Shear-wave corner retroreflector device for ultrasonic measurement of viscosity
This work shows a novel ultrasonic viscosity measurement device with increased sensitivity. The measuring principle is based on the determination of the complex reflection coefficient of shear-waves at the solid–liquid interface. But the proposed approach is the replacement of the flat surface at th...
- Autores:
-
Barrera Cárdenas, Helver Mauricio
Formigoni, Paulo O.
Buiochi, Flávio
Franco Guzmán, Ediguer Enrique
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13864
- Acceso en línea:
- https://hdl.handle.net/10614/13864
https://red.uao.edu.co/
- Palabra clave:
- Viscosidad
Física
Shear waves
Viscosity
Acoustic retroreflector
Reflection coefficient
- Rights
- openAccess
- License
- Derechos reservados - Elsevier, 2021
id |
REPOUAO2_387bac7db7a008bdea76b8e040605fc4 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13864 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Shear-wave corner retroreflector device for ultrasonic measurement of viscosity |
title |
Shear-wave corner retroreflector device for ultrasonic measurement of viscosity |
spellingShingle |
Shear-wave corner retroreflector device for ultrasonic measurement of viscosity Viscosidad Física Shear waves Viscosity Acoustic retroreflector Reflection coefficient |
title_short |
Shear-wave corner retroreflector device for ultrasonic measurement of viscosity |
title_full |
Shear-wave corner retroreflector device for ultrasonic measurement of viscosity |
title_fullStr |
Shear-wave corner retroreflector device for ultrasonic measurement of viscosity |
title_full_unstemmed |
Shear-wave corner retroreflector device for ultrasonic measurement of viscosity |
title_sort |
Shear-wave corner retroreflector device for ultrasonic measurement of viscosity |
dc.creator.fl_str_mv |
Barrera Cárdenas, Helver Mauricio Formigoni, Paulo O. Buiochi, Flávio Franco Guzmán, Ediguer Enrique |
dc.contributor.author.none.fl_str_mv |
Barrera Cárdenas, Helver Mauricio Formigoni, Paulo O. Buiochi, Flávio Franco Guzmán, Ediguer Enrique |
dc.subject.armarc.spa.fl_str_mv |
Viscosidad Física |
topic |
Viscosidad Física Shear waves Viscosity Acoustic retroreflector Reflection coefficient |
dc.subject.proposal.eng.fl_str_mv |
Shear waves Viscosity Acoustic retroreflector Reflection coefficient |
description |
This work shows a novel ultrasonic viscosity measurement device with increased sensitivity. The measuring principle is based on the determination of the complex reflection coefficient of shear-waves at the solid–liquid interface. But the proposed approach is the replacement of the flat surface at the measurement interface with a grooved surface, which works in a similar way to an optical retroreflector. The complete reflection of the waves involves a double reflection with oblique incidence, where both phenomena increase sensitivity, in comparison with a plane surface. It is shown that a set of orthogonal flat interfaces reflects a well-defined ultrasonic pulse. The sensitivity is enough to measure the change in the magnitude and phase of the reflection coefficient even for the small portion of the energy transmitted to water. A model for calculating the viscosity and a calibration approach for the measurement were proposed. Results with samples of corn syrup–water mixture are reported |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-05-12T15:55:10Z |
dc.date.available.none.fl_str_mv |
2022-05-12T15:55:10Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0041-624X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13864 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
0041-624X Universidad Autónoma de Occidente Repositorio Educativo Digital |
url |
https://hdl.handle.net/10614/13864 https://red.uao.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
6 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
117 |
dc.relation.cites.spa.fl_str_mv |
Franco, E. E., Barrera, H.M., Formigoni, P. O., Buiochi, F. (2021). Shear-wave cornerretroreflector device for ultrasonic measurement of viscosity. Ultrasonics. Revista Elsevier. Vol. 117, pp.1-6. https://www.sciencedirect.com/science/article/pii/S0041624X21001669 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Ultrasonics |
dc.relation.references.none.fl_str_mv |
[1] W.P. Mason, W.O. Baker, H.J. Mcskimin, J.H. Heiss, Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies, Phys. Rev. 75 (1949) 936–946, http://dx.doi.org/10.1103/PhysRev.75.936, URL https://link.aps.org/ doi/10.1103/PhysRev.75.936. [2] E.E. Franco, J.C. Adamowski, R.T. Higuti, F. Buiochi, Viscosity measurement of Newtonian liquids using the complex reflection coefficient, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 (10) (2008) 2247–2253, http://dx.doi.org/10.1109/ TUFFC.923. [3] M.S. Greenwood, J.A. Bamberger, Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control, Ultrasonics 39 (9) (2002) 623–630, http://dx.doi.org/10.1016/S0041-624X(02)00372-4, URL http: //www.sciencedirect.com/science/article/pii/S0041624X02003724. [4] E.E. Franco, J.C. Adamowski, F. Buiochi, Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 (5) (2010) 1133–1139, http: //dx.doi.org/10.1109/TUFFC.2010.1524. [5] E.E. Franco, F. Buiochi, Ultrasonic measurement of viscosity: Signal processing methodologies, Ultrasonics 91 (2019) 213–219, http://dx.doi.org/10. 1016/j.ultras.2018.08.006, URL http://www.sciencedirect.com/science/article/ pii/S0041624X17308016. [6] I. Alig, D. Lellinger, J. Sulimma, S. Tadjbakhsch, Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films, Rev. Sci. Instrum. 68 (3) (1997) 1536–1542, http://dx.doi.org/10.1063/1.1147643. [7] P. Longin, C. Verdier, M. Piau, Dynamic shear rheology of high molecular weight polydimethylsiloxanes: comparison of rheometry and ultrasound, J. Non-Newton. Fluid Mech. 76 (1) (1998) 213–232, http://dx.doi.org/ 10.1016/S0377-0257(97)00119-5, URL http://www.sciencedirect.com/science/ article/pii/S0377025797001195. [8] S. Dixon, B. Lanyon, Phase change measurement of ultrasonic shear waves on reflection from a curing epoxy system, J. Phys. D: Appl. Phys. 38 (22) (2005) 4115–4125, http://dx.doi.org/10.1088/0022-3727/38/22/016. [9] K. Mukai, N. Makino, H. Usui, T. Amari, Measurement of rheological properties for smectic-A liquid crystal by using ultrasonic rheometer and rotational viscometer, Prog. Org. Coat. 31 (1) (1997) 179–184, http://dx.doi.org/ 10.1016/S0300-9440(97)00034-9, URL http://www.sciencedirect.com/science/ article/pii/S0300944097000349. [10] V.V. Shah, K. Balasubramaniam, Measuring Newtonian viscosity from the phase of reflected ultrasonic shear wave, Ultrasonics 38 (9) (2000) 921–927, http: //dx.doi.org/10.1016/S0041-624X(00)00033-0, URL http://www.sciencedirect. com/science/article/pii/S0041624X00000330. [11] R. Kazys, A. Voleisis, R. Sliteris, Investigation of the acoustic properties of viscosity standards, Arch. Acoust. 41 (1) (2016) 55–58, http://dx.doi.org/10. 1515/aoa-2016-0005. [12] A. Kulmyrzaev, D.J. McClements, High frequency dynamic shear rheology of honey, J. Food Eng. 45 (4) (2000) 219–224, http://dx.doi.org/ 10.1016/S0260-8774(00)00062-5, URL http://www.sciencedirect.com/science/ article/pii/S0260877400000625. [13] R. Saggin, J.N. Coupland, Rheology of xanthan/sucrose mixtures at ultrasonic frequencies, J. Food Eng. 65 (1) (2004) 49–53, http://dx.doi.org/10.1016/ j.jfoodeng.2003.12.002, URL http://www.sciencedirect.com/science/article/pii/ S0260877403004874. [14] H. Runrun, M. Runyang, W. Chenghui, H. Jing, Ultrasonic shear-wave reflectometry applied to monitor the dynamic viscosity of reheated edible oil, J. Food Process Eng. 43 (6) (2020) e13402, http://dx.doi.org/10.1111/jfpe.13402, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/jfpe.13402, URL https:// onlinelibrary.wiley.com/doi/abs/10.1111/jfpe.13402. [15] Z. Sun, T. Voigt, S.P. Shah, Rheometric and ultrasonic investigations of viscoelastic properties of fresh portland cement pastes, Cem. Concr. Res. 36 (2) (2006) 278–287, http://dx.doi.org/10.1016/j.cemconres.2005.08.007, URL http: //www.sciencedirect.com/science/article/pii/S000888460500195X. [16] X. Wang, K.V. Subramaniam, F. Lin, Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste, Ultrasonics 50 (7) (2010) 726–738, http://dx.doi.org/10.1016/j.ultras.2010.02.010, URL http:// www.sciencedirect.com/science/article/pii/S0041624X10000430. [17] O. Manfredi, R. Mills, M. Schirru, R. Dwyer-Joyce, Non-invasive measurement of lubricating oil viscosity using an ultrasonic continuously repeated chirp shear wave, Ultrasonics 94 (2019) 332–339, http://dx.doi.org/10. 1016/j.ultras.2018.08.002, URL http://www.sciencedirect.com/science/article/ pii/S0041624X18302877. [18] F. Buiochi, E.E. Franco, R.T. Higuti, J.C. Adamowski, Viscosity measuring cell using ultrasonic wave mode conversion, Ferroelectrics 333 (1) (2006) 139– 149, http://dx.doi.org/10.1080/00150190600700626, https://doi.org/10.1080/ 00150190600700626. [19] F. Cohen-Tenoudji, W.J. Pardee, B.R. Tittmann, L.A. Ahlberg, R.K. Elsley, A shear wave rheology sensor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 (2) (1987) 263–269, http://dx.doi.org/10.1109/T-UFFC.1987.26941. [20] M.S. Greenwood, J.D. Adamson, L.J. Bond, Measurement of the viscosity-density product using a quartz wedge, AIP Conf. Proc. 760 (1) (2005) 1690–1697, http://dx.doi.org/10.1063/1.1916874, URL https://aip.scitation.org/doi/abs/10. 1063/1.1916874. [21] M. Schirru, X. Li, M. Cadeddu, R. Dwyer-Joyce, Development of a shear ultrasonic spectroscopy technique for the evaluation of viscoelastic fluid properties: Theory and experimental validation, Ultrasonics 94 (2019) 364–375, http://dx. doi.org/10.1016/j.ultras.2018.07.002. [22] M. Schirru, R. Dwyer-Joyce, L. Vergoz, A new ultrasonic rheometer for space exploration in lander missions, Rheol. Acta 58 (1–2) (2019) 47–61, http://dx. doi.org/10.1007/s00397-019-01127-1. [23] Z. Li, D.-Q. Yang, S.-L. Liu, S.-Y. Yu, M.-H. Lu, J. Zhu, S.-T. Zhang, M.-W. Zhu, X.-S. Guo, H.-D. Wu, X.-L. Wang, Y.-F. Chen, Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers, Sci. Rep. 7 (1) (2017) 42863, http://dx.doi.org/10.1038/srep42863. [24] G. Harrison, A.J. Barlow, 3. Dynamic viscosity measurement, in: P.D. Edmonds (Ed.), Ultrasonics, in: Methods in Experimental Physics, vol. 19, Academic Press, 1981, pp. 137–178, http://dx.doi.org/10.1016/S0076-695X(08)60334-8, URL http://www.sciencedirect.com/science/article/pii/S0076695X08603348. [25] H.T. O’neil, Reflection and refraction of plane shear waves in viscoelastic media, Phys. Rev. 75 (1949) 928–935, http://dx.doi.org/10.1103/PhysRev.75.928, URL https://link.aps.org/doi/10.1103/PhysRev.75.928. [26] R. Whorlow, Rheological Techniques, in: Ellis Horwood series in physics and its applications, Ellis Horwood, 1992 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Elsevier, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Elsevier, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
6 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Revista Ultrasonics |
dc.source.eng.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0041624X21001669 |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/6f83c16e-4303-4779-9f99-268d7ec438f0/download https://red.uao.edu.co/bitstreams/8a424f1b-ee5b-4a57-900b-dcf22566411c/download https://red.uao.edu.co/bitstreams/4c5499d0-f53d-42dd-93cb-cb19265bb6ad/download https://red.uao.edu.co/bitstreams/d728f151-b62b-48df-8d4a-a25c0c3b917f/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 fbaf07849382fb88fbd2353031e12716 9b2e3994fc398da35df9eff91592847b e490bd6b2e032bf692e835b28a313560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260044308414464 |
spelling |
Barrera Cárdenas, Helver Mauriciovirtual::1051-1Formigoni, Paulo O.027bf49fe9351da49e16d7059555022bBuiochi, Fláviob1bdb982d63e34285277106ac50141c5Franco Guzmán, Ediguer Enriquevirtual::1052-12022-05-12T15:55:10Z2022-05-12T15:55:10Z20210041-624Xhttps://hdl.handle.net/10614/13864Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/This work shows a novel ultrasonic viscosity measurement device with increased sensitivity. The measuring principle is based on the determination of the complex reflection coefficient of shear-waves at the solid–liquid interface. But the proposed approach is the replacement of the flat surface at the measurement interface with a grooved surface, which works in a similar way to an optical retroreflector. The complete reflection of the waves involves a double reflection with oblique incidence, where both phenomena increase sensitivity, in comparison with a plane surface. It is shown that a set of orthogonal flat interfaces reflects a well-defined ultrasonic pulse. The sensitivity is enough to measure the change in the magnitude and phase of the reflection coefficient even for the small portion of the energy transmitted to water. A model for calculating the viscosity and a calibration approach for the measurement were proposed. Results with samples of corn syrup–water mixture are reported6 páginasapplication/pdfengRevista UltrasonicsDerechos reservados - Elsevier, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S0041624X21001669Shear-wave corner retroreflector device for ultrasonic measurement of viscosityArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85ViscosidadFísicaShear wavesViscosityAcoustic retroreflectorReflection coefficient61117Franco, E. E., Barrera, H.M., Formigoni, P. O., Buiochi, F. (2021). Shear-wave cornerretroreflector device for ultrasonic measurement of viscosity. Ultrasonics. Revista Elsevier. Vol. 117, pp.1-6. https://www.sciencedirect.com/science/article/pii/S0041624X21001669Ultrasonics[1] W.P. Mason, W.O. Baker, H.J. Mcskimin, J.H. Heiss, Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies, Phys. Rev. 75 (1949) 936–946, http://dx.doi.org/10.1103/PhysRev.75.936, URL https://link.aps.org/ doi/10.1103/PhysRev.75.936. [2] E.E. Franco, J.C. Adamowski, R.T. Higuti, F. Buiochi, Viscosity measurement of Newtonian liquids using the complex reflection coefficient, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 (10) (2008) 2247–2253, http://dx.doi.org/10.1109/ TUFFC.923. [3] M.S. Greenwood, J.A. Bamberger, Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control, Ultrasonics 39 (9) (2002) 623–630, http://dx.doi.org/10.1016/S0041-624X(02)00372-4, URL http: //www.sciencedirect.com/science/article/pii/S0041624X02003724. [4] E.E. Franco, J.C. Adamowski, F. Buiochi, Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 (5) (2010) 1133–1139, http: //dx.doi.org/10.1109/TUFFC.2010.1524. [5] E.E. Franco, F. Buiochi, Ultrasonic measurement of viscosity: Signal processing methodologies, Ultrasonics 91 (2019) 213–219, http://dx.doi.org/10. 1016/j.ultras.2018.08.006, URL http://www.sciencedirect.com/science/article/ pii/S0041624X17308016. [6] I. Alig, D. Lellinger, J. Sulimma, S. Tadjbakhsch, Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films, Rev. Sci. Instrum. 68 (3) (1997) 1536–1542, http://dx.doi.org/10.1063/1.1147643. [7] P. Longin, C. Verdier, M. Piau, Dynamic shear rheology of high molecular weight polydimethylsiloxanes: comparison of rheometry and ultrasound, J. Non-Newton. Fluid Mech. 76 (1) (1998) 213–232, http://dx.doi.org/ 10.1016/S0377-0257(97)00119-5, URL http://www.sciencedirect.com/science/ article/pii/S0377025797001195. [8] S. Dixon, B. Lanyon, Phase change measurement of ultrasonic shear waves on reflection from a curing epoxy system, J. Phys. D: Appl. Phys. 38 (22) (2005) 4115–4125, http://dx.doi.org/10.1088/0022-3727/38/22/016. [9] K. Mukai, N. Makino, H. Usui, T. Amari, Measurement of rheological properties for smectic-A liquid crystal by using ultrasonic rheometer and rotational viscometer, Prog. Org. Coat. 31 (1) (1997) 179–184, http://dx.doi.org/ 10.1016/S0300-9440(97)00034-9, URL http://www.sciencedirect.com/science/ article/pii/S0300944097000349. [10] V.V. Shah, K. Balasubramaniam, Measuring Newtonian viscosity from the phase of reflected ultrasonic shear wave, Ultrasonics 38 (9) (2000) 921–927, http: //dx.doi.org/10.1016/S0041-624X(00)00033-0, URL http://www.sciencedirect. com/science/article/pii/S0041624X00000330. [11] R. Kazys, A. Voleisis, R. Sliteris, Investigation of the acoustic properties of viscosity standards, Arch. Acoust. 41 (1) (2016) 55–58, http://dx.doi.org/10. 1515/aoa-2016-0005. [12] A. Kulmyrzaev, D.J. McClements, High frequency dynamic shear rheology of honey, J. Food Eng. 45 (4) (2000) 219–224, http://dx.doi.org/ 10.1016/S0260-8774(00)00062-5, URL http://www.sciencedirect.com/science/ article/pii/S0260877400000625. [13] R. Saggin, J.N. Coupland, Rheology of xanthan/sucrose mixtures at ultrasonic frequencies, J. Food Eng. 65 (1) (2004) 49–53, http://dx.doi.org/10.1016/ j.jfoodeng.2003.12.002, URL http://www.sciencedirect.com/science/article/pii/ S0260877403004874. [14] H. Runrun, M. Runyang, W. Chenghui, H. Jing, Ultrasonic shear-wave reflectometry applied to monitor the dynamic viscosity of reheated edible oil, J. Food Process Eng. 43 (6) (2020) e13402, http://dx.doi.org/10.1111/jfpe.13402, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/jfpe.13402, URL https:// onlinelibrary.wiley.com/doi/abs/10.1111/jfpe.13402. [15] Z. Sun, T. Voigt, S.P. Shah, Rheometric and ultrasonic investigations of viscoelastic properties of fresh portland cement pastes, Cem. Concr. Res. 36 (2) (2006) 278–287, http://dx.doi.org/10.1016/j.cemconres.2005.08.007, URL http: //www.sciencedirect.com/science/article/pii/S000888460500195X. [16] X. Wang, K.V. Subramaniam, F. Lin, Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste, Ultrasonics 50 (7) (2010) 726–738, http://dx.doi.org/10.1016/j.ultras.2010.02.010, URL http:// www.sciencedirect.com/science/article/pii/S0041624X10000430. [17] O. Manfredi, R. Mills, M. Schirru, R. Dwyer-Joyce, Non-invasive measurement of lubricating oil viscosity using an ultrasonic continuously repeated chirp shear wave, Ultrasonics 94 (2019) 332–339, http://dx.doi.org/10. 1016/j.ultras.2018.08.002, URL http://www.sciencedirect.com/science/article/ pii/S0041624X18302877. [18] F. Buiochi, E.E. Franco, R.T. Higuti, J.C. Adamowski, Viscosity measuring cell using ultrasonic wave mode conversion, Ferroelectrics 333 (1) (2006) 139– 149, http://dx.doi.org/10.1080/00150190600700626, https://doi.org/10.1080/ 00150190600700626. [19] F. Cohen-Tenoudji, W.J. Pardee, B.R. Tittmann, L.A. Ahlberg, R.K. Elsley, A shear wave rheology sensor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 (2) (1987) 263–269, http://dx.doi.org/10.1109/T-UFFC.1987.26941. [20] M.S. Greenwood, J.D. Adamson, L.J. Bond, Measurement of the viscosity-density product using a quartz wedge, AIP Conf. Proc. 760 (1) (2005) 1690–1697, http://dx.doi.org/10.1063/1.1916874, URL https://aip.scitation.org/doi/abs/10. 1063/1.1916874. [21] M. Schirru, X. Li, M. Cadeddu, R. Dwyer-Joyce, Development of a shear ultrasonic spectroscopy technique for the evaluation of viscoelastic fluid properties: Theory and experimental validation, Ultrasonics 94 (2019) 364–375, http://dx. doi.org/10.1016/j.ultras.2018.07.002. [22] M. Schirru, R. Dwyer-Joyce, L. Vergoz, A new ultrasonic rheometer for space exploration in lander missions, Rheol. Acta 58 (1–2) (2019) 47–61, http://dx. doi.org/10.1007/s00397-019-01127-1. [23] Z. Li, D.-Q. Yang, S.-L. Liu, S.-Y. Yu, M.-H. Lu, J. Zhu, S.-T. Zhang, M.-W. Zhu, X.-S. Guo, H.-D. Wu, X.-L. Wang, Y.-F. Chen, Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers, Sci. Rep. 7 (1) (2017) 42863, http://dx.doi.org/10.1038/srep42863. [24] G. Harrison, A.J. Barlow, 3. Dynamic viscosity measurement, in: P.D. Edmonds (Ed.), Ultrasonics, in: Methods in Experimental Physics, vol. 19, Academic Press, 1981, pp. 137–178, http://dx.doi.org/10.1016/S0076-695X(08)60334-8, URL http://www.sciencedirect.com/science/article/pii/S0076695X08603348. [25] H.T. O’neil, Reflection and refraction of plane shear waves in viscoelastic media, Phys. Rev. 75 (1949) 928–935, http://dx.doi.org/10.1103/PhysRev.75.928, URL https://link.aps.org/doi/10.1103/PhysRev.75.928. [26] R. Whorlow, Rheological Techniques, in: Ellis Horwood series in physics and its applications, Ellis Horwood, 1992Comunidad universitaria en generalPublicationf608b27f-3b11-4041-b07e-40e9f8a7d0cdvirtual::1051-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1052-1f608b27f-3b11-4041-b07e-40e9f8a7d0cdvirtual::1051-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1052-1https://scholar.google.com/citations?hl=de&view_op=list_works&gmla=AP6z3OYgyKNV4SXIsrFCLfeZy4UIrIrbyXxywRNV-C1ZKnpTkio8g9aklz0hJAg7XS_UPdAknPgql5zu89xaKLcx9QI3sN69O6biQQvlg3a_jR_o01ufqXtkz9H6gA&user=u7z3_5IAAAAJvirtual::1051-1https://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::1052-10000-0002-6968-1508virtual::1051-10000-0001-7518-704Xvirtual::1052-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001391726virtual::1051-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::1052-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/6f83c16e-4303-4779-9f99-268d7ec438f0/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALShear-wave corner retroreflector device for ultrasonic measurement of viscosity.pdfShear-wave corner retroreflector device for ultrasonic measurement of viscosity.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf888143https://red.uao.edu.co/bitstreams/8a424f1b-ee5b-4a57-900b-dcf22566411c/downloadfbaf07849382fb88fbd2353031e12716MD53TEXTShear-wave corner retroreflector device for ultrasonic measurement of viscosity.pdf.txtShear-wave corner retroreflector device for ultrasonic measurement of viscosity.pdf.txtExtracted texttext/plain33087https://red.uao.edu.co/bitstreams/4c5499d0-f53d-42dd-93cb-cb19265bb6ad/download9b2e3994fc398da35df9eff91592847bMD54THUMBNAILShear-wave corner retroreflector device for ultrasonic measurement of viscosity.pdf.jpgShear-wave corner retroreflector device for ultrasonic measurement of viscosity.pdf.jpgGenerated Thumbnailimage/jpeg15273https://red.uao.edu.co/bitstreams/d728f151-b62b-48df-8d4a-a25c0c3b917f/downloade490bd6b2e032bf692e835b28a313560MD5510614/13864oai:red.uao.edu.co:10614/138642024-03-01 09:48:22.266https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2021restrictedhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |