Flow regulation at constant head in feedwater pumps in a sugar industry

In this paper the feasibility of energy saving by implementing flow regulation at constant load in feedwater pumps in a sugar industry is studied. As regulation strategy, the use of a variable speed drive in the hydraulic system is proposed. For the project evaluation, the Net Present Value and Payb...

Full description

Autores:
Quispe Oqueña, Enrique Ciro
Sousa Santos, Vladimir
Quintana, Mario S.
Gómez Sarduy, Julio Rafael
Percy R. Viego Felipe
Hernández Herrera, Hernán
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11523
Acceso en línea:
http://hdl.handle.net/10614/11523
http://doi.org/10.11591/ijece.v9i2.pp732-741
Palabra clave:
Sistema de abastecimiento de agua
Energía eléctrica
Waterworks
Electric power
Energy saving
Feedwater pumps
Flow regulation
Sugar cane industry
Variable speed drives
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_3765ac03e2810091768c3f917f84ebac
oai_identifier_str oai:red.uao.edu.co:10614/11523
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Flow regulation at constant head in feedwater pumps in a sugar industry
title Flow regulation at constant head in feedwater pumps in a sugar industry
spellingShingle Flow regulation at constant head in feedwater pumps in a sugar industry
Sistema de abastecimiento de agua
Energía eléctrica
Waterworks
Electric power
Energy saving
Feedwater pumps
Flow regulation
Sugar cane industry
Variable speed drives
title_short Flow regulation at constant head in feedwater pumps in a sugar industry
title_full Flow regulation at constant head in feedwater pumps in a sugar industry
title_fullStr Flow regulation at constant head in feedwater pumps in a sugar industry
title_full_unstemmed Flow regulation at constant head in feedwater pumps in a sugar industry
title_sort Flow regulation at constant head in feedwater pumps in a sugar industry
dc.creator.fl_str_mv Quispe Oqueña, Enrique Ciro
Sousa Santos, Vladimir
Quintana, Mario S.
Gómez Sarduy, Julio Rafael
Percy R. Viego Felipe
Hernández Herrera, Hernán
dc.contributor.author.none.fl_str_mv Quispe Oqueña, Enrique Ciro
Sousa Santos, Vladimir
Quintana, Mario S.
Gómez Sarduy, Julio Rafael
Percy R. Viego Felipe
Hernández Herrera, Hernán
dc.subject.armarc.spa.fl_str_mv Sistema de abastecimiento de agua
Energía eléctrica
topic Sistema de abastecimiento de agua
Energía eléctrica
Waterworks
Electric power
Energy saving
Feedwater pumps
Flow regulation
Sugar cane industry
Variable speed drives
dc.subject.armarc.eng.fl_str_mv Waterworks
Electric power
dc.subject.proposal.eng.fl_str_mv Energy saving
Feedwater pumps
Flow regulation
Sugar cane industry
Variable speed drives
description In this paper the feasibility of energy saving by implementing flow regulation at constant load in feedwater pumps in a sugar industry is studied. As regulation strategy, the use of a variable speed drive in the hydraulic system is proposed. For the project evaluation, the Net Present Value and Payback Period techniques are used. Among the variables considered are the price of energy, the equipment useful life, financial data and those related to environmental impact. As a result, it was found that if only a commercial approach is considered, the energy saving strategy is profitable but not attractive, because investment is recovered in a period closeto the useful life of technology. However, if a government focus that encourages the implementation of these energies saving strategies is considered, the investment of the project recovers in a short time
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-18T20:19:44Z
dc.date.available.none.fl_str_mv 2019-11-18T20:19:44Z
dc.date.issued.none.fl_str_mv 2019
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2088-8708
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/10614/11523
dc.identifier.doi.spa.fl_str_mv http://doi.org/10.11591/ijece.v9i2.pp732-741
identifier_str_mv 2088-8708
url http://hdl.handle.net/10614/11523
http://doi.org/10.11591/ijece.v9i2.pp732-741
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 741
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 732
dc.relation.citationvolume.none.fl_str_mv 9
dc.relation.cites.eng.fl_str_mv Gómez, J. R., Sousa, V., Quintana, M. S., Viego, P. R., Hernández, H., & Quispe, E. C. (2019). Flow regulation at constant head in feedwater pumps in a sugar industry. International Journal of Electrical and Computer Engineering. 9(2), 732-741. DOI: 10.11591/ijece.v9i2.pp732-741
dc.relation.ispartofjournal.eng.fl_str_mv International Journal of Electrical and Computer Engineering
dc.relation.references.none.fl_str_mv [1] US Energy Information Administration, “DOE/EIA-0484 International Energy Outlook 2016 with Projections to 2040,” May 2016.
[2] A. Dietmair and A. Verl, “Energy Consumption Assessment and Optimisation in the Design and use Phase of Machine Tools,” in Proceedings of the 17th CIRP International Conference on Life Cycle Engineering, 2010, pp. 116-121.
[3] S. P. Singh, “Technical Change and Productivity Growth in the Indian Sugar Industry,” Procedia Economics and Finance, vol. 39, pp. 131-139, 2016.
[4] M. Morato, et al., “Future Hybrid Local Energy Generation Paradigm for the Brazilian Sugarcane Industry Scenario,” International Journal of Electrical Power & Energy Systems, vol. 101, pp. 139-150, 2018.
[5] J. Q. Albarelli, et al., “Product Diversification To Enhance Economic Viability of Second Generation Ethanol Production in Brazil: The Case of the Sugar and Ethanol Joint Production,” Chemical Engineering Research and Design, vol. 92, no. 8, pp. 1470-1481, 2014.
[6] M. K. Chauhan, et al., “Life Cycle Assessment of Sugar Industry: A Review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 7, pp. 3445-3453, 2011.
[7] S. Sathitbun-anan, et al., “Energy Efficiency and Greenhouse Gas Emission Reduction Potentials in Sugar Production Processes in Thailand,” Energy for Sustainable Development, vol. 23, pp. 266-274, 2014.
[8] E.C., Quispe, et al., “Unbalanced Voltages Impacts on the Energy Performance of Induction Motors,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, pp. 1412-1422, 2018.
[9] V. Sousa, et al., “Estimating Induction Motor Efficiency under no-controlled Conditions in the Presences of Unbalanced and Harmonics Voltages,” in 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Santiago, 2015, pp. 567-5.
[10] V. Sousa, et al., “Shaft Power Estimation in Induction Motor Operating under Unbalanced and Harmonics Voltages,” IEEE Latin America Transactions, vol. 14, no. 5, pp. 2309-2315, 2016.
[11] M. Koor, et al., “Optimization of Pump Efficiencies with different Pumps Characteristics Working in Parallel Mode,” Advances in Engineering Software, vol. 101, pp. 69-76, 2016.
[12] V. Sousa, et al., “Harmonic Distortion Evaluation Generated by PWM Motor Drives in Electrical Industrial Systems,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 6, pp. 3207-3216, 2017.
[13] V. Sousa, et al., “Analysis of Harmonic Distortion Generated by PWM Motor Drives,” in 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, 2017, pp. 1-6.
[14] P. Olszewski, “Genetic Optimization and Experimental Verification of Complex Parallel Pumping Station with Centrifugal Pumps,” Applied Energy, vol. 178, pp. 527-539, 2016.
[15] M. D. Z. Izquierdo and J. J. S. Jiménez, “Operación óptima de bombas en paralelo empleando variadores de velocidad,” Ingenierías, vol. 13, no. 46, p. 57, 2010.
[16] Z. Ma and S. Wang, “An Optimal Control Strategy for Complex Building Central Chilled Water Systems for Practical and Real-time Applications,” Building and Environment, vol. 44, pp. 1188-1198, 2009.
[17] S. Wang, “Intelligent Buildings and Building Automation,” Spon Press, London, 2010, pp. 203.
[18] M. I. Jahmeerbacus, “Flow Rate Regulation of a Variable Speed Driven Pumping System using Fuzzy Logic,” in 4th International Conference on Electric Power and Energy Conversion Systems (EPECS), Sharjah, United Arab Emirates, 2015.
[19] C. A. Solano, et al., “Sistema de control de presión para el suministro de agua en la central de servicios del centro médico nacional la raza,” México, 2012.
[20] J. A. Saavedra, “Control de presión mediante variador de frecuencia y motobomba,” Chile, 2007.
[21] R. A. Castillo, “Automatización del sistema de bombas de agua fría de fábrica de tejidos imperial S. A.,” 2009.
[22] J. J. García, et al., “Modelado y simulación de una bomba centrífuga con motor monofásico en Simulink,” Revista Colombiana de Tecnologías de Avanzada, vol. 2, no. 22, pp. 78-84, 2013.
[23] P. Gómez, et al., “Procedimiento para la selección de la estrategia de regulación más adecuada en estaciones de bombeo,” in IV Jornadas de Ingeniería del Agua, JIA 2015, Córdoba, España, 2015, pp. 1191-1202.
[24] H. Díaz, et al., “Diseño de un sistema de control para obtener presión constante de agua,” in XXII Congreso Internacional de Ingeniería Eléctrica, Electrónica, Computación y Afines, Huancayo, Perú, 2015.
[25] F. E. Hoyos, et al., "Selection and Validation of Mathematical Models of Power Converters using Rapid Modeling and Control Prototyping Methods,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, pp. 1551-1568, 2018.
[26] J. R. Gómez, et al., “Experiencia de aplicación de accionamiento de velocidad variable. opción de alto comportamiento para la gestión energética,” in 48 Congreso de la ATAC, La Habana, 2002.
[27] Y. Delgado, “Estudio de factibilidad técnico-económica de regulación de la capacidad con variadores de frecuencia de las bombas de agua de alimentar de la CTE „Carlosma Manuel de Céspedes‟. Cienfuegos. Cuba,” 2014.
[28] V. A. Shankar, et al., “Real Time Simulation of Variable Speed Parallel Pumping System,” Energy Procedia, vol. 142, pp. 2102-2108, 2017.
[29] J. Viholainen, “Energy-efficient Control Strategies for Variable Speed Driven Parallel Pumping Systems based on Pump Operation Point Monitoring with Frequency Converters,” Act Universitatis Lappeenrantaensis, 2014.
[30] F. J. Ferreira, et al., “Ecoanalysis of Variable-speed Drives for Flow Regulation in Pumping Systems,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2117-2125, 2011.
[31] J. A. Madrigal, et al., “Planificación energética para el ahorro de fueloil en una lavandería industrial,” Ingeniare. Revista chilena de ingeniería, vol. 26, no. 1, pp. 86-96, 2018.
[32] A. Sagastume, et al., “Electricity Management in the Production of Lead-acid Batteries: The Industrial Case of a Production plant in Colombia,” Journal of Cleaner Production, vol. 198, no. 10, pp. 1443-1458, 2018.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 10 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Institute of Advanced Engineering and Science, (IJECE)
dc.source.spa.fl_str_mv reponame:Repositorio Institucional UAO
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/095e34b4-e588-4125-90a8-3cf59c7ac3bb/download
https://red.uao.edu.co/bitstreams/f838ae33-40ef-4dc4-91df-e19b8ad89166/download
https://red.uao.edu.co/bitstreams/7dc449ac-1b4d-46ab-961d-f007099d71b0/download
https://red.uao.edu.co/bitstreams/34371fe7-e956-4a65-bd28-42d3351a8c8e/download
https://red.uao.edu.co/bitstreams/df0cf91d-c18e-431b-bfb8-4eca07ceddf5/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
75f55b243ec5e3d5e6d2886bde88d79d
96a5ed9c0f35a25efc10a3fa3dc99fe4
076d5dd9ed57f362f258d04a0235f2a8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259802052755456
spelling Quispe Oqueña, Enrique Cirovirtual::53-1Sousa Santos, Vladimir7d49f4c6dc5688b53999d936638b4426Quintana, Mario S.9c2960b08b39c2b8d8260b70d7dec838Gómez Sarduy, Julio Rafael77a5057c8e70b9722f27cf7e3c088d69Percy R. Viego Felipe73e56a4005be0f470f4dcea62618197bHernández Herrera, Hernán368f702324432a4013403d8c819e2e2eUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-18T20:19:44Z2019-11-18T20:19:44Z20192088-8708http://hdl.handle.net/10614/11523http://doi.org/10.11591/ijece.v9i2.pp732-741In this paper the feasibility of energy saving by implementing flow regulation at constant load in feedwater pumps in a sugar industry is studied. As regulation strategy, the use of a variable speed drive in the hydraulic system is proposed. For the project evaluation, the Net Present Value and Payback Period techniques are used. Among the variables considered are the price of energy, the equipment useful life, financial data and those related to environmental impact. As a result, it was found that if only a commercial approach is considered, the energy saving strategy is profitable but not attractive, because investment is recovered in a period closeto the useful life of technology. However, if a government focus that encourages the implementation of these energies saving strategies is considered, the investment of the project recovers in a short timeapplication/pdf10 páginasengInstitute of Advanced Engineering and Science, (IJECE)Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2reponame:Repositorio Institucional UAOFlow regulation at constant head in feedwater pumps in a sugar industryArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Sistema de abastecimiento de aguaEnergía eléctricaWaterworksElectric powerEnergy savingFeedwater pumpsFlow regulationSugar cane industryVariable speed drives74127329Gómez, J. R., Sousa, V., Quintana, M. S., Viego, P. R., Hernández, H., & Quispe, E. C. (2019). Flow regulation at constant head in feedwater pumps in a sugar industry. International Journal of Electrical and Computer Engineering. 9(2), 732-741. DOI: 10.11591/ijece.v9i2.pp732-741International Journal of Electrical and Computer Engineering[1] US Energy Information Administration, “DOE/EIA-0484 International Energy Outlook 2016 with Projections to 2040,” May 2016.[2] A. Dietmair and A. Verl, “Energy Consumption Assessment and Optimisation in the Design and use Phase of Machine Tools,” in Proceedings of the 17th CIRP International Conference on Life Cycle Engineering, 2010, pp. 116-121.[3] S. P. Singh, “Technical Change and Productivity Growth in the Indian Sugar Industry,” Procedia Economics and Finance, vol. 39, pp. 131-139, 2016.[4] M. Morato, et al., “Future Hybrid Local Energy Generation Paradigm for the Brazilian Sugarcane Industry Scenario,” International Journal of Electrical Power & Energy Systems, vol. 101, pp. 139-150, 2018.[5] J. Q. Albarelli, et al., “Product Diversification To Enhance Economic Viability of Second Generation Ethanol Production in Brazil: The Case of the Sugar and Ethanol Joint Production,” Chemical Engineering Research and Design, vol. 92, no. 8, pp. 1470-1481, 2014.[6] M. K. Chauhan, et al., “Life Cycle Assessment of Sugar Industry: A Review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 7, pp. 3445-3453, 2011.[7] S. Sathitbun-anan, et al., “Energy Efficiency and Greenhouse Gas Emission Reduction Potentials in Sugar Production Processes in Thailand,” Energy for Sustainable Development, vol. 23, pp. 266-274, 2014.[8] E.C., Quispe, et al., “Unbalanced Voltages Impacts on the Energy Performance of Induction Motors,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, pp. 1412-1422, 2018.[9] V. Sousa, et al., “Estimating Induction Motor Efficiency under no-controlled Conditions in the Presences of Unbalanced and Harmonics Voltages,” in 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Santiago, 2015, pp. 567-5.[10] V. Sousa, et al., “Shaft Power Estimation in Induction Motor Operating under Unbalanced and Harmonics Voltages,” IEEE Latin America Transactions, vol. 14, no. 5, pp. 2309-2315, 2016.[11] M. Koor, et al., “Optimization of Pump Efficiencies with different Pumps Characteristics Working in Parallel Mode,” Advances in Engineering Software, vol. 101, pp. 69-76, 2016.[12] V. Sousa, et al., “Harmonic Distortion Evaluation Generated by PWM Motor Drives in Electrical Industrial Systems,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 6, pp. 3207-3216, 2017.[13] V. Sousa, et al., “Analysis of Harmonic Distortion Generated by PWM Motor Drives,” in 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, 2017, pp. 1-6.[14] P. Olszewski, “Genetic Optimization and Experimental Verification of Complex Parallel Pumping Station with Centrifugal Pumps,” Applied Energy, vol. 178, pp. 527-539, 2016.[15] M. D. Z. Izquierdo and J. J. S. Jiménez, “Operación óptima de bombas en paralelo empleando variadores de velocidad,” Ingenierías, vol. 13, no. 46, p. 57, 2010.[16] Z. Ma and S. Wang, “An Optimal Control Strategy for Complex Building Central Chilled Water Systems for Practical and Real-time Applications,” Building and Environment, vol. 44, pp. 1188-1198, 2009.[17] S. Wang, “Intelligent Buildings and Building Automation,” Spon Press, London, 2010, pp. 203.[18] M. I. Jahmeerbacus, “Flow Rate Regulation of a Variable Speed Driven Pumping System using Fuzzy Logic,” in 4th International Conference on Electric Power and Energy Conversion Systems (EPECS), Sharjah, United Arab Emirates, 2015.[19] C. A. Solano, et al., “Sistema de control de presión para el suministro de agua en la central de servicios del centro médico nacional la raza,” México, 2012.[20] J. A. Saavedra, “Control de presión mediante variador de frecuencia y motobomba,” Chile, 2007.[21] R. A. Castillo, “Automatización del sistema de bombas de agua fría de fábrica de tejidos imperial S. A.,” 2009.[22] J. J. García, et al., “Modelado y simulación de una bomba centrífuga con motor monofásico en Simulink,” Revista Colombiana de Tecnologías de Avanzada, vol. 2, no. 22, pp. 78-84, 2013.[23] P. Gómez, et al., “Procedimiento para la selección de la estrategia de regulación más adecuada en estaciones de bombeo,” in IV Jornadas de Ingeniería del Agua, JIA 2015, Córdoba, España, 2015, pp. 1191-1202.[24] H. Díaz, et al., “Diseño de un sistema de control para obtener presión constante de agua,” in XXII Congreso Internacional de Ingeniería Eléctrica, Electrónica, Computación y Afines, Huancayo, Perú, 2015.[25] F. E. Hoyos, et al., "Selection and Validation of Mathematical Models of Power Converters using Rapid Modeling and Control Prototyping Methods,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, pp. 1551-1568, 2018.[26] J. R. Gómez, et al., “Experiencia de aplicación de accionamiento de velocidad variable. opción de alto comportamiento para la gestión energética,” in 48 Congreso de la ATAC, La Habana, 2002.[27] Y. Delgado, “Estudio de factibilidad técnico-económica de regulación de la capacidad con variadores de frecuencia de las bombas de agua de alimentar de la CTE „Carlosma Manuel de Céspedes‟. Cienfuegos. Cuba,” 2014.[28] V. A. Shankar, et al., “Real Time Simulation of Variable Speed Parallel Pumping System,” Energy Procedia, vol. 142, pp. 2102-2108, 2017.[29] J. Viholainen, “Energy-efficient Control Strategies for Variable Speed Driven Parallel Pumping Systems based on Pump Operation Point Monitoring with Frequency Converters,” Act Universitatis Lappeenrantaensis, 2014.[30] F. J. Ferreira, et al., “Ecoanalysis of Variable-speed Drives for Flow Regulation in Pumping Systems,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2117-2125, 2011.[31] J. A. Madrigal, et al., “Planificación energética para el ahorro de fueloil en una lavandería industrial,” Ingeniare. Revista chilena de ingeniería, vol. 26, no. 1, pp. 86-96, 2018.[32] A. Sagastume, et al., “Electricity Management in the Production of Lead-acid Batteries: The Industrial Case of a Production plant in Colombia,” Journal of Cleaner Production, vol. 198, no. 10, pp. 1443-1458, 2018.Publicationc6bf35c2-a499-44cd-abc3-eb4b458d7de5virtual::53-1c6bf35c2-a499-44cd-abc3-eb4b458d7de5virtual::53-1c6bf35c2-a499-44cd-abc3-eb4b458d7de5https://scholar.google.com.co/citations?user=8WM_SB8AAAAJ&hl=envirtual::53-1https://scholar.google.com.co/citations?user=8WM_SB8AAAAJ&hl=enhttps://orcid.org/0000-0003-3223-1834virtual::53-1https://orcid.org/0000-0003-3223-1834https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000144304virtual::53-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/095e34b4-e588-4125-90a8-3cf59c7ac3bb/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/f838ae33-40ef-4dc4-91df-e19b8ad89166/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALFlow regulation at constant head in feedwater pumps in a sugar industry.pdfFlow regulation at constant head in feedwater pumps in a sugar industry.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf554623https://red.uao.edu.co/bitstreams/7dc449ac-1b4d-46ab-961d-f007099d71b0/download75f55b243ec5e3d5e6d2886bde88d79dMD54TEXTFlow regulation at constant head in feedwater pumps in a sugar industry.pdf.txtFlow regulation at constant head in feedwater pumps in a sugar industry.pdf.txtExtracted texttext/plain37084https://red.uao.edu.co/bitstreams/34371fe7-e956-4a65-bd28-42d3351a8c8e/download96a5ed9c0f35a25efc10a3fa3dc99fe4MD55THUMBNAILFlow regulation at constant head in feedwater pumps in a sugar industry.pdf.jpgFlow regulation at constant head in feedwater pumps in a sugar industry.pdf.jpgGenerated Thumbnailimage/jpeg14368https://red.uao.edu.co/bitstreams/df0cf91d-c18e-431b-bfb8-4eca07ceddf5/download076d5dd9ed57f362f258d04a0235f2a8MD5610614/11523oai:red.uao.edu.co:10614/115232024-03-01 11:39:48.985https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K