12T19:15:35Z2023-04Aparicio Rojas, G. M.; Andrade, L. J. (2023). Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetime. Heliyon. 9(4). p.p. 1-10. https://doi.org/10.1016/j.heliyon.2023.e14853https://hdl.handle.net/10614/15529https://doi.org/10.1016/j.heliyon.2023.e148532405-8440Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/The thermal behavior of commercial chicken, beef, and pork cartilage, were studied using thermal analysis techniques. We use thermogravimetry (TGA) to study their thermal stability between room temperature and 500 °C; differential scanning calorimetry (DSC) in a temperature range between - 50 °C and 300 °C to determine their phase changes associated with endothermic or exothermic processes, and mass spectrometry coupled to TGA to determine the release of elements as they are heated; the results are similar for the three samples. In the thermogravimetric analysis, three different phases were found corresponding to the stages of dehydration (21 °C < T < 100 °C), decomposition (100 °C < T < 300 °C, and degradation (300 °C < T < 500 °C). The DSC study shows two endothermic anomalies corresponding to melting of the aqueous content (−25 °C < T < 25 °C) and evaporation of the aqueous content (27 °C < T < 175 °C), with required enthalpies of 137.30 J/g and 1193 J/g, respectively. Mass spectrometry evidenced the release of molecules such as nitrogen, oxygen, carbon dioxide, and calcium. This study intends to give an approximation to the possible behavior of commercial cartilage that is stored for use in surgery, in no way is it intended to simulate the behavior within the human body, since the biological and physicochemical parameters inside the body are not studied. From the TGA results for different heating rates, we calculated the activation energies required in each of the phases, whose values are 3250,95 J/mol in the dehydration stage, 5130,63 J/mol for decomposition, and 22,677,52 J/mol for degradation. With the activation energies and following the Toops theory (TOOP, 1971) [13], we proceeded to calculate the lifetime in the completion of the three stages or what in thermogravimetric analysis, is known as useful life per stage, finding that a sample of cartilage stored under ambient conditions, after 62 days it loses its initial properties. Which provides an important parameter for the storage of possible synthetic biomaterials with properties similar to cartilage. It is clear that here the useful life or the change of the original properties due to temperature effects is studied, which under the Arrhenius theory is transferred to the kinetic study over time10 páginasapplication/pdfengElsevierPaíses bajosDerechos reservados - Elsevier, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Thermal and compositional characterization of chicken, beef, and pork cartilage to establish its lifetimeArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8510419Heliyon[1] D. Primorac, V. Molnar, V. Matiˇsi´c, D. Hudetz, Z. ˇ Jeleˇc, E. Rod, F. Cukelj, ˇ D. Vidovi´c, T. Vrdoljak, B. Dobriˇci´c, D. Ca´ ´ci´c, I. Bori´c, Comprehensive review of knee osteoarthritis pharmacological treatment and the latest professional societies, Guidelines 2 (3) (2021) 205, 14.[2] Z. Joutoku, T. Onodera, M. Matsuoka, K. Homan, D. Momma, R. Baba, N. Iwasaki, CCL21/CCR7 axis regulating juvenile cartilage repair can enhance cartilage healing in adults”, Sci. Rep. 9 (2019) 5165.[3] A. Cui, H. Li, D. Wang, J. Zhong, Y. Chen, H. Lu, Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies”, E Clin. Med. (2021) 29–30.[4] J.G. Quicke, P.G. Conaghan, N. Corp, G. Peat, Osteoarthritis year in review 2021, epidemiology & therapy”, Osteoarthritis Cartilage 30 (2) (2021) 196–206.[5] S.V. Bala, M. Andersson, K. Forslind, B. Svensson, I. Hafstrom, ¨ Reported disability in relation to observed activity limitation, grip strength and physical function in women and men with rheumatoid arthritis”, BMC Rheumatol. 5 (1) (2021) 13.[6] N. Østerås, I.B. Blaker, T. Hjortland, et al., Improving osteoarthritis management in primary healthcare: results from a quasi-experimental study”, BMC Muscoskel. Disord. 22 (2021) 79.[7] J.N. Katz, K.R. Arant, R.F. Loeser, Diagnosis and Treatment of Hip and knee osteoarthritis A review, JAMA 325 (6) (2021) 568–578.[8] W. Hermann, S. Lambova, U. Muller-Ladner, Current treatment options for osteoarthritis”, Curr. Rheumatol. Rev. 14 (2) (2019) 108–116.[9] J. Richmond, D. Hunter, J. Irrgang, M.H. Jones, B. Levy, R. Marx, L. Snyder-Mackler, W.C. Watters, R.H. Haralson, St Turkelson, J. Andre, P. Sluka, R. McGowan, American Academy of Orthopaedic Surgeons, Treatment of osteoarthritis of the knee (nonarthroplasty)”, J. Am. Acad. Orthop. Surg. 17 (9) (2020) 591–600.[10] S. Gr¨ assel, D. Muschter, Recent Advances in the Treatment of Osteoarthritis, F1000Research 9 (2021). F1000 Faculty Rev-325.[11] I. Blanco, V. Siracusa, The use of thermal techniques in the characterization of bio-sourced polymers”, Materials 14 (7) (2021) 1686.[12] J.H. Flynn, A. Wall, A. Quick, Direct method for the determination of activation energy from thermogravimetric data”, Polym. Lett. 4 (1966) 323.[13] D.J. Toop, Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamels”, IEEE Trans. Electr. Insul. 1 (1971) 2.[14] G. Aparicio, T. Florez, Thermal characterization and lifetime estimation of the humus lombricospt, Am. J. Anal. Chem. 5 (2) (2014) 45–49.[15] C. Zhu, C. Huang, W. Zhang, X. Ding, Y. Yang, Biodegradable-glass-fiber reinforced hydrogel composite with enhanced mechanical performance and cell proliferation for potential cartilage repair”, Int. J. Mol. Sci. 23 (2022) 8717.[16] D. Zheng, T. Chen, L. Han, et al., Synergetic integrations of bone marrow stem cells and transforming growth factorβ1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue”, Int. Wound J. 19 (5) (2022).[17] I. Szabo, ´ B. Patzai, D. Lorinczy, ˝ Effects of long-term deep freezing on human femoral cartilage: differential scanning calorimetric (DSC) analysis and histopathological evaluations”, J. Therm. Anal. Calorim. 147 (2022) 7793–7797.[18] Huang, Ching-Cheng, “Newly designed decellularized scaffolds for scaffold-based gene therapy from elastic cartilages via supercritical carbon dioxide fluid and Al-kaline/Protease treatments”, Curr. Gene Ther., Vol. 22, Issue 2, Pages 162 – 167.[19] C.-C. Huang, Microstructure and thermal property of designed alginate-based polymeric composite foam materials containing biomimetic decellularized elastic cartilage microscaffolds”, Materials 15 (2022) 258.[20] Sanja Novak, Josip Madunic, Laura Shum, et al., PDGF inhibits BMP2-induced bone healing”, NPJ Regen. Med. 8 (2023) 3.[21] Sotozawa, et al., Bevacizumab suppressed degenerative changes in articular cartilage explants from patients with osteoarthritis of the knee” Journal of Orthopaedic Surgery and, Research 18 (2023) 25.[22] Akai, et al., Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study” BMC, Med. Imaging 23 (2023) 5.[23] Zhang, et al., Efficacy and safety of Glucocorticoid injections into InfrapaTellar faT pad in patients with knee ostEoarthRitiS: protocol for the GLITTERS randomized controlled trial, Trials 24 (2023) 6.[24] J. Yang, et al., Physicochemical, structural characterization, and antioxidant activities of chondroitin sulfate from Oreochromis niloticus bones”, Food Sci. Hum. Wellness 12 (2023) 1102–11081 (Introduction Oreochromis.[25] S.K. Grissom, et al., Role Of Cartilage and Bone Matrix Regulation in Early Equine Osteochondrosis” Bone Reports, 18, 2023, 101653.CartilageChickenBeefPorkThermal analysisLifetimeThermogravimetryDifferenceScanning calorimetryActivation energyComunidad generalPublicationb4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::5323-1b4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::5323-1https://scholar.google.com/citations?user=WtTqM8IAAAAJ&hl=esvirtual::5323-10000-0002-7158-1223virtual::5323-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000112399virtual::5323-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/6f010880-1e9e-4016-a9df-bfd737ae9b94/download6987b791264a2b5525252450f99b10d1MD51ORIGINAL10614/15529oai:red.uao.edu.co:10614/155292024-04-22 15:56:18.545https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2023metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |