Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets

This article proposes a numerical model of Permanent Magnet Linear Synchronous Motors (PMLSMs) for use as a tracking mechanism for the transport system. This paper studies the behavior under operating two types of linear motors to analyze and compare the system of forces and vibration levels to dete...

Full description

Autores:
González-Palomino, Gabriel
Laniado-Jacome, Edwin
Montoya Larrahondo, Jaime
García Vera, Yimy Edisson
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11629
Acceso en línea:
http://red.uao.edu.co//handle/10614/11629
Palabra clave:
Motores eléctricos
Método de elementos finitos
Electric motors
Finite element method
Halbach
Opposite poles
Linear motor
Wavelet coefficients
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_399a17cab2022f76a3ecf3ba1b864ad4
oai_identifier_str oai:red.uao.edu.co:10614/11629
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets
title Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets
spellingShingle Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets
Motores eléctricos
Método de elementos finitos
Electric motors
Finite element method
Halbach
Opposite poles
Linear motor
Wavelet coefficients
title_short Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets
title_full Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets
title_fullStr Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets
title_full_unstemmed Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets
title_sort Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets
dc.creator.fl_str_mv González-Palomino, Gabriel
Laniado-Jacome, Edwin
Montoya Larrahondo, Jaime
García Vera, Yimy Edisson
dc.contributor.author.none.fl_str_mv González-Palomino, Gabriel
Laniado-Jacome, Edwin
Montoya Larrahondo, Jaime
García Vera, Yimy Edisson
dc.subject.armarc.spa.fl_str_mv Motores eléctricos
Método de elementos finitos
topic Motores eléctricos
Método de elementos finitos
Electric motors
Finite element method
Halbach
Opposite poles
Linear motor
Wavelet coefficients
dc.subject.armarc.eng.fl_str_mv Electric motors
Finite element method
dc.subject.proposal.eng.fl_str_mv Halbach
Opposite poles
Linear motor
Wavelet coefficients
description This article proposes a numerical model of Permanent Magnet Linear Synchronous Motors (PMLSMs) for use as a tracking mechanism for the transport system. This paper studies the behavior under operating two types of linear motors to analyze and compare the system of forces and vibration levels to determine its efficiency as a transport system. The first model of motor has configuration of opposite poles and second has Halbach type configuration, are analyzed by the finite element method with commercial software FLUX™. The data of variation of force called ripple are analyzed with techniques for vibration signals using wavelet coefficients for classification of MatLab™ software to determine the concentration of vibrational energy levels and the parameters identified for each proposed linear motor
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2019-11-29T19:19:51Z
dc.date.available.none.fl_str_mv 2019-11-29T19:19:51Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.eng.fl_str_mv González Palomino, G ; Laniado Jacome, E; Montoya Larrahondo, J ; García Vera, Y. E. Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets. British Journal of Applied Science & Technology 4(16), (2014). 2265-2276
dc.identifier.uri.none.fl_str_mv http://red.uao.edu.co//handle/10614/11629
identifier_str_mv González Palomino, G ; Laniado Jacome, E; Montoya Larrahondo, J ; García Vera, Y. E. Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets. British Journal of Applied Science & Technology 4(16), (2014). 2265-2276
url http://red.uao.edu.co//handle/10614/11629
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.eng.fl_str_mv British Journal of Applied Science & Technology. Volumen 4, número 16, (2014); páginas 2265-2276
dc.relation.citationendpage.none.fl_str_mv 2276
dc.relation.citationissue.none.fl_str_mv 16
dc.relation.citationstartpage.none.fl_str_mv 2265
dc.relation.citationvolume.none.fl_str_mv 4
dc.relation.ispartofjournal.eng.fl_str_mv British journal of applied science & technology
dc.relation.references.none.fl_str_mv 1. Jaewon L, Jung KH. Cogging force reduction in permanent magnet linear motor using phase set shift. Presented at Electrical Machines, ICEM 2008.18th International Conference on; 2008.
2. Suzuki K, Kim JY, Dohmeki H. Proposal of the section change method of the stator block of the discontinuous stator permanent magnet type linear synchronous motor aimed at long-distance transportation. Presented at Electrical Machines, ICEM 2008.18th International Conference on; 2008.
3. Yoshimura T, Kim JH, Watada M, Torii S, Ebihara D. Analysis of the reduction of detent force in a permanent magnet linear synchronous motor. Magnetics, IEEE Transactions. 1995;31(6):3728-3730. DOI: 10.1109/20.489752.
4. Lee YD, Hwang CI, Kang HG, Kim TG. 3D finite element analysis of skew and overhang effects in permanent magnet linear synchronous motor. Presented at 2006 12th Biennial IEEE Conference on Electromagnetic Field Computation; 2006.
5. Wang FC, Shen XJ, Wang LY, Wang L, Jin JM. A new method for reduction of detent force in permanent magnet flux-switching linear motors. Magnetics, IEEE Transactions. 2009;45(6):2843-2846.
6. Xiaoyuan W, Wang Y, Wang Q. Effects of different permanent magnet structures on the air gap magnetic field of linear motors. Presented at Automation Congress, WAC, World; 2008.
7. Zhao S, Tan KK. Adaptive feedforward compensation of force ripples in linear motors. Control Eng Pract. 2005;13(9):1081-1092. DOI: http://dx.doi.org/10.1016/j.conengprac.2004.11.004.
8. Braun S, Ewins D, Rao SS. Encyclopedia of vibration, volume 2, chapter computational methods: Object oriented programming in FE analysis by klapka I, cardona A, devloo P; 2001.
9. Youn WS, Lee JJ, Yoon SH, Koh SC. A new cogging-free permanent-magnet linear motor. Magnetics, IEEE Transactions. 2008;44(7):1785-1790.
10. Yousefi H, Hirvonen M, Handroos H, Soleymani A. Application of neural network in suppressing mechanical vibration of a permanent magnet linear motor. Control Eng. Pract. 2008;16(7):787-797. DOI: http://dx.doi.org/10.1016/j.conengprac.2007.08.003.
11. Burrus SC, Gopinath AR, Guo H, Odegard EJ, Selesnick WI. Introduction to Wavelets and Wavelet Transforms: A Primer 1998;23.
12. Rubini R, Meneghetti U. Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mechanical Systems and Signal Processing. 2001;15(2):287-302. DOI: http://dx.doi.org/10.1006/mssp.2000.1330.
13. Boyes DJ. Reciprocating Machinery Analysis with an FFT Analyser; 1975.
14. Cizek V. Methods of Computation of Discrete Fourier Transforms In: Anonymous Disctrete Fourier Transforms and their Applications. 1985;98-120.
15. Fu S, Muralikrishnan B, Raja J. Engineering surface analysis with different wavelet bases. Journal of Manufacturing Science and Engineering. 2003;125(4):844-852.
16. Zienkiewicz CO. Finite Element Method. 1967 Published Under Title: Finite Element Method in Structural and Continuum Mechanics; 1971 Published Under Title: Finite Element Method in Engineering Science; 1977.
17. Zienkiewicz CO, Cheung KY. The finite element method in structural and continuum mechanics: Numerical Solution of Problems in Structural and Continuum Mechanics; 1967.
18. Jin MJ. The finite element method in electromagnetics. John Wiley & Sons, New York; 1993.
19. Volakis LJ, Chatterjee A, Kempel CL. Finite element methods for electromagnetics: Antennas, microwave circuits and scattering applications. A John Wiley & Sons, Inc., Publication, New York; 1998.
20. Lieh J. Closed-form solutions for vehicle traction problems. Proc. Inst. Mech. Eng. Pt. D. J Automobile Eng. 2002;216(12):957-963.
21. Radosavljevic A. Measurement of train traction characteristics. Proc. Inst. Mech. Eng. Pt. F. J Rail Rapid Transit. 2006;220(3):283-291.
22. Seo IS, Park SC, Choi HS, Han JY, Kim HK. Reliability management and assessment for the electric traction system on the korea high-speed train. Proc. Inst. Mech. Eng. Pt. F. J Rail Rapid Transit. 2010;224(3):179-188.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 11 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Sciencedomain international
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/ef83edd2-77c8-4984-a1d9-6c155d416d62/download
https://dspace7-uao.metacatalogo.com/bitstreams/b6e2312a-e739-48dc-811a-d7009266aef0/download
https://dspace7-uao.metacatalogo.com/bitstreams/d2b9ea4b-7705-4757-8895-8f13c68a4589/download
https://dspace7-uao.metacatalogo.com/bitstreams/5fd2edd1-607a-4523-9051-da1c0e0272fa/download
https://dspace7-uao.metacatalogo.com/bitstreams/61d47b0b-3e74-4041-ae9d-ebb77e0e7f73/download
bitstream.checksum.fl_str_mv f1907534fee9efee4b213431350b814e
c02e1648d7d9851df1bb3362854bf87b
8917b58c497124c522a6b1be9c4033ab
4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259859047055360
spelling González-Palomino, Gabriel538d3ef20c5b0ee10b3dcc58f105b307Laniado-Jacome, Edwinca6fa80936c9e76908129de5e6a40475Montoya Larrahondo, Jaimed937179fb11897b222cd0c0a31e3ffb2García Vera, Yimy Edisson4652780e4497ca3e606bbd96297605e5Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-29T19:19:51Z2019-11-29T19:19:51Z2014González Palomino, G ; Laniado Jacome, E; Montoya Larrahondo, J ; García Vera, Y. E. Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets. British Journal of Applied Science & Technology 4(16), (2014). 2265-2276http://red.uao.edu.co//handle/10614/11629This article proposes a numerical model of Permanent Magnet Linear Synchronous Motors (PMLSMs) for use as a tracking mechanism for the transport system. This paper studies the behavior under operating two types of linear motors to analyze and compare the system of forces and vibration levels to determine its efficiency as a transport system. The first model of motor has configuration of opposite poles and second has Halbach type configuration, are analyzed by the finite element method with commercial software FLUX™. The data of variation of force called ripple are analyzed with techniques for vibration signals using wavelet coefficients for classification of MatLab™ software to determine the concentration of vibrational energy levels and the parameters identified for each proposed linear motorapplication/pdf11 páginasengSciencedomain internationalBritish Journal of Applied Science & Technology. Volumen 4, número 16, (2014); páginas 2265-227622761622654British journal of applied science & technology1. Jaewon L, Jung KH. Cogging force reduction in permanent magnet linear motor using phase set shift. Presented at Electrical Machines, ICEM 2008.18th International Conference on; 2008.2. Suzuki K, Kim JY, Dohmeki H. Proposal of the section change method of the stator block of the discontinuous stator permanent magnet type linear synchronous motor aimed at long-distance transportation. Presented at Electrical Machines, ICEM 2008.18th International Conference on; 2008.3. Yoshimura T, Kim JH, Watada M, Torii S, Ebihara D. Analysis of the reduction of detent force in a permanent magnet linear synchronous motor. Magnetics, IEEE Transactions. 1995;31(6):3728-3730. DOI: 10.1109/20.489752.4. Lee YD, Hwang CI, Kang HG, Kim TG. 3D finite element analysis of skew and overhang effects in permanent magnet linear synchronous motor. Presented at 2006 12th Biennial IEEE Conference on Electromagnetic Field Computation; 2006.5. Wang FC, Shen XJ, Wang LY, Wang L, Jin JM. A new method for reduction of detent force in permanent magnet flux-switching linear motors. Magnetics, IEEE Transactions. 2009;45(6):2843-2846.6. Xiaoyuan W, Wang Y, Wang Q. Effects of different permanent magnet structures on the air gap magnetic field of linear motors. Presented at Automation Congress, WAC, World; 2008.7. Zhao S, Tan KK. Adaptive feedforward compensation of force ripples in linear motors. Control Eng Pract. 2005;13(9):1081-1092. DOI: http://dx.doi.org/10.1016/j.conengprac.2004.11.004.8. Braun S, Ewins D, Rao SS. Encyclopedia of vibration, volume 2, chapter computational methods: Object oriented programming in FE analysis by klapka I, cardona A, devloo P; 2001.9. Youn WS, Lee JJ, Yoon SH, Koh SC. A new cogging-free permanent-magnet linear motor. Magnetics, IEEE Transactions. 2008;44(7):1785-1790.10. Yousefi H, Hirvonen M, Handroos H, Soleymani A. Application of neural network in suppressing mechanical vibration of a permanent magnet linear motor. Control Eng. Pract. 2008;16(7):787-797. DOI: http://dx.doi.org/10.1016/j.conengprac.2007.08.003.11. Burrus SC, Gopinath AR, Guo H, Odegard EJ, Selesnick WI. Introduction to Wavelets and Wavelet Transforms: A Primer 1998;23.12. Rubini R, Meneghetti U. Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mechanical Systems and Signal Processing. 2001;15(2):287-302. DOI: http://dx.doi.org/10.1006/mssp.2000.1330.13. Boyes DJ. Reciprocating Machinery Analysis with an FFT Analyser; 1975.14. Cizek V. Methods of Computation of Discrete Fourier Transforms In: Anonymous Disctrete Fourier Transforms and their Applications. 1985;98-120.15. Fu S, Muralikrishnan B, Raja J. Engineering surface analysis with different wavelet bases. Journal of Manufacturing Science and Engineering. 2003;125(4):844-852.16. Zienkiewicz CO. Finite Element Method. 1967 Published Under Title: Finite Element Method in Structural and Continuum Mechanics; 1971 Published Under Title: Finite Element Method in Engineering Science; 1977.17. Zienkiewicz CO, Cheung KY. The finite element method in structural and continuum mechanics: Numerical Solution of Problems in Structural and Continuum Mechanics; 1967.18. Jin MJ. The finite element method in electromagnetics. John Wiley & Sons, New York; 1993.19. Volakis LJ, Chatterjee A, Kempel CL. Finite element methods for electromagnetics: Antennas, microwave circuits and scattering applications. A John Wiley & Sons, Inc., Publication, New York; 1998.20. Lieh J. Closed-form solutions for vehicle traction problems. Proc. Inst. Mech. Eng. Pt. D. J Automobile Eng. 2002;216(12):957-963.21. Radosavljevic A. Measurement of train traction characteristics. Proc. Inst. Mech. Eng. Pt. F. J Rail Rapid Transit. 2006;220(3):283-291.22. Seo IS, Park SC, Choi HS, Han JY, Kim HK. Reliability management and assessment for the electric traction system on the korea high-speed train. Proc. Inst. Mech. Eng. Pt. F. J Rail Rapid Transit. 2010;224(3):179-188.Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnetsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Motores eléctricosMétodo de elementos finitosElectric motorsFinite element methodHalbachOpposite polesLinear motorWavelet coefficientsPublicationTEXTA0223.pdf.txtA0223.pdf.txtExtracted texttext/plain23940https://dspace7-uao.metacatalogo.com/bitstreams/ef83edd2-77c8-4984-a1d9-6c155d416d62/downloadf1907534fee9efee4b213431350b814eMD54THUMBNAILA0223.pdf.jpgA0223.pdf.jpgGenerated Thumbnailimage/jpeg12821https://dspace7-uao.metacatalogo.com/bitstreams/b6e2312a-e739-48dc-811a-d7009266aef0/downloadc02e1648d7d9851df1bb3362854bf87bMD55ORIGINALA0223.pdfA0223.pdfapplication/pdf1776889https://dspace7-uao.metacatalogo.com/bitstreams/d2b9ea4b-7705-4757-8895-8f13c68a4589/download8917b58c497124c522a6b1be9c4033abMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/5fd2edd1-607a-4523-9051-da1c0e0272fa/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/61d47b0b-3e74-4041-ae9d-ebb77e0e7f73/download20b5ba22b1117f71589c7318baa2c560MD5310614/11629oai:dspace7-uao.metacatalogo.com:10614/116292024-01-19 15:57:18.744https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K