Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets
This article proposes a numerical model of Permanent Magnet Linear Synchronous Motors (PMLSMs) for use as a tracking mechanism for the transport system. This paper studies the behavior under operating two types of linear motors to analyze and compare the system of forces and vibration levels to dete...
- Autores:
-
González-Palomino, Gabriel
Laniado-Jacome, Edwin
Montoya Larrahondo, Jaime
García Vera, Yimy Edisson
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2014
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11629
- Acceso en línea:
- http://red.uao.edu.co//handle/10614/11629
- Palabra clave:
- Motores eléctricos
Método de elementos finitos
Electric motors
Finite element method
Halbach
Opposite poles
Linear motor
Wavelet coefficients
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_399a17cab2022f76a3ecf3ba1b864ad4 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11629 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets |
title |
Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets |
spellingShingle |
Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets Motores eléctricos Método de elementos finitos Electric motors Finite element method Halbach Opposite poles Linear motor Wavelet coefficients |
title_short |
Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets |
title_full |
Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets |
title_fullStr |
Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets |
title_full_unstemmed |
Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets |
title_sort |
Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets |
dc.creator.fl_str_mv |
González-Palomino, Gabriel Laniado-Jacome, Edwin Montoya Larrahondo, Jaime García Vera, Yimy Edisson |
dc.contributor.author.none.fl_str_mv |
González-Palomino, Gabriel Laniado-Jacome, Edwin Montoya Larrahondo, Jaime García Vera, Yimy Edisson |
dc.subject.armarc.spa.fl_str_mv |
Motores eléctricos Método de elementos finitos |
topic |
Motores eléctricos Método de elementos finitos Electric motors Finite element method Halbach Opposite poles Linear motor Wavelet coefficients |
dc.subject.armarc.eng.fl_str_mv |
Electric motors Finite element method |
dc.subject.proposal.eng.fl_str_mv |
Halbach Opposite poles Linear motor Wavelet coefficients |
description |
This article proposes a numerical model of Permanent Magnet Linear Synchronous Motors (PMLSMs) for use as a tracking mechanism for the transport system. This paper studies the behavior under operating two types of linear motors to analyze and compare the system of forces and vibration levels to determine its efficiency as a transport system. The first model of motor has configuration of opposite poles and second has Halbach type configuration, are analyzed by the finite element method with commercial software FLUX™. The data of variation of force called ripple are analyzed with techniques for vibration signals using wavelet coefficients for classification of MatLab™ software to determine the concentration of vibrational energy levels and the parameters identified for each proposed linear motor |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2019-11-29T19:19:51Z |
dc.date.available.none.fl_str_mv |
2019-11-29T19:19:51Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.eng.fl_str_mv |
González Palomino, G ; Laniado Jacome, E; Montoya Larrahondo, J ; García Vera, Y. E. Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets. British Journal of Applied Science & Technology 4(16), (2014). 2265-2276 |
dc.identifier.uri.none.fl_str_mv |
http://red.uao.edu.co//handle/10614/11629 |
identifier_str_mv |
González Palomino, G ; Laniado Jacome, E; Montoya Larrahondo, J ; García Vera, Y. E. Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets. British Journal of Applied Science & Technology 4(16), (2014). 2265-2276 |
url |
http://red.uao.edu.co//handle/10614/11629 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.eng.fl_str_mv |
British Journal of Applied Science & Technology. Volumen 4, número 16, (2014); páginas 2265-2276 |
dc.relation.citationendpage.none.fl_str_mv |
2276 |
dc.relation.citationissue.none.fl_str_mv |
16 |
dc.relation.citationstartpage.none.fl_str_mv |
2265 |
dc.relation.citationvolume.none.fl_str_mv |
4 |
dc.relation.ispartofjournal.eng.fl_str_mv |
British journal of applied science & technology |
dc.relation.references.none.fl_str_mv |
1. Jaewon L, Jung KH. Cogging force reduction in permanent magnet linear motor using phase set shift. Presented at Electrical Machines, ICEM 2008.18th International Conference on; 2008. 2. Suzuki K, Kim JY, Dohmeki H. Proposal of the section change method of the stator block of the discontinuous stator permanent magnet type linear synchronous motor aimed at long-distance transportation. Presented at Electrical Machines, ICEM 2008.18th International Conference on; 2008. 3. Yoshimura T, Kim JH, Watada M, Torii S, Ebihara D. Analysis of the reduction of detent force in a permanent magnet linear synchronous motor. Magnetics, IEEE Transactions. 1995;31(6):3728-3730. DOI: 10.1109/20.489752. 4. Lee YD, Hwang CI, Kang HG, Kim TG. 3D finite element analysis of skew and overhang effects in permanent magnet linear synchronous motor. Presented at 2006 12th Biennial IEEE Conference on Electromagnetic Field Computation; 2006. 5. Wang FC, Shen XJ, Wang LY, Wang L, Jin JM. A new method for reduction of detent force in permanent magnet flux-switching linear motors. Magnetics, IEEE Transactions. 2009;45(6):2843-2846. 6. Xiaoyuan W, Wang Y, Wang Q. Effects of different permanent magnet structures on the air gap magnetic field of linear motors. Presented at Automation Congress, WAC, World; 2008. 7. Zhao S, Tan KK. Adaptive feedforward compensation of force ripples in linear motors. Control Eng Pract. 2005;13(9):1081-1092. DOI: http://dx.doi.org/10.1016/j.conengprac.2004.11.004. 8. Braun S, Ewins D, Rao SS. Encyclopedia of vibration, volume 2, chapter computational methods: Object oriented programming in FE analysis by klapka I, cardona A, devloo P; 2001. 9. Youn WS, Lee JJ, Yoon SH, Koh SC. A new cogging-free permanent-magnet linear motor. Magnetics, IEEE Transactions. 2008;44(7):1785-1790. 10. Yousefi H, Hirvonen M, Handroos H, Soleymani A. Application of neural network in suppressing mechanical vibration of a permanent magnet linear motor. Control Eng. Pract. 2008;16(7):787-797. DOI: http://dx.doi.org/10.1016/j.conengprac.2007.08.003. 11. Burrus SC, Gopinath AR, Guo H, Odegard EJ, Selesnick WI. Introduction to Wavelets and Wavelet Transforms: A Primer 1998;23. 12. Rubini R, Meneghetti U. Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mechanical Systems and Signal Processing. 2001;15(2):287-302. DOI: http://dx.doi.org/10.1006/mssp.2000.1330. 13. Boyes DJ. Reciprocating Machinery Analysis with an FFT Analyser; 1975. 14. Cizek V. Methods of Computation of Discrete Fourier Transforms In: Anonymous Disctrete Fourier Transforms and their Applications. 1985;98-120. 15. Fu S, Muralikrishnan B, Raja J. Engineering surface analysis with different wavelet bases. Journal of Manufacturing Science and Engineering. 2003;125(4):844-852. 16. Zienkiewicz CO. Finite Element Method. 1967 Published Under Title: Finite Element Method in Structural and Continuum Mechanics; 1971 Published Under Title: Finite Element Method in Engineering Science; 1977. 17. Zienkiewicz CO, Cheung KY. The finite element method in structural and continuum mechanics: Numerical Solution of Problems in Structural and Continuum Mechanics; 1967. 18. Jin MJ. The finite element method in electromagnetics. John Wiley & Sons, New York; 1993. 19. Volakis LJ, Chatterjee A, Kempel CL. Finite element methods for electromagnetics: Antennas, microwave circuits and scattering applications. A John Wiley & Sons, Inc., Publication, New York; 1998. 20. Lieh J. Closed-form solutions for vehicle traction problems. Proc. Inst. Mech. Eng. Pt. D. J Automobile Eng. 2002;216(12):957-963. 21. Radosavljevic A. Measurement of train traction characteristics. Proc. Inst. Mech. Eng. Pt. F. J Rail Rapid Transit. 2006;220(3):283-291. 22. Seo IS, Park SC, Choi HS, Han JY, Kim HK. Reliability management and assessment for the electric traction system on the korea high-speed train. Proc. Inst. Mech. Eng. Pt. F. J Rail Rapid Transit. 2010;224(3):179-188. |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Sciencedomain international |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/ef83edd2-77c8-4984-a1d9-6c155d416d62/download https://dspace7-uao.metacatalogo.com/bitstreams/b6e2312a-e739-48dc-811a-d7009266aef0/download https://dspace7-uao.metacatalogo.com/bitstreams/d2b9ea4b-7705-4757-8895-8f13c68a4589/download https://dspace7-uao.metacatalogo.com/bitstreams/5fd2edd1-607a-4523-9051-da1c0e0272fa/download https://dspace7-uao.metacatalogo.com/bitstreams/61d47b0b-3e74-4041-ae9d-ebb77e0e7f73/download |
bitstream.checksum.fl_str_mv |
f1907534fee9efee4b213431350b814e c02e1648d7d9851df1bb3362854bf87b 8917b58c497124c522a6b1be9c4033ab 4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259859047055360 |
spelling |
González-Palomino, Gabriel538d3ef20c5b0ee10b3dcc58f105b307Laniado-Jacome, Edwinca6fa80936c9e76908129de5e6a40475Montoya Larrahondo, Jaimed937179fb11897b222cd0c0a31e3ffb2García Vera, Yimy Edisson4652780e4497ca3e606bbd96297605e5Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-29T19:19:51Z2019-11-29T19:19:51Z2014González Palomino, G ; Laniado Jacome, E; Montoya Larrahondo, J ; García Vera, Y. E. Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnets. British Journal of Applied Science & Technology 4(16), (2014). 2265-2276http://red.uao.edu.co//handle/10614/11629This article proposes a numerical model of Permanent Magnet Linear Synchronous Motors (PMLSMs) for use as a tracking mechanism for the transport system. This paper studies the behavior under operating two types of linear motors to analyze and compare the system of forces and vibration levels to determine its efficiency as a transport system. The first model of motor has configuration of opposite poles and second has Halbach type configuration, are analyzed by the finite element method with commercial software FLUX™. The data of variation of force called ripple are analyzed with techniques for vibration signals using wavelet coefficients for classification of MatLab™ software to determine the concentration of vibrational energy levels and the parameters identified for each proposed linear motorapplication/pdf11 páginasengSciencedomain internationalBritish Journal of Applied Science & Technology. Volumen 4, número 16, (2014); páginas 2265-227622761622654British journal of applied science & technology1. Jaewon L, Jung KH. Cogging force reduction in permanent magnet linear motor using phase set shift. Presented at Electrical Machines, ICEM 2008.18th International Conference on; 2008.2. Suzuki K, Kim JY, Dohmeki H. Proposal of the section change method of the stator block of the discontinuous stator permanent magnet type linear synchronous motor aimed at long-distance transportation. Presented at Electrical Machines, ICEM 2008.18th International Conference on; 2008.3. Yoshimura T, Kim JH, Watada M, Torii S, Ebihara D. Analysis of the reduction of detent force in a permanent magnet linear synchronous motor. Magnetics, IEEE Transactions. 1995;31(6):3728-3730. DOI: 10.1109/20.489752.4. Lee YD, Hwang CI, Kang HG, Kim TG. 3D finite element analysis of skew and overhang effects in permanent magnet linear synchronous motor. Presented at 2006 12th Biennial IEEE Conference on Electromagnetic Field Computation; 2006.5. Wang FC, Shen XJ, Wang LY, Wang L, Jin JM. A new method for reduction of detent force in permanent magnet flux-switching linear motors. Magnetics, IEEE Transactions. 2009;45(6):2843-2846.6. Xiaoyuan W, Wang Y, Wang Q. Effects of different permanent magnet structures on the air gap magnetic field of linear motors. Presented at Automation Congress, WAC, World; 2008.7. Zhao S, Tan KK. Adaptive feedforward compensation of force ripples in linear motors. Control Eng Pract. 2005;13(9):1081-1092. DOI: http://dx.doi.org/10.1016/j.conengprac.2004.11.004.8. Braun S, Ewins D, Rao SS. Encyclopedia of vibration, volume 2, chapter computational methods: Object oriented programming in FE analysis by klapka I, cardona A, devloo P; 2001.9. Youn WS, Lee JJ, Yoon SH, Koh SC. A new cogging-free permanent-magnet linear motor. Magnetics, IEEE Transactions. 2008;44(7):1785-1790.10. Yousefi H, Hirvonen M, Handroos H, Soleymani A. Application of neural network in suppressing mechanical vibration of a permanent magnet linear motor. Control Eng. Pract. 2008;16(7):787-797. DOI: http://dx.doi.org/10.1016/j.conengprac.2007.08.003.11. Burrus SC, Gopinath AR, Guo H, Odegard EJ, Selesnick WI. Introduction to Wavelets and Wavelet Transforms: A Primer 1998;23.12. Rubini R, Meneghetti U. Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mechanical Systems and Signal Processing. 2001;15(2):287-302. DOI: http://dx.doi.org/10.1006/mssp.2000.1330.13. Boyes DJ. Reciprocating Machinery Analysis with an FFT Analyser; 1975.14. Cizek V. Methods of Computation of Discrete Fourier Transforms In: Anonymous Disctrete Fourier Transforms and their Applications. 1985;98-120.15. Fu S, Muralikrishnan B, Raja J. Engineering surface analysis with different wavelet bases. Journal of Manufacturing Science and Engineering. 2003;125(4):844-852.16. Zienkiewicz CO. Finite Element Method. 1967 Published Under Title: Finite Element Method in Structural and Continuum Mechanics; 1971 Published Under Title: Finite Element Method in Engineering Science; 1977.17. Zienkiewicz CO, Cheung KY. The finite element method in structural and continuum mechanics: Numerical Solution of Problems in Structural and Continuum Mechanics; 1967.18. Jin MJ. The finite element method in electromagnetics. John Wiley & Sons, New York; 1993.19. Volakis LJ, Chatterjee A, Kempel CL. Finite element methods for electromagnetics: Antennas, microwave circuits and scattering applications. A John Wiley & Sons, Inc., Publication, New York; 1998.20. Lieh J. Closed-form solutions for vehicle traction problems. Proc. Inst. Mech. Eng. Pt. D. J Automobile Eng. 2002;216(12):957-963.21. Radosavljevic A. Measurement of train traction characteristics. Proc. Inst. Mech. Eng. Pt. F. J Rail Rapid Transit. 2006;220(3):283-291.22. Seo IS, Park SC, Choi HS, Han JY, Kim HK. Reliability management and assessment for the electric traction system on the korea high-speed train. Proc. Inst. Mech. Eng. Pt. F. J Rail Rapid Transit. 2010;224(3):179-188.Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Adaptive method of comparison to identify for force ripples in wavelet coefficients of two types linear motors with permanent magnetsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Motores eléctricosMétodo de elementos finitosElectric motorsFinite element methodHalbachOpposite polesLinear motorWavelet coefficientsPublicationTEXTA0223.pdf.txtA0223.pdf.txtExtracted texttext/plain23940https://dspace7-uao.metacatalogo.com/bitstreams/ef83edd2-77c8-4984-a1d9-6c155d416d62/downloadf1907534fee9efee4b213431350b814eMD54THUMBNAILA0223.pdf.jpgA0223.pdf.jpgGenerated Thumbnailimage/jpeg12821https://dspace7-uao.metacatalogo.com/bitstreams/b6e2312a-e739-48dc-811a-d7009266aef0/downloadc02e1648d7d9851df1bb3362854bf87bMD55ORIGINALA0223.pdfA0223.pdfapplication/pdf1776889https://dspace7-uao.metacatalogo.com/bitstreams/d2b9ea4b-7705-4757-8895-8f13c68a4589/download8917b58c497124c522a6b1be9c4033abMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/5fd2edd1-607a-4523-9051-da1c0e0272fa/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/61d47b0b-3e74-4041-ae9d-ebb77e0e7f73/download20b5ba22b1117f71589c7318baa2c560MD5310614/11629oai:dspace7-uao.metacatalogo.com:10614/116292024-01-19 15:57:18.744https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |