Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor

This work shows the application of an ultrasonic multiple-scattering sensor for monitoring water-in-petroleum emulsions. The sensor consists of a commercial ultrasonic transducer with an array of cylindrical scatterers placed in the near field. The scatterers are thin metal bars arranged in rows in...

Full description

Autores:
Durán, Alberto L.
Franco Guzmán, Ediguer Enrique
Reyna, Carlos A. B.
Pérez, Nicolás
Tsuzuki, Marcos S. G.
Buiochi, Flávio
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13873
Acceso en línea:
https://hdl.handle.net/10614/13873
https://red.uao.edu.co/
Palabra clave:
Detectores químicos
Sensores electroquímicos
Chemical detectors
Electrochemical sensors
Water in crude oil emulsion
Water content
Ultrasound
Propagation speed
Rights
openAccess
License
Derechos reservados - MDPI, 2021
id REPOUAO2_3b7f928408af52628b88c5a044301a47
oai_identifier_str oai:red.uao.edu.co:10614/13873
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor
title Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor
spellingShingle Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor
Detectores químicos
Sensores electroquímicos
Chemical detectors
Electrochemical sensors
Water in crude oil emulsion
Water content
Ultrasound
Propagation speed
title_short Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor
title_full Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor
title_fullStr Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor
title_full_unstemmed Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor
title_sort Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor
dc.creator.fl_str_mv Durán, Alberto L.
Franco Guzmán, Ediguer Enrique
Reyna, Carlos A. B.
Pérez, Nicolás
Tsuzuki, Marcos S. G.
Buiochi, Flávio
dc.contributor.author.none.fl_str_mv Durán, Alberto L.
Franco Guzmán, Ediguer Enrique
Reyna, Carlos A. B.
Pérez, Nicolás
Tsuzuki, Marcos S. G.
Buiochi, Flávio
dc.subject.armarc.spa.fl_str_mv Detectores químicos
Sensores electroquímicos
topic Detectores químicos
Sensores electroquímicos
Chemical detectors
Electrochemical sensors
Water in crude oil emulsion
Water content
Ultrasound
Propagation speed
dc.subject.armarc.eng.fl_str_mv Chemical detectors
Electrochemical sensors
dc.subject.proposal.eng.fl_str_mv Water in crude oil emulsion
Water content
Ultrasound
Propagation speed
description This work shows the application of an ultrasonic multiple-scattering sensor for monitoring water-in-petroleum emulsions. The sensor consists of a commercial ultrasonic transducer with an array of cylindrical scatterers placed in the near field. The scatterers are thin metal bars arranged in rows in front of the transducer. The backscattering signals were analyzed by calculating the wave energy and by a cross-correlation between signal segments; they were also used to determine the propagation velocity in the emulsions. The tests performed used emulsions with water volume concentrations from 0% to 50%. The results showed that both the signal energy and propagation velocity strongly depended on the concentration of water in the emulsion. Therefore, the ultrasonic multiple-scattering sensor can be used for on-line and real-time monitoring of the water content in water-in-crude-oil emulsions
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-07-27
dc.date.accessioned.none.fl_str_mv 2022-05-16T16:48:29Z
dc.date.available.none.fl_str_mv 2022-05-16T16:48:29Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 14248220
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13873
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 14248220
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/13873
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 10
dc.relation.citationissue.spa.fl_str_mv 15
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 21
dc.relation.cites.eng.fl_str_mv Durán, A.L.; Franco, E.E.; Reyna, C.A.B.; Pérez, N.; Tsuzuki, M.S.G.; Buiochi, F. (2021). Water Content Monitoring in Water in Crude Oil Emulsions Using an Ultrasonic Multiple Backscattering Sensor. Sensors, Vol. 21 (15), pp. 1-10. https://www.researchgate.net/publication/353519238_Water_Content_Monitoring_in_Water-in-Crude-Oil_Emulsions_Using_an_Ultrasonic_Multiple-Backscattering_Sensor
dc.relation.ispartofjournal.eng.fl_str_mv Sensors
dc.relation.references.eng.fl_str_mv 1. Higuti, R.T.; Bacaneli, E.; Furukawa, C.M.; Adamowski, J.C. Ultrasonic characterization of emulsions: Milk and water in oil. In Proceedings of the 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), Tahoe, NV, USA, 17–20 October 1999; Volume 1, pp. 779–782. [CrossRef]
2. Santos, E.D.; Camargo, A.P.; Faria, E.A.; Oliveira, F.A.; Alves, S.M.; Barros, E.L. The Lubricity Analysis of Cutting Fluid Emulsions. Mater. Res. 2017, 20, 644–650. [CrossRef]
3. Pérez-Páez, R.; Catalá-Civera, J.M.; Nos, B.G.B.; Castillo, E.F.; Bastos, J.M.; Zambrano, L.S. Separation of Oil-Water-Sludge Emulsions Coming From Palm Oil Mill Process Through Microwave Techniques. J. Microw. Power Electromagn. Energy 2007, 42, 39–47. [CrossRef]
4. Mandal, A.; Samanta, A.; Bera, A.; Ojha, K. Characterization of Oil-Water Emulsion and Its Use in Enhanced Oil Recovery. Ind. Eng. Chem. Res. 2010, 49, 12756–12761. [CrossRef]
5. Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 2018, 165, 673–690. [CrossRef]
6. Stokes, D.J.; Thiel, B.L.; Donald, A.M. Direct Observation of Water-Oil Emulsion Systems in the Liquid State by Environmental Scanning Electron Microscopy. Langmuir 1998, 14, 4402–4408. [CrossRef]
7. Goddeeris, C.; Cuppo, F.; Reynaers, H.; Bouwman, W.; den Mooter, G.V. Light scattering measurements on microemulsions: Estimation of droplet sizes. Int. J. Pharm. 2006, 312, 187–195. [CrossRef]
8. Alvarez, G.; Jestin, J.; Argillier, J.F.; Langevin, D. Small-Angle Neutron Scattering Study of Crude Oil Emulsions: Structure of the Oil—Water Interfaces. Langmuir 2009, 25, 3985–3990. [CrossRef]
9. d’Avila, M.A.; Shapley, N.C.; Walton, J.H.; Phillips, R.J.; Dungan, S.R.; Powell, R.L. Mixing of concentrated oil-in-water emulsions measured by nuclear magnetic resonance imaging. Phys. Fluids 2003, 15, 2499–2511. [CrossRef]
10. Heindel, T.J. A Review of X-ray Flow Visualization With Applications to Multiphase Flows. J. Fluids Eng. 2011, 133, 074001. [CrossRef]
11. Abro, E.; Johansen, G. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements. Flow Meas. Instrum. 1999, 10, 99–108. [CrossRef]
12. García-Golding, F.; Giallorenzo, M.; Moreno, N.; Chang, V. Sensor for determining the water content of oil-in-water emulsion by specific admittance measurement. Sens. Actuators A Phys. 1995, 47, 337–341. [CrossRef]
13. Jaworski, A.J.; Dyakowski, T. Measurements of oil–water separation dynamics in primary separation systems using distributed capacitance sensors. Flow Meas. Instrum. 2005, 16, 113–127. [CrossRef]
14. Jadoon, S.; Malik, A.; Amin, A.A. Separation of Sediment Contents andWater from Crude Oil of Khurmala and Guwayer Oil Fields in Kurdistan Region by using Centrifuge Method. Int. J. Adv. Eng. Res. Sci. 2017, 4, 2919–2922. [CrossRef]
15. Ivanova, P.G.; Aneva, Z.V. Assessment and assurance of quality in water measurement by coulometric Karl Fischer titration of petroleum products. Accredit. Qual. Assur. 2006, 10, 543–549. [CrossRef]
16. Meng, G.; Jaworski, A.J.; White, N.M. Composition measurements of crude oil and process water emulsions using thick-film ultrasonic transducers. Chem. Eng. Process. Process Intensif. 2006, 45, 383–391. [CrossRef]
17. Su, M.; Cai, X.; Xue, M.; Dong, L.; Xu, F. Particle sizing in dense two-phase droplet systems by ultrasonic attenuation and velocity spectra. Sci. China Ser. E Technol. Sci. 2009, 52, 1502–1510. [CrossRef]
18. Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of Acoustics; John Wiley & Sons: Hoboken, NJ, USA, 1999.
19. McClements, D.J.; Povey, M.J.W. Scattering of ultrasound by emulsions. J. Phys. D Appl. Phys. 1989, 22, 38–47. [CrossRef]
20. McClements, D.; Povey, M.; Jury, M.; Betsanis, E. Ultrasonic characterization of a food emulsion. Ultrasonics 1990, 28, 266–272. [CrossRef]
21. Juliastuti, E.; Tanogono, E.W.; Kurniadi, D. Detection of water content in lubricating oil using ultrasonics. In Proceedings of the 2017 5th International Conference on Instrumentation, Control and Automation (ICA), Yogyakarta, Indonesia, 9–11 August 2017; pp. 188–192. [CrossRef]
22. Franco, E.E.; Adamowski, J.C.; Buiochi, F. Ultrasonci sensor for the presence of oily contaminants in water. DYNA 2012, 79, 4–9.
23. Richter, A.; Voigt, T.; Ripperger, S. Ultrasonic attenuation spectroscopy of emulsions with droplet sizes greater than 10 microm. J. Colloid Interface Sci. 2007, 315, 482–492. [CrossRef] [PubMed]
24. Dukhin, A.S.; Goetz, P.J. (Eds.) Characterization of Liquids, Nano- and Microparticulates, and Porous Bodies Using Ultrasound, 2nd ed.; Studies in Interface Science 24; Elsevier: Amsterdam, The Netherlands, 2010.
25. Shah, A.; Fishwick, R.; Wood, J.; Leeke, G.; Rigby, S.; Greaves, M. A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 2010, 3, 700–714. [CrossRef]
26. Zhai, L.S.; Jin, N.D.; Gao, Z.K.; Wang, Z.Y.; Li, D.M. The ultrasonic measurement of high water volume fraction in dispersed oil-in-water flows. Chem. Eng. Sci. 2013, 94, 271–283. [CrossRef]
27. Liang, M.; Xinglian, C.; Lingjiang, Z.; Kemin, D. Measurement of Water Content of Petroleum by High Accuracy Interval Measuring Chip. In Proceedings of the 2012 Fourth International Conference on Computational and Information Sciences, Chongqing, China, 17–19 August 2012. [CrossRef]
28. Chaudhuri, A.; Sinha, D.N.; Zalte, A.; Pereyra, E.;Webb, C.; Gonzalez, M.E. Mass Fraction Measurements in Controlled Oil-Water Flows Using Noninvasive Ultrasonic Sensors. J. Fluids Eng. 2014, 136, 031304. [CrossRef]
29. Meral, R. Laboratory Evaluation of Acoustic Backscatter and LISST Methods for Measurements of Suspended Sediments. Sensors 2008, 8, 979–993. [CrossRef]
30. Moore, S.A.; Le Coz, J.; Hurther, D.; Paquier, A. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers. J. Acoust. Soc. Am. 2013, 133, 1959–1970. [CrossRef]
31. Chen, S.H.; Lin, Y.H.; Li, W.T.; Wang, S.H.; Huang, C.C. Estimation of Cell Concentration Using High-Frequency Ultrasonic Backscattering. J. Med. Biol. Eng. 2012, 32, 157–162. [CrossRef]
32. Elvira, L.; Vera, P.; Cañadas, F.J.; Shukla, S.K.; Montero, F. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering. Ultrasonics 2016, 64, 151–161. [CrossRef]
33. Blasina, F.; Pérez, N.; Budelli, E.; Lema, P.; Ing, R.K.; Negreira, C. Development of a multiple-scattering acoustic sensor for process monitoring: Application to monitoring milk coagulation. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; pp. 1–5. [CrossRef]
34. Perez, N.; Blasina, F.; Buiochi, F.; Duran, A.; Adamowski, J. Evaluation of a multiple scattering sensor for water-in-oil emulsion monitoring. Proc. Meet. Acoust. 2019, 38, 055007. [CrossRef]
35. Papoulis, A.; Maradudin, A.A. The Fourier Integral and Its Applications. Phys. Today 1963, 16, 70–72. [CrossRef]
36. Urick, R.J. A Sound Velocity Method for Determining the Compressibility of Finely Divided Substances. J. Appl. Phys. 1947, 18, 983–987. [CrossRef]
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 2021
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/7e21edf4-4f99-41c9-a91b-365ab2a7aaf8/download
https://red.uao.edu.co/bitstreams/e83572cd-6852-4511-8e31-b8506cdd7060/download
https://red.uao.edu.co/bitstreams/22bee932-ecb0-4f9d-86f8-c077734099a1/download
https://red.uao.edu.co/bitstreams/002757ab-d901-4a4b-912f-69374bd69c14/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
799a4b9c6c7e3f15d539ae47a8613a67
bc4a89cfe23cbb57c35a6fe3a48d2843
e2a87bceb515b52f125c0836aba0c3e9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260000849133568
spelling Durán, Alberto L.4ebc01e8916a849af534c17b57be17a1Franco Guzmán, Ediguer Enriquevirtual::1796-1Reyna, Carlos A. B.7463ba4df51ebf5d1196d3e38f8eb0e8Pérez, Nicolás8714f2b0e0b0fb4aa5a47edb07f0637dTsuzuki, Marcos S. G.61069c1d752748db42356c3150c1b66dBuiochi, Fláviob1bdb982d63e34285277106ac50141c52022-05-16T16:48:29Z2022-05-16T16:48:29Z2021-07-2714248220https://hdl.handle.net/10614/13873Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/This work shows the application of an ultrasonic multiple-scattering sensor for monitoring water-in-petroleum emulsions. The sensor consists of a commercial ultrasonic transducer with an array of cylindrical scatterers placed in the near field. The scatterers are thin metal bars arranged in rows in front of the transducer. The backscattering signals were analyzed by calculating the wave energy and by a cross-correlation between signal segments; they were also used to determine the propagation velocity in the emulsions. The tests performed used emulsions with water volume concentrations from 0% to 50%. The results showed that both the signal energy and propagation velocity strongly depended on the concentration of water in the emulsion. Therefore, the ultrasonic multiple-scattering sensor can be used for on-line and real-time monitoring of the water content in water-in-crude-oil emulsions10 páginasapplication/pdfengMDPIDerechos reservados - MDPI, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensorArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Detectores químicosSensores electroquímicosChemical detectorsElectrochemical sensorsWater in crude oil emulsionWater contentUltrasoundPropagation speed1015121Durán, A.L.; Franco, E.E.; Reyna, C.A.B.; Pérez, N.; Tsuzuki, M.S.G.; Buiochi, F. (2021). Water Content Monitoring in Water in Crude Oil Emulsions Using an Ultrasonic Multiple Backscattering Sensor. Sensors, Vol. 21 (15), pp. 1-10. https://www.researchgate.net/publication/353519238_Water_Content_Monitoring_in_Water-in-Crude-Oil_Emulsions_Using_an_Ultrasonic_Multiple-Backscattering_SensorSensors1. Higuti, R.T.; Bacaneli, E.; Furukawa, C.M.; Adamowski, J.C. Ultrasonic characterization of emulsions: Milk and water in oil. In Proceedings of the 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), Tahoe, NV, USA, 17–20 October 1999; Volume 1, pp. 779–782. [CrossRef]2. Santos, E.D.; Camargo, A.P.; Faria, E.A.; Oliveira, F.A.; Alves, S.M.; Barros, E.L. The Lubricity Analysis of Cutting Fluid Emulsions. Mater. Res. 2017, 20, 644–650. [CrossRef]3. Pérez-Páez, R.; Catalá-Civera, J.M.; Nos, B.G.B.; Castillo, E.F.; Bastos, J.M.; Zambrano, L.S. Separation of Oil-Water-Sludge Emulsions Coming From Palm Oil Mill Process Through Microwave Techniques. J. Microw. Power Electromagn. Energy 2007, 42, 39–47. [CrossRef]4. Mandal, A.; Samanta, A.; Bera, A.; Ojha, K. Characterization of Oil-Water Emulsion and Its Use in Enhanced Oil Recovery. Ind. Eng. Chem. Res. 2010, 49, 12756–12761. [CrossRef]5. Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 2018, 165, 673–690. [CrossRef]6. Stokes, D.J.; Thiel, B.L.; Donald, A.M. Direct Observation of Water-Oil Emulsion Systems in the Liquid State by Environmental Scanning Electron Microscopy. Langmuir 1998, 14, 4402–4408. [CrossRef]7. Goddeeris, C.; Cuppo, F.; Reynaers, H.; Bouwman, W.; den Mooter, G.V. Light scattering measurements on microemulsions: Estimation of droplet sizes. Int. J. Pharm. 2006, 312, 187–195. [CrossRef]8. Alvarez, G.; Jestin, J.; Argillier, J.F.; Langevin, D. Small-Angle Neutron Scattering Study of Crude Oil Emulsions: Structure of the Oil—Water Interfaces. Langmuir 2009, 25, 3985–3990. [CrossRef]9. d’Avila, M.A.; Shapley, N.C.; Walton, J.H.; Phillips, R.J.; Dungan, S.R.; Powell, R.L. Mixing of concentrated oil-in-water emulsions measured by nuclear magnetic resonance imaging. Phys. Fluids 2003, 15, 2499–2511. [CrossRef]10. Heindel, T.J. A Review of X-ray Flow Visualization With Applications to Multiphase Flows. J. Fluids Eng. 2011, 133, 074001. [CrossRef]11. Abro, E.; Johansen, G. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements. Flow Meas. Instrum. 1999, 10, 99–108. [CrossRef]12. García-Golding, F.; Giallorenzo, M.; Moreno, N.; Chang, V. Sensor for determining the water content of oil-in-water emulsion by specific admittance measurement. Sens. Actuators A Phys. 1995, 47, 337–341. [CrossRef]13. Jaworski, A.J.; Dyakowski, T. Measurements of oil–water separation dynamics in primary separation systems using distributed capacitance sensors. Flow Meas. Instrum. 2005, 16, 113–127. [CrossRef]14. Jadoon, S.; Malik, A.; Amin, A.A. Separation of Sediment Contents andWater from Crude Oil of Khurmala and Guwayer Oil Fields in Kurdistan Region by using Centrifuge Method. Int. J. Adv. Eng. Res. Sci. 2017, 4, 2919–2922. [CrossRef]15. Ivanova, P.G.; Aneva, Z.V. Assessment and assurance of quality in water measurement by coulometric Karl Fischer titration of petroleum products. Accredit. Qual. Assur. 2006, 10, 543–549. [CrossRef]16. Meng, G.; Jaworski, A.J.; White, N.M. Composition measurements of crude oil and process water emulsions using thick-film ultrasonic transducers. Chem. Eng. Process. Process Intensif. 2006, 45, 383–391. [CrossRef]17. Su, M.; Cai, X.; Xue, M.; Dong, L.; Xu, F. Particle sizing in dense two-phase droplet systems by ultrasonic attenuation and velocity spectra. Sci. China Ser. E Technol. Sci. 2009, 52, 1502–1510. [CrossRef]18. Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of Acoustics; John Wiley & Sons: Hoboken, NJ, USA, 1999.19. McClements, D.J.; Povey, M.J.W. Scattering of ultrasound by emulsions. J. Phys. D Appl. Phys. 1989, 22, 38–47. [CrossRef]20. McClements, D.; Povey, M.; Jury, M.; Betsanis, E. Ultrasonic characterization of a food emulsion. Ultrasonics 1990, 28, 266–272. [CrossRef]21. Juliastuti, E.; Tanogono, E.W.; Kurniadi, D. Detection of water content in lubricating oil using ultrasonics. In Proceedings of the 2017 5th International Conference on Instrumentation, Control and Automation (ICA), Yogyakarta, Indonesia, 9–11 August 2017; pp. 188–192. [CrossRef]22. Franco, E.E.; Adamowski, J.C.; Buiochi, F. Ultrasonci sensor for the presence of oily contaminants in water. DYNA 2012, 79, 4–9.23. Richter, A.; Voigt, T.; Ripperger, S. Ultrasonic attenuation spectroscopy of emulsions with droplet sizes greater than 10 microm. J. Colloid Interface Sci. 2007, 315, 482–492. [CrossRef] [PubMed]24. Dukhin, A.S.; Goetz, P.J. (Eds.) Characterization of Liquids, Nano- and Microparticulates, and Porous Bodies Using Ultrasound, 2nd ed.; Studies in Interface Science 24; Elsevier: Amsterdam, The Netherlands, 2010.25. Shah, A.; Fishwick, R.; Wood, J.; Leeke, G.; Rigby, S.; Greaves, M. A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 2010, 3, 700–714. [CrossRef]26. Zhai, L.S.; Jin, N.D.; Gao, Z.K.; Wang, Z.Y.; Li, D.M. The ultrasonic measurement of high water volume fraction in dispersed oil-in-water flows. Chem. Eng. Sci. 2013, 94, 271–283. [CrossRef]27. Liang, M.; Xinglian, C.; Lingjiang, Z.; Kemin, D. Measurement of Water Content of Petroleum by High Accuracy Interval Measuring Chip. In Proceedings of the 2012 Fourth International Conference on Computational and Information Sciences, Chongqing, China, 17–19 August 2012. [CrossRef]28. Chaudhuri, A.; Sinha, D.N.; Zalte, A.; Pereyra, E.;Webb, C.; Gonzalez, M.E. Mass Fraction Measurements in Controlled Oil-Water Flows Using Noninvasive Ultrasonic Sensors. J. Fluids Eng. 2014, 136, 031304. [CrossRef]29. Meral, R. Laboratory Evaluation of Acoustic Backscatter and LISST Methods for Measurements of Suspended Sediments. Sensors 2008, 8, 979–993. [CrossRef]30. Moore, S.A.; Le Coz, J.; Hurther, D.; Paquier, A. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers. J. Acoust. Soc. Am. 2013, 133, 1959–1970. [CrossRef]31. Chen, S.H.; Lin, Y.H.; Li, W.T.; Wang, S.H.; Huang, C.C. Estimation of Cell Concentration Using High-Frequency Ultrasonic Backscattering. J. Med. Biol. Eng. 2012, 32, 157–162. [CrossRef]32. Elvira, L.; Vera, P.; Cañadas, F.J.; Shukla, S.K.; Montero, F. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering. Ultrasonics 2016, 64, 151–161. [CrossRef]33. Blasina, F.; Pérez, N.; Budelli, E.; Lema, P.; Ing, R.K.; Negreira, C. Development of a multiple-scattering acoustic sensor for process monitoring: Application to monitoring milk coagulation. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; pp. 1–5. [CrossRef]34. Perez, N.; Blasina, F.; Buiochi, F.; Duran, A.; Adamowski, J. Evaluation of a multiple scattering sensor for water-in-oil emulsion monitoring. Proc. Meet. Acoust. 2019, 38, 055007. [CrossRef]35. Papoulis, A.; Maradudin, A.A. The Fourier Integral and Its Applications. Phys. Today 1963, 16, 70–72. [CrossRef]36. Urick, R.J. A Sound Velocity Method for Determining the Compressibility of Finely Divided Substances. J. Appl. Phys. 1947, 18, 983–987. [CrossRef]Comunidad generalPublicationff78380a-274b-4973-8760-dee857b38a0dvirtual::1796-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1796-1https://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::1796-10000-0001-7518-704Xvirtual::1796-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::1796-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/7e21edf4-4f99-41c9-a91b-365ab2a7aaf8/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALWater content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor.pdfWater content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf744320https://red.uao.edu.co/bitstreams/e83572cd-6852-4511-8e31-b8506cdd7060/download799a4b9c6c7e3f15d539ae47a8613a67MD53TEXTWater content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor.pdf.txtWater content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor.pdf.txtExtracted texttext/plain37915https://red.uao.edu.co/bitstreams/22bee932-ecb0-4f9d-86f8-c077734099a1/downloadbc4a89cfe23cbb57c35a6fe3a48d2843MD54THUMBNAILWater content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor.pdf.jpgWater content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor.pdf.jpgGenerated Thumbnailimage/jpeg16021https://red.uao.edu.co/bitstreams/002757ab-d901-4a4b-912f-69374bd69c14/downloade2a87bceb515b52f125c0836aba0c3e9MD5510614/13873oai:red.uao.edu.co:10614/138732024-03-05 10:48:52.253https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2021open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K