Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor
This work shows the application of an ultrasonic multiple-scattering sensor for monitoring water-in-petroleum emulsions. The sensor consists of a commercial ultrasonic transducer with an array of cylindrical scatterers placed in the near field. The scatterers are thin metal bars arranged in rows in...
- Autores:
-
Durán, Alberto L.
Franco Guzmán, Ediguer Enrique
Reyna, Carlos A. B.
Pérez, Nicolás
Tsuzuki, Marcos S. G.
Buiochi, Flávio
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13873
- Acceso en línea:
- https://hdl.handle.net/10614/13873
https://red.uao.edu.co/
- Palabra clave:
- Detectores químicos
Sensores electroquímicos
Chemical detectors
Electrochemical sensors
Water in crude oil emulsion
Water content
Ultrasound
Propagation speed
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2021
id |
REPOUAO2_3b7f928408af52628b88c5a044301a47 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13873 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor |
title |
Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor |
spellingShingle |
Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor Detectores químicos Sensores electroquímicos Chemical detectors Electrochemical sensors Water in crude oil emulsion Water content Ultrasound Propagation speed |
title_short |
Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor |
title_full |
Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor |
title_fullStr |
Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor |
title_full_unstemmed |
Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor |
title_sort |
Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor |
dc.creator.fl_str_mv |
Durán, Alberto L. Franco Guzmán, Ediguer Enrique Reyna, Carlos A. B. Pérez, Nicolás Tsuzuki, Marcos S. G. Buiochi, Flávio |
dc.contributor.author.none.fl_str_mv |
Durán, Alberto L. Franco Guzmán, Ediguer Enrique Reyna, Carlos A. B. Pérez, Nicolás Tsuzuki, Marcos S. G. Buiochi, Flávio |
dc.subject.armarc.spa.fl_str_mv |
Detectores químicos Sensores electroquímicos |
topic |
Detectores químicos Sensores electroquímicos Chemical detectors Electrochemical sensors Water in crude oil emulsion Water content Ultrasound Propagation speed |
dc.subject.armarc.eng.fl_str_mv |
Chemical detectors Electrochemical sensors |
dc.subject.proposal.eng.fl_str_mv |
Water in crude oil emulsion Water content Ultrasound Propagation speed |
description |
This work shows the application of an ultrasonic multiple-scattering sensor for monitoring water-in-petroleum emulsions. The sensor consists of a commercial ultrasonic transducer with an array of cylindrical scatterers placed in the near field. The scatterers are thin metal bars arranged in rows in front of the transducer. The backscattering signals were analyzed by calculating the wave energy and by a cross-correlation between signal segments; they were also used to determine the propagation velocity in the emulsions. The tests performed used emulsions with water volume concentrations from 0% to 50%. The results showed that both the signal energy and propagation velocity strongly depended on the concentration of water in the emulsion. Therefore, the ultrasonic multiple-scattering sensor can be used for on-line and real-time monitoring of the water content in water-in-crude-oil emulsions |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-07-27 |
dc.date.accessioned.none.fl_str_mv |
2022-05-16T16:48:29Z |
dc.date.available.none.fl_str_mv |
2022-05-16T16:48:29Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
14248220 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13873 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
14248220 Universidad Autónoma de Occidente Repositorio Educativo Digital |
url |
https://hdl.handle.net/10614/13873 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
10 |
dc.relation.citationissue.spa.fl_str_mv |
15 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
21 |
dc.relation.cites.eng.fl_str_mv |
Durán, A.L.; Franco, E.E.; Reyna, C.A.B.; Pérez, N.; Tsuzuki, M.S.G.; Buiochi, F. (2021). Water Content Monitoring in Water in Crude Oil Emulsions Using an Ultrasonic Multiple Backscattering Sensor. Sensors, Vol. 21 (15), pp. 1-10. https://www.researchgate.net/publication/353519238_Water_Content_Monitoring_in_Water-in-Crude-Oil_Emulsions_Using_an_Ultrasonic_Multiple-Backscattering_Sensor |
dc.relation.ispartofjournal.eng.fl_str_mv |
Sensors |
dc.relation.references.eng.fl_str_mv |
1. Higuti, R.T.; Bacaneli, E.; Furukawa, C.M.; Adamowski, J.C. Ultrasonic characterization of emulsions: Milk and water in oil. In Proceedings of the 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), Tahoe, NV, USA, 17–20 October 1999; Volume 1, pp. 779–782. [CrossRef] 2. Santos, E.D.; Camargo, A.P.; Faria, E.A.; Oliveira, F.A.; Alves, S.M.; Barros, E.L. The Lubricity Analysis of Cutting Fluid Emulsions. Mater. Res. 2017, 20, 644–650. [CrossRef] 3. Pérez-Páez, R.; Catalá-Civera, J.M.; Nos, B.G.B.; Castillo, E.F.; Bastos, J.M.; Zambrano, L.S. Separation of Oil-Water-Sludge Emulsions Coming From Palm Oil Mill Process Through Microwave Techniques. J. Microw. Power Electromagn. Energy 2007, 42, 39–47. [CrossRef] 4. Mandal, A.; Samanta, A.; Bera, A.; Ojha, K. Characterization of Oil-Water Emulsion and Its Use in Enhanced Oil Recovery. Ind. Eng. Chem. Res. 2010, 49, 12756–12761. [CrossRef] 5. Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 2018, 165, 673–690. [CrossRef] 6. Stokes, D.J.; Thiel, B.L.; Donald, A.M. Direct Observation of Water-Oil Emulsion Systems in the Liquid State by Environmental Scanning Electron Microscopy. Langmuir 1998, 14, 4402–4408. [CrossRef] 7. Goddeeris, C.; Cuppo, F.; Reynaers, H.; Bouwman, W.; den Mooter, G.V. Light scattering measurements on microemulsions: Estimation of droplet sizes. Int. J. Pharm. 2006, 312, 187–195. [CrossRef] 8. Alvarez, G.; Jestin, J.; Argillier, J.F.; Langevin, D. Small-Angle Neutron Scattering Study of Crude Oil Emulsions: Structure of the Oil—Water Interfaces. Langmuir 2009, 25, 3985–3990. [CrossRef] 9. d’Avila, M.A.; Shapley, N.C.; Walton, J.H.; Phillips, R.J.; Dungan, S.R.; Powell, R.L. Mixing of concentrated oil-in-water emulsions measured by nuclear magnetic resonance imaging. Phys. Fluids 2003, 15, 2499–2511. [CrossRef] 10. Heindel, T.J. A Review of X-ray Flow Visualization With Applications to Multiphase Flows. J. Fluids Eng. 2011, 133, 074001. [CrossRef] 11. Abro, E.; Johansen, G. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements. Flow Meas. Instrum. 1999, 10, 99–108. [CrossRef] 12. García-Golding, F.; Giallorenzo, M.; Moreno, N.; Chang, V. Sensor for determining the water content of oil-in-water emulsion by specific admittance measurement. Sens. Actuators A Phys. 1995, 47, 337–341. [CrossRef] 13. Jaworski, A.J.; Dyakowski, T. Measurements of oil–water separation dynamics in primary separation systems using distributed capacitance sensors. Flow Meas. Instrum. 2005, 16, 113–127. [CrossRef] 14. Jadoon, S.; Malik, A.; Amin, A.A. Separation of Sediment Contents andWater from Crude Oil of Khurmala and Guwayer Oil Fields in Kurdistan Region by using Centrifuge Method. Int. J. Adv. Eng. Res. Sci. 2017, 4, 2919–2922. [CrossRef] 15. Ivanova, P.G.; Aneva, Z.V. Assessment and assurance of quality in water measurement by coulometric Karl Fischer titration of petroleum products. Accredit. Qual. Assur. 2006, 10, 543–549. [CrossRef] 16. Meng, G.; Jaworski, A.J.; White, N.M. Composition measurements of crude oil and process water emulsions using thick-film ultrasonic transducers. Chem. Eng. Process. Process Intensif. 2006, 45, 383–391. [CrossRef] 17. Su, M.; Cai, X.; Xue, M.; Dong, L.; Xu, F. Particle sizing in dense two-phase droplet systems by ultrasonic attenuation and velocity spectra. Sci. China Ser. E Technol. Sci. 2009, 52, 1502–1510. [CrossRef] 18. Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of Acoustics; John Wiley & Sons: Hoboken, NJ, USA, 1999. 19. McClements, D.J.; Povey, M.J.W. Scattering of ultrasound by emulsions. J. Phys. D Appl. Phys. 1989, 22, 38–47. [CrossRef] 20. McClements, D.; Povey, M.; Jury, M.; Betsanis, E. Ultrasonic characterization of a food emulsion. Ultrasonics 1990, 28, 266–272. [CrossRef] 21. Juliastuti, E.; Tanogono, E.W.; Kurniadi, D. Detection of water content in lubricating oil using ultrasonics. In Proceedings of the 2017 5th International Conference on Instrumentation, Control and Automation (ICA), Yogyakarta, Indonesia, 9–11 August 2017; pp. 188–192. [CrossRef] 22. Franco, E.E.; Adamowski, J.C.; Buiochi, F. Ultrasonci sensor for the presence of oily contaminants in water. DYNA 2012, 79, 4–9. 23. Richter, A.; Voigt, T.; Ripperger, S. Ultrasonic attenuation spectroscopy of emulsions with droplet sizes greater than 10 microm. J. Colloid Interface Sci. 2007, 315, 482–492. [CrossRef] [PubMed] 24. Dukhin, A.S.; Goetz, P.J. (Eds.) Characterization of Liquids, Nano- and Microparticulates, and Porous Bodies Using Ultrasound, 2nd ed.; Studies in Interface Science 24; Elsevier: Amsterdam, The Netherlands, 2010. 25. Shah, A.; Fishwick, R.; Wood, J.; Leeke, G.; Rigby, S.; Greaves, M. A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 2010, 3, 700–714. [CrossRef] 26. Zhai, L.S.; Jin, N.D.; Gao, Z.K.; Wang, Z.Y.; Li, D.M. The ultrasonic measurement of high water volume fraction in dispersed oil-in-water flows. Chem. Eng. Sci. 2013, 94, 271–283. [CrossRef] 27. Liang, M.; Xinglian, C.; Lingjiang, Z.; Kemin, D. Measurement of Water Content of Petroleum by High Accuracy Interval Measuring Chip. In Proceedings of the 2012 Fourth International Conference on Computational and Information Sciences, Chongqing, China, 17–19 August 2012. [CrossRef] 28. Chaudhuri, A.; Sinha, D.N.; Zalte, A.; Pereyra, E.;Webb, C.; Gonzalez, M.E. Mass Fraction Measurements in Controlled Oil-Water Flows Using Noninvasive Ultrasonic Sensors. J. Fluids Eng. 2014, 136, 031304. [CrossRef] 29. Meral, R. Laboratory Evaluation of Acoustic Backscatter and LISST Methods for Measurements of Suspended Sediments. Sensors 2008, 8, 979–993. [CrossRef] 30. Moore, S.A.; Le Coz, J.; Hurther, D.; Paquier, A. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers. J. Acoust. Soc. Am. 2013, 133, 1959–1970. [CrossRef] 31. Chen, S.H.; Lin, Y.H.; Li, W.T.; Wang, S.H.; Huang, C.C. Estimation of Cell Concentration Using High-Frequency Ultrasonic Backscattering. J. Med. Biol. Eng. 2012, 32, 157–162. [CrossRef] 32. Elvira, L.; Vera, P.; Cañadas, F.J.; Shukla, S.K.; Montero, F. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering. Ultrasonics 2016, 64, 151–161. [CrossRef] 33. Blasina, F.; Pérez, N.; Budelli, E.; Lema, P.; Ing, R.K.; Negreira, C. Development of a multiple-scattering acoustic sensor for process monitoring: Application to monitoring milk coagulation. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; pp. 1–5. [CrossRef] 34. Perez, N.; Blasina, F.; Buiochi, F.; Duran, A.; Adamowski, J. Evaluation of a multiple scattering sensor for water-in-oil emulsion monitoring. Proc. Meet. Acoust. 2019, 38, 055007. [CrossRef] 35. Papoulis, A.; Maradudin, A.A. The Fourier Integral and Its Applications. Phys. Today 1963, 16, 70–72. [CrossRef] 36. Urick, R.J. A Sound Velocity Method for Determining the Compressibility of Finely Divided Substances. J. Appl. Phys. 1947, 18, 983–987. [CrossRef] |
dc.rights.spa.fl_str_mv |
Derechos reservados - MDPI, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - MDPI, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/7e21edf4-4f99-41c9-a91b-365ab2a7aaf8/download https://red.uao.edu.co/bitstreams/e83572cd-6852-4511-8e31-b8506cdd7060/download https://red.uao.edu.co/bitstreams/22bee932-ecb0-4f9d-86f8-c077734099a1/download https://red.uao.edu.co/bitstreams/002757ab-d901-4a4b-912f-69374bd69c14/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 799a4b9c6c7e3f15d539ae47a8613a67 bc4a89cfe23cbb57c35a6fe3a48d2843 e2a87bceb515b52f125c0836aba0c3e9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260000849133568 |
spelling |
Durán, Alberto L.4ebc01e8916a849af534c17b57be17a1Franco Guzmán, Ediguer Enriquevirtual::1796-1Reyna, Carlos A. B.7463ba4df51ebf5d1196d3e38f8eb0e8Pérez, Nicolás8714f2b0e0b0fb4aa5a47edb07f0637dTsuzuki, Marcos S. G.61069c1d752748db42356c3150c1b66dBuiochi, Fláviob1bdb982d63e34285277106ac50141c52022-05-16T16:48:29Z2022-05-16T16:48:29Z2021-07-2714248220https://hdl.handle.net/10614/13873Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/This work shows the application of an ultrasonic multiple-scattering sensor for monitoring water-in-petroleum emulsions. The sensor consists of a commercial ultrasonic transducer with an array of cylindrical scatterers placed in the near field. The scatterers are thin metal bars arranged in rows in front of the transducer. The backscattering signals were analyzed by calculating the wave energy and by a cross-correlation between signal segments; they were also used to determine the propagation velocity in the emulsions. The tests performed used emulsions with water volume concentrations from 0% to 50%. The results showed that both the signal energy and propagation velocity strongly depended on the concentration of water in the emulsion. Therefore, the ultrasonic multiple-scattering sensor can be used for on-line and real-time monitoring of the water content in water-in-crude-oil emulsions10 páginasapplication/pdfengMDPIDerechos reservados - MDPI, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Water content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensorArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Detectores químicosSensores electroquímicosChemical detectorsElectrochemical sensorsWater in crude oil emulsionWater contentUltrasoundPropagation speed1015121Durán, A.L.; Franco, E.E.; Reyna, C.A.B.; Pérez, N.; Tsuzuki, M.S.G.; Buiochi, F. (2021). Water Content Monitoring in Water in Crude Oil Emulsions Using an Ultrasonic Multiple Backscattering Sensor. Sensors, Vol. 21 (15), pp. 1-10. https://www.researchgate.net/publication/353519238_Water_Content_Monitoring_in_Water-in-Crude-Oil_Emulsions_Using_an_Ultrasonic_Multiple-Backscattering_SensorSensors1. Higuti, R.T.; Bacaneli, E.; Furukawa, C.M.; Adamowski, J.C. Ultrasonic characterization of emulsions: Milk and water in oil. In Proceedings of the 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), Tahoe, NV, USA, 17–20 October 1999; Volume 1, pp. 779–782. [CrossRef]2. Santos, E.D.; Camargo, A.P.; Faria, E.A.; Oliveira, F.A.; Alves, S.M.; Barros, E.L. The Lubricity Analysis of Cutting Fluid Emulsions. Mater. Res. 2017, 20, 644–650. [CrossRef]3. Pérez-Páez, R.; Catalá-Civera, J.M.; Nos, B.G.B.; Castillo, E.F.; Bastos, J.M.; Zambrano, L.S. Separation of Oil-Water-Sludge Emulsions Coming From Palm Oil Mill Process Through Microwave Techniques. J. Microw. Power Electromagn. Energy 2007, 42, 39–47. [CrossRef]4. Mandal, A.; Samanta, A.; Bera, A.; Ojha, K. Characterization of Oil-Water Emulsion and Its Use in Enhanced Oil Recovery. Ind. Eng. Chem. Res. 2010, 49, 12756–12761. [CrossRef]5. Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 2018, 165, 673–690. [CrossRef]6. Stokes, D.J.; Thiel, B.L.; Donald, A.M. Direct Observation of Water-Oil Emulsion Systems in the Liquid State by Environmental Scanning Electron Microscopy. Langmuir 1998, 14, 4402–4408. [CrossRef]7. Goddeeris, C.; Cuppo, F.; Reynaers, H.; Bouwman, W.; den Mooter, G.V. Light scattering measurements on microemulsions: Estimation of droplet sizes. Int. J. Pharm. 2006, 312, 187–195. [CrossRef]8. Alvarez, G.; Jestin, J.; Argillier, J.F.; Langevin, D. Small-Angle Neutron Scattering Study of Crude Oil Emulsions: Structure of the Oil—Water Interfaces. Langmuir 2009, 25, 3985–3990. [CrossRef]9. d’Avila, M.A.; Shapley, N.C.; Walton, J.H.; Phillips, R.J.; Dungan, S.R.; Powell, R.L. Mixing of concentrated oil-in-water emulsions measured by nuclear magnetic resonance imaging. Phys. Fluids 2003, 15, 2499–2511. [CrossRef]10. Heindel, T.J. A Review of X-ray Flow Visualization With Applications to Multiphase Flows. J. Fluids Eng. 2011, 133, 074001. [CrossRef]11. Abro, E.; Johansen, G. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements. Flow Meas. Instrum. 1999, 10, 99–108. [CrossRef]12. García-Golding, F.; Giallorenzo, M.; Moreno, N.; Chang, V. Sensor for determining the water content of oil-in-water emulsion by specific admittance measurement. Sens. Actuators A Phys. 1995, 47, 337–341. [CrossRef]13. Jaworski, A.J.; Dyakowski, T. Measurements of oil–water separation dynamics in primary separation systems using distributed capacitance sensors. Flow Meas. Instrum. 2005, 16, 113–127. [CrossRef]14. Jadoon, S.; Malik, A.; Amin, A.A. Separation of Sediment Contents andWater from Crude Oil of Khurmala and Guwayer Oil Fields in Kurdistan Region by using Centrifuge Method. Int. J. Adv. Eng. Res. Sci. 2017, 4, 2919–2922. [CrossRef]15. Ivanova, P.G.; Aneva, Z.V. Assessment and assurance of quality in water measurement by coulometric Karl Fischer titration of petroleum products. Accredit. Qual. Assur. 2006, 10, 543–549. [CrossRef]16. Meng, G.; Jaworski, A.J.; White, N.M. Composition measurements of crude oil and process water emulsions using thick-film ultrasonic transducers. Chem. Eng. Process. Process Intensif. 2006, 45, 383–391. [CrossRef]17. Su, M.; Cai, X.; Xue, M.; Dong, L.; Xu, F. Particle sizing in dense two-phase droplet systems by ultrasonic attenuation and velocity spectra. Sci. China Ser. E Technol. Sci. 2009, 52, 1502–1510. [CrossRef]18. Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of Acoustics; John Wiley & Sons: Hoboken, NJ, USA, 1999.19. McClements, D.J.; Povey, M.J.W. Scattering of ultrasound by emulsions. J. Phys. D Appl. Phys. 1989, 22, 38–47. [CrossRef]20. McClements, D.; Povey, M.; Jury, M.; Betsanis, E. Ultrasonic characterization of a food emulsion. Ultrasonics 1990, 28, 266–272. [CrossRef]21. Juliastuti, E.; Tanogono, E.W.; Kurniadi, D. Detection of water content in lubricating oil using ultrasonics. In Proceedings of the 2017 5th International Conference on Instrumentation, Control and Automation (ICA), Yogyakarta, Indonesia, 9–11 August 2017; pp. 188–192. [CrossRef]22. Franco, E.E.; Adamowski, J.C.; Buiochi, F. Ultrasonci sensor for the presence of oily contaminants in water. DYNA 2012, 79, 4–9.23. Richter, A.; Voigt, T.; Ripperger, S. Ultrasonic attenuation spectroscopy of emulsions with droplet sizes greater than 10 microm. J. Colloid Interface Sci. 2007, 315, 482–492. [CrossRef] [PubMed]24. Dukhin, A.S.; Goetz, P.J. (Eds.) Characterization of Liquids, Nano- and Microparticulates, and Porous Bodies Using Ultrasound, 2nd ed.; Studies in Interface Science 24; Elsevier: Amsterdam, The Netherlands, 2010.25. Shah, A.; Fishwick, R.; Wood, J.; Leeke, G.; Rigby, S.; Greaves, M. A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 2010, 3, 700–714. [CrossRef]26. Zhai, L.S.; Jin, N.D.; Gao, Z.K.; Wang, Z.Y.; Li, D.M. The ultrasonic measurement of high water volume fraction in dispersed oil-in-water flows. Chem. Eng. Sci. 2013, 94, 271–283. [CrossRef]27. Liang, M.; Xinglian, C.; Lingjiang, Z.; Kemin, D. Measurement of Water Content of Petroleum by High Accuracy Interval Measuring Chip. In Proceedings of the 2012 Fourth International Conference on Computational and Information Sciences, Chongqing, China, 17–19 August 2012. [CrossRef]28. Chaudhuri, A.; Sinha, D.N.; Zalte, A.; Pereyra, E.;Webb, C.; Gonzalez, M.E. Mass Fraction Measurements in Controlled Oil-Water Flows Using Noninvasive Ultrasonic Sensors. J. Fluids Eng. 2014, 136, 031304. [CrossRef]29. Meral, R. Laboratory Evaluation of Acoustic Backscatter and LISST Methods for Measurements of Suspended Sediments. Sensors 2008, 8, 979–993. [CrossRef]30. Moore, S.A.; Le Coz, J.; Hurther, D.; Paquier, A. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers. J. Acoust. Soc. Am. 2013, 133, 1959–1970. [CrossRef]31. Chen, S.H.; Lin, Y.H.; Li, W.T.; Wang, S.H.; Huang, C.C. Estimation of Cell Concentration Using High-Frequency Ultrasonic Backscattering. J. Med. Biol. Eng. 2012, 32, 157–162. [CrossRef]32. Elvira, L.; Vera, P.; Cañadas, F.J.; Shukla, S.K.; Montero, F. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering. Ultrasonics 2016, 64, 151–161. [CrossRef]33. Blasina, F.; Pérez, N.; Budelli, E.; Lema, P.; Ing, R.K.; Negreira, C. Development of a multiple-scattering acoustic sensor for process monitoring: Application to monitoring milk coagulation. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; pp. 1–5. [CrossRef]34. Perez, N.; Blasina, F.; Buiochi, F.; Duran, A.; Adamowski, J. Evaluation of a multiple scattering sensor for water-in-oil emulsion monitoring. Proc. Meet. Acoust. 2019, 38, 055007. [CrossRef]35. Papoulis, A.; Maradudin, A.A. The Fourier Integral and Its Applications. Phys. Today 1963, 16, 70–72. [CrossRef]36. Urick, R.J. A Sound Velocity Method for Determining the Compressibility of Finely Divided Substances. J. Appl. Phys. 1947, 18, 983–987. [CrossRef]Comunidad generalPublicationff78380a-274b-4973-8760-dee857b38a0dvirtual::1796-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1796-1https://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::1796-10000-0001-7518-704Xvirtual::1796-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::1796-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/7e21edf4-4f99-41c9-a91b-365ab2a7aaf8/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALWater content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor.pdfWater content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf744320https://red.uao.edu.co/bitstreams/e83572cd-6852-4511-8e31-b8506cdd7060/download799a4b9c6c7e3f15d539ae47a8613a67MD53TEXTWater content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor.pdf.txtWater content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor.pdf.txtExtracted texttext/plain37915https://red.uao.edu.co/bitstreams/22bee932-ecb0-4f9d-86f8-c077734099a1/downloadbc4a89cfe23cbb57c35a6fe3a48d2843MD54THUMBNAILWater content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor.pdf.jpgWater content monitoring in water-in-crude-oil emulsions using an ultrasonic multiple-backscattering sensor.pdf.jpgGenerated Thumbnailimage/jpeg16021https://red.uao.edu.co/bitstreams/002757ab-d901-4a4b-912f-69374bd69c14/downloade2a87bceb515b52f125c0836aba0c3e9MD5510614/13873oai:red.uao.edu.co:10614/138732024-03-05 10:48:52.253https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2021open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |