Shear-wave corner retroreflector device for ultrasonic measurement of viscosity

This work shows a novel ultrasonic viscosity measurement device with increased sensitivity. The measuring principle is based on the determination of the complex reflection coefficient of shear-waves at the solid–liquid interface. But the proposed approach is the replacement of the flat surface at th...

Full description

Autores:
Barrera Cárdenas, Helver Mauricio
Formigoni, Paulo O.
Buiochi, Flávio
Franco Guzmán, Ediguer Enrique
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13864
Acceso en línea:
https://hdl.handle.net/10614/13864
https://red.uao.edu.co/
Palabra clave:
Viscosidad
Física
Shear waves
Viscosity
Acoustic retroreflector
Reflection coefficient
Rights
openAccess
License
Derechos reservados - Elsevier, 2021
id REPOUAO2_387bac7db7a008bdea76b8e040605fc4
oai_identifier_str oai:red.uao.edu.co:10614/13864
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Shear-wave corner retroreflector device for ultrasonic measurement of viscosity
title Shear-wave corner retroreflector device for ultrasonic measurement of viscosity
spellingShingle Shear-wave corner retroreflector device for ultrasonic measurement of viscosity
Viscosidad
Física
Shear waves
Viscosity
Acoustic retroreflector
Reflection coefficient
title_short Shear-wave corner retroreflector device for ultrasonic measurement of viscosity
title_full Shear-wave corner retroreflector device for ultrasonic measurement of viscosity
title_fullStr Shear-wave corner retroreflector device for ultrasonic measurement of viscosity
title_full_unstemmed Shear-wave corner retroreflector device for ultrasonic measurement of viscosity
title_sort Shear-wave corner retroreflector device for ultrasonic measurement of viscosity
dc.creator.fl_str_mv Barrera Cárdenas, Helver Mauricio
Formigoni, Paulo O.
Buiochi, Flávio
Franco Guzmán, Ediguer Enrique
dc.contributor.author.none.fl_str_mv Barrera Cárdenas, Helver Mauricio
Formigoni, Paulo O.
Buiochi, Flávio
Franco Guzmán, Ediguer Enrique
dc.subject.armarc.spa.fl_str_mv Viscosidad
Física
topic Viscosidad
Física
Shear waves
Viscosity
Acoustic retroreflector
Reflection coefficient
dc.subject.proposal.eng.fl_str_mv Shear waves
Viscosity
Acoustic retroreflector
Reflection coefficient
description This work shows a novel ultrasonic viscosity measurement device with increased sensitivity. The measuring principle is based on the determination of the complex reflection coefficient of shear-waves at the solid–liquid interface. But the proposed approach is the replacement of the flat surface at the measurement interface with a grooved surface, which works in a similar way to an optical retroreflector. The complete reflection of the waves involves a double reflection with oblique incidence, where both phenomena increase sensitivity, in comparison with a plane surface. It is shown that a set of orthogonal flat interfaces reflects a well-defined ultrasonic pulse. The sensitivity is enough to measure the change in the magnitude and phase of the reflection coefficient even for the small portion of the energy transmitted to water. A model for calculating the viscosity and a calibration approach for the measurement were proposed. Results with samples of corn syrup–water mixture are reported
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-05-12T15:55:10Z
dc.date.available.none.fl_str_mv 2022-05-12T15:55:10Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0041-624X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13864
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 0041-624X
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/13864
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 6
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 117
dc.relation.cites.spa.fl_str_mv Franco, E. E., Barrera, H.M., Formigoni, P. O., Buiochi, F. (2021). Shear-wave cornerretroreflector device for ultrasonic measurement of viscosity. Ultrasonics. Revista Elsevier. Vol. 117, pp.1-6. https://www.sciencedirect.com/science/article/pii/S0041624X21001669
dc.relation.ispartofjournal.eng.fl_str_mv Ultrasonics
dc.relation.references.none.fl_str_mv [1] W.P. Mason, W.O. Baker, H.J. Mcskimin, J.H. Heiss, Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies, Phys. Rev. 75 (1949) 936–946, http://dx.doi.org/10.1103/PhysRev.75.936, URL https://link.aps.org/ doi/10.1103/PhysRev.75.936. [2] E.E. Franco, J.C. Adamowski, R.T. Higuti, F. Buiochi, Viscosity measurement of Newtonian liquids using the complex reflection coefficient, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 (10) (2008) 2247–2253, http://dx.doi.org/10.1109/ TUFFC.923. [3] M.S. Greenwood, J.A. Bamberger, Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control, Ultrasonics 39 (9) (2002) 623–630, http://dx.doi.org/10.1016/S0041-624X(02)00372-4, URL http: //www.sciencedirect.com/science/article/pii/S0041624X02003724. [4] E.E. Franco, J.C. Adamowski, F. Buiochi, Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 (5) (2010) 1133–1139, http: //dx.doi.org/10.1109/TUFFC.2010.1524. [5] E.E. Franco, F. Buiochi, Ultrasonic measurement of viscosity: Signal processing methodologies, Ultrasonics 91 (2019) 213–219, http://dx.doi.org/10. 1016/j.ultras.2018.08.006, URL http://www.sciencedirect.com/science/article/ pii/S0041624X17308016. [6] I. Alig, D. Lellinger, J. Sulimma, S. Tadjbakhsch, Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films, Rev. Sci. Instrum. 68 (3) (1997) 1536–1542, http://dx.doi.org/10.1063/1.1147643. [7] P. Longin, C. Verdier, M. Piau, Dynamic shear rheology of high molecular weight polydimethylsiloxanes: comparison of rheometry and ultrasound, J. Non-Newton. Fluid Mech. 76 (1) (1998) 213–232, http://dx.doi.org/ 10.1016/S0377-0257(97)00119-5, URL http://www.sciencedirect.com/science/ article/pii/S0377025797001195. [8] S. Dixon, B. Lanyon, Phase change measurement of ultrasonic shear waves on reflection from a curing epoxy system, J. Phys. D: Appl. Phys. 38 (22) (2005) 4115–4125, http://dx.doi.org/10.1088/0022-3727/38/22/016. [9] K. Mukai, N. Makino, H. Usui, T. Amari, Measurement of rheological properties for smectic-A liquid crystal by using ultrasonic rheometer and rotational viscometer, Prog. Org. Coat. 31 (1) (1997) 179–184, http://dx.doi.org/ 10.1016/S0300-9440(97)00034-9, URL http://www.sciencedirect.com/science/ article/pii/S0300944097000349. [10] V.V. Shah, K. Balasubramaniam, Measuring Newtonian viscosity from the phase of reflected ultrasonic shear wave, Ultrasonics 38 (9) (2000) 921–927, http: //dx.doi.org/10.1016/S0041-624X(00)00033-0, URL http://www.sciencedirect. com/science/article/pii/S0041624X00000330. [11] R. Kazys, A. Voleisis, R. Sliteris, Investigation of the acoustic properties of viscosity standards, Arch. Acoust. 41 (1) (2016) 55–58, http://dx.doi.org/10. 1515/aoa-2016-0005. [12] A. Kulmyrzaev, D.J. McClements, High frequency dynamic shear rheology of honey, J. Food Eng. 45 (4) (2000) 219–224, http://dx.doi.org/ 10.1016/S0260-8774(00)00062-5, URL http://www.sciencedirect.com/science/ article/pii/S0260877400000625. [13] R. Saggin, J.N. Coupland, Rheology of xanthan/sucrose mixtures at ultrasonic frequencies, J. Food Eng. 65 (1) (2004) 49–53, http://dx.doi.org/10.1016/ j.jfoodeng.2003.12.002, URL http://www.sciencedirect.com/science/article/pii/ S0260877403004874. [14] H. Runrun, M. Runyang, W. Chenghui, H. Jing, Ultrasonic shear-wave reflectometry applied to monitor the dynamic viscosity of reheated edible oil, J. Food Process Eng. 43 (6) (2020) e13402, http://dx.doi.org/10.1111/jfpe.13402, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/jfpe.13402, URL https:// onlinelibrary.wiley.com/doi/abs/10.1111/jfpe.13402. [15] Z. Sun, T. Voigt, S.P. Shah, Rheometric and ultrasonic investigations of viscoelastic properties of fresh portland cement pastes, Cem. Concr. Res. 36 (2) (2006) 278–287, http://dx.doi.org/10.1016/j.cemconres.2005.08.007, URL http: //www.sciencedirect.com/science/article/pii/S000888460500195X. [16] X. Wang, K.V. Subramaniam, F. Lin, Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste, Ultrasonics 50 (7) (2010) 726–738, http://dx.doi.org/10.1016/j.ultras.2010.02.010, URL http:// www.sciencedirect.com/science/article/pii/S0041624X10000430. [17] O. Manfredi, R. Mills, M. Schirru, R. Dwyer-Joyce, Non-invasive measurement of lubricating oil viscosity using an ultrasonic continuously repeated chirp shear wave, Ultrasonics 94 (2019) 332–339, http://dx.doi.org/10. 1016/j.ultras.2018.08.002, URL http://www.sciencedirect.com/science/article/ pii/S0041624X18302877. [18] F. Buiochi, E.E. Franco, R.T. Higuti, J.C. Adamowski, Viscosity measuring cell using ultrasonic wave mode conversion, Ferroelectrics 333 (1) (2006) 139– 149, http://dx.doi.org/10.1080/00150190600700626, https://doi.org/10.1080/ 00150190600700626. [19] F. Cohen-Tenoudji, W.J. Pardee, B.R. Tittmann, L.A. Ahlberg, R.K. Elsley, A shear wave rheology sensor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 (2) (1987) 263–269, http://dx.doi.org/10.1109/T-UFFC.1987.26941. [20] M.S. Greenwood, J.D. Adamson, L.J. Bond, Measurement of the viscosity-density product using a quartz wedge, AIP Conf. Proc. 760 (1) (2005) 1690–1697, http://dx.doi.org/10.1063/1.1916874, URL https://aip.scitation.org/doi/abs/10. 1063/1.1916874. [21] M. Schirru, X. Li, M. Cadeddu, R. Dwyer-Joyce, Development of a shear ultrasonic spectroscopy technique for the evaluation of viscoelastic fluid properties: Theory and experimental validation, Ultrasonics 94 (2019) 364–375, http://dx. doi.org/10.1016/j.ultras.2018.07.002. [22] M. Schirru, R. Dwyer-Joyce, L. Vergoz, A new ultrasonic rheometer for space exploration in lander missions, Rheol. Acta 58 (1–2) (2019) 47–61, http://dx. doi.org/10.1007/s00397-019-01127-1. [23] Z. Li, D.-Q. Yang, S.-L. Liu, S.-Y. Yu, M.-H. Lu, J. Zhu, S.-T. Zhang, M.-W. Zhu, X.-S. Guo, H.-D. Wu, X.-L. Wang, Y.-F. Chen, Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers, Sci. Rep. 7 (1) (2017) 42863, http://dx.doi.org/10.1038/srep42863. [24] G. Harrison, A.J. Barlow, 3. Dynamic viscosity measurement, in: P.D. Edmonds (Ed.), Ultrasonics, in: Methods in Experimental Physics, vol. 19, Academic Press, 1981, pp. 137–178, http://dx.doi.org/10.1016/S0076-695X(08)60334-8, URL http://www.sciencedirect.com/science/article/pii/S0076695X08603348. [25] H.T. O’neil, Reflection and refraction of plane shear waves in viscoelastic media, Phys. Rev. 75 (1949) 928–935, http://dx.doi.org/10.1103/PhysRev.75.928, URL https://link.aps.org/doi/10.1103/PhysRev.75.928. [26] R. Whorlow, Rheological Techniques, in: Ellis Horwood series in physics and its applications, Ellis Horwood, 1992
dc.rights.spa.fl_str_mv Derechos reservados - Elsevier, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsevier, 2021
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 6 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Revista Ultrasonics
dc.source.eng.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0041624X21001669
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/6f83c16e-4303-4779-9f99-268d7ec438f0/download
https://red.uao.edu.co/bitstreams/8a424f1b-ee5b-4a57-900b-dcf22566411c/download
https://red.uao.edu.co/bitstreams/4c5499d0-f53d-42dd-93cb-cb19265bb6ad/download
https://red.uao.edu.co/bitstreams/d728f151-b62b-48df-8d4a-a25c0c3b917f/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
fbaf07849382fb88fbd2353031e12716
9b2e3994fc398da35df9eff91592847b
e490bd6b2e032bf692e835b28a313560
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260044308414464
spelling Barrera Cárdenas, Helver Mauriciovirtual::1051-1Formigoni, Paulo O.027bf49fe9351da49e16d7059555022bBuiochi, Fláviob1bdb982d63e34285277106ac50141c5Franco Guzmán, Ediguer Enriquevirtual::1052-12022-05-12T15:55:10Z2022-05-12T15:55:10Z20210041-624Xhttps://hdl.handle.net/10614/13864Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/This work shows a novel ultrasonic viscosity measurement device with increased sensitivity. The measuring principle is based on the determination of the complex reflection coefficient of shear-waves at the solid–liquid interface. But the proposed approach is the replacement of the flat surface at the measurement interface with a grooved surface, which works in a similar way to an optical retroreflector. The complete reflection of the waves involves a double reflection with oblique incidence, where both phenomena increase sensitivity, in comparison with a plane surface. It is shown that a set of orthogonal flat interfaces reflects a well-defined ultrasonic pulse. The sensitivity is enough to measure the change in the magnitude and phase of the reflection coefficient even for the small portion of the energy transmitted to water. A model for calculating the viscosity and a calibration approach for the measurement were proposed. Results with samples of corn syrup–water mixture are reported6 páginasapplication/pdfengRevista UltrasonicsDerechos reservados - Elsevier, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S0041624X21001669Shear-wave corner retroreflector device for ultrasonic measurement of viscosityArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85ViscosidadFísicaShear wavesViscosityAcoustic retroreflectorReflection coefficient61117Franco, E. E., Barrera, H.M., Formigoni, P. O., Buiochi, F. (2021). Shear-wave cornerretroreflector device for ultrasonic measurement of viscosity. Ultrasonics. Revista Elsevier. Vol. 117, pp.1-6. https://www.sciencedirect.com/science/article/pii/S0041624X21001669Ultrasonics[1] W.P. Mason, W.O. Baker, H.J. Mcskimin, J.H. Heiss, Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies, Phys. Rev. 75 (1949) 936–946, http://dx.doi.org/10.1103/PhysRev.75.936, URL https://link.aps.org/ doi/10.1103/PhysRev.75.936. [2] E.E. Franco, J.C. Adamowski, R.T. Higuti, F. Buiochi, Viscosity measurement of Newtonian liquids using the complex reflection coefficient, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 (10) (2008) 2247–2253, http://dx.doi.org/10.1109/ TUFFC.923. [3] M.S. Greenwood, J.A. Bamberger, Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control, Ultrasonics 39 (9) (2002) 623–630, http://dx.doi.org/10.1016/S0041-624X(02)00372-4, URL http: //www.sciencedirect.com/science/article/pii/S0041624X02003724. [4] E.E. Franco, J.C. Adamowski, F. Buiochi, Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 (5) (2010) 1133–1139, http: //dx.doi.org/10.1109/TUFFC.2010.1524. [5] E.E. Franco, F. Buiochi, Ultrasonic measurement of viscosity: Signal processing methodologies, Ultrasonics 91 (2019) 213–219, http://dx.doi.org/10. 1016/j.ultras.2018.08.006, URL http://www.sciencedirect.com/science/article/ pii/S0041624X17308016. [6] I. Alig, D. Lellinger, J. Sulimma, S. Tadjbakhsch, Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films, Rev. Sci. Instrum. 68 (3) (1997) 1536–1542, http://dx.doi.org/10.1063/1.1147643. [7] P. Longin, C. Verdier, M. Piau, Dynamic shear rheology of high molecular weight polydimethylsiloxanes: comparison of rheometry and ultrasound, J. Non-Newton. Fluid Mech. 76 (1) (1998) 213–232, http://dx.doi.org/ 10.1016/S0377-0257(97)00119-5, URL http://www.sciencedirect.com/science/ article/pii/S0377025797001195. [8] S. Dixon, B. Lanyon, Phase change measurement of ultrasonic shear waves on reflection from a curing epoxy system, J. Phys. D: Appl. Phys. 38 (22) (2005) 4115–4125, http://dx.doi.org/10.1088/0022-3727/38/22/016. [9] K. Mukai, N. Makino, H. Usui, T. Amari, Measurement of rheological properties for smectic-A liquid crystal by using ultrasonic rheometer and rotational viscometer, Prog. Org. Coat. 31 (1) (1997) 179–184, http://dx.doi.org/ 10.1016/S0300-9440(97)00034-9, URL http://www.sciencedirect.com/science/ article/pii/S0300944097000349. [10] V.V. Shah, K. Balasubramaniam, Measuring Newtonian viscosity from the phase of reflected ultrasonic shear wave, Ultrasonics 38 (9) (2000) 921–927, http: //dx.doi.org/10.1016/S0041-624X(00)00033-0, URL http://www.sciencedirect. com/science/article/pii/S0041624X00000330. [11] R. Kazys, A. Voleisis, R. Sliteris, Investigation of the acoustic properties of viscosity standards, Arch. Acoust. 41 (1) (2016) 55–58, http://dx.doi.org/10. 1515/aoa-2016-0005. [12] A. Kulmyrzaev, D.J. McClements, High frequency dynamic shear rheology of honey, J. Food Eng. 45 (4) (2000) 219–224, http://dx.doi.org/ 10.1016/S0260-8774(00)00062-5, URL http://www.sciencedirect.com/science/ article/pii/S0260877400000625. [13] R. Saggin, J.N. Coupland, Rheology of xanthan/sucrose mixtures at ultrasonic frequencies, J. Food Eng. 65 (1) (2004) 49–53, http://dx.doi.org/10.1016/ j.jfoodeng.2003.12.002, URL http://www.sciencedirect.com/science/article/pii/ S0260877403004874. [14] H. Runrun, M. Runyang, W. Chenghui, H. Jing, Ultrasonic shear-wave reflectometry applied to monitor the dynamic viscosity of reheated edible oil, J. Food Process Eng. 43 (6) (2020) e13402, http://dx.doi.org/10.1111/jfpe.13402, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/jfpe.13402, URL https:// onlinelibrary.wiley.com/doi/abs/10.1111/jfpe.13402. [15] Z. Sun, T. Voigt, S.P. Shah, Rheometric and ultrasonic investigations of viscoelastic properties of fresh portland cement pastes, Cem. Concr. Res. 36 (2) (2006) 278–287, http://dx.doi.org/10.1016/j.cemconres.2005.08.007, URL http: //www.sciencedirect.com/science/article/pii/S000888460500195X. [16] X. Wang, K.V. Subramaniam, F. Lin, Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste, Ultrasonics 50 (7) (2010) 726–738, http://dx.doi.org/10.1016/j.ultras.2010.02.010, URL http:// www.sciencedirect.com/science/article/pii/S0041624X10000430. [17] O. Manfredi, R. Mills, M. Schirru, R. Dwyer-Joyce, Non-invasive measurement of lubricating oil viscosity using an ultrasonic continuously repeated chirp shear wave, Ultrasonics 94 (2019) 332–339, http://dx.doi.org/10. 1016/j.ultras.2018.08.002, URL http://www.sciencedirect.com/science/article/ pii/S0041624X18302877. [18] F. Buiochi, E.E. Franco, R.T. Higuti, J.C. Adamowski, Viscosity measuring cell using ultrasonic wave mode conversion, Ferroelectrics 333 (1) (2006) 139– 149, http://dx.doi.org/10.1080/00150190600700626, https://doi.org/10.1080/ 00150190600700626. [19] F. Cohen-Tenoudji, W.J. Pardee, B.R. Tittmann, L.A. Ahlberg, R.K. Elsley, A shear wave rheology sensor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 (2) (1987) 263–269, http://dx.doi.org/10.1109/T-UFFC.1987.26941. [20] M.S. Greenwood, J.D. Adamson, L.J. Bond, Measurement of the viscosity-density product using a quartz wedge, AIP Conf. Proc. 760 (1) (2005) 1690–1697, http://dx.doi.org/10.1063/1.1916874, URL https://aip.scitation.org/doi/abs/10. 1063/1.1916874. [21] M. Schirru, X. Li, M. Cadeddu, R. Dwyer-Joyce, Development of a shear ultrasonic spectroscopy technique for the evaluation of viscoelastic fluid properties: Theory and experimental validation, Ultrasonics 94 (2019) 364–375, http://dx. doi.org/10.1016/j.ultras.2018.07.002. [22] M. Schirru, R. Dwyer-Joyce, L. Vergoz, A new ultrasonic rheometer for space exploration in lander missions, Rheol. Acta 58 (1–2) (2019) 47–61, http://dx. doi.org/10.1007/s00397-019-01127-1. [23] Z. Li, D.-Q. Yang, S.-L. Liu, S.-Y. Yu, M.-H. Lu, J. Zhu, S.-T. Zhang, M.-W. Zhu, X.-S. Guo, H.-D. Wu, X.-L. Wang, Y.-F. Chen, Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers, Sci. Rep. 7 (1) (2017) 42863, http://dx.doi.org/10.1038/srep42863. [24] G. Harrison, A.J. Barlow, 3. Dynamic viscosity measurement, in: P.D. Edmonds (Ed.), Ultrasonics, in: Methods in Experimental Physics, vol. 19, Academic Press, 1981, pp. 137–178, http://dx.doi.org/10.1016/S0076-695X(08)60334-8, URL http://www.sciencedirect.com/science/article/pii/S0076695X08603348. [25] H.T. O’neil, Reflection and refraction of plane shear waves in viscoelastic media, Phys. Rev. 75 (1949) 928–935, http://dx.doi.org/10.1103/PhysRev.75.928, URL https://link.aps.org/doi/10.1103/PhysRev.75.928. [26] R. Whorlow, Rheological Techniques, in: Ellis Horwood series in physics and its applications, Ellis Horwood, 1992Comunidad universitaria en generalPublicationf608b27f-3b11-4041-b07e-40e9f8a7d0cdvirtual::1051-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1052-1f608b27f-3b11-4041-b07e-40e9f8a7d0cdvirtual::1051-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1052-1https://scholar.google.com/citations?hl=de&view_op=list_works&gmla=AP6z3OYgyKNV4SXIsrFCLfeZy4UIrIrbyXxywRNV-C1ZKnpTkio8g9aklz0hJAg7XS_UPdAknPgql5zu89xaKLcx9QI3sN69O6biQQvlg3a_jR_o01ufqXtkz9H6gA&user=u7z3_5IAAAAJvirtual::1051-1https://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::1052-10000-0002-6968-1508virtual::1051-10000-0001-7518-704Xvirtual::1052-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001391726virtual::1051-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::1052-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/6f83c16e-4303-4779-9f99-268d7ec438f0/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALShear-wave corner retroreflector device for ultrasonic measurement of viscosity.pdfShear-wave corner retroreflector device for ultrasonic measurement of viscosity.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf888143https://red.uao.edu.co/bitstreams/8a424f1b-ee5b-4a57-900b-dcf22566411c/downloadfbaf07849382fb88fbd2353031e12716MD53TEXTShear-wave corner retroreflector device for ultrasonic measurement of viscosity.pdf.txtShear-wave corner retroreflector device for ultrasonic measurement of viscosity.pdf.txtExtracted texttext/plain33087https://red.uao.edu.co/bitstreams/4c5499d0-f53d-42dd-93cb-cb19265bb6ad/download9b2e3994fc398da35df9eff91592847bMD54THUMBNAILShear-wave corner retroreflector device for ultrasonic measurement of viscosity.pdf.jpgShear-wave corner retroreflector device for ultrasonic measurement of viscosity.pdf.jpgGenerated Thumbnailimage/jpeg15273https://red.uao.edu.co/bitstreams/d728f151-b62b-48df-8d4a-a25c0c3b917f/downloade490bd6b2e032bf692e835b28a313560MD5510614/13864oai:red.uao.edu.co:10614/138642024-03-01 09:48:22.266https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2021restrictedhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K