Selección multicriterio de aliado estratégico para la operación de carga terrestre
El objetivo de este artículo es presentar un modelo para seleccionar un operador de transporte terrestre, en calidad de aliado estratégico, que fortalezca la gestión integrada de la cadena de suministro. El proceso de selección exige el uso de instrumentos que contribuyan a la toma de decisiones de...
- Autores:
-
Muñoz Marín, Luz Stella
Urbano Guerrero, Luz Carime
Osorio Gómez, Juan Carlos
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/11124
- Palabra clave:
- Logística en los negocios
Transporte terrestre
Land transport
Business logistics
Análisis jerárquico difuso
Orden de preferencia
Decisión multicriterio
Alianza estratégica
Fuzzy analytic hierarchy
Order of preference
Multicriteria decision
Strategic alliance
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_366986321d782ca17494e4c935eb78d6 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11124 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Selección multicriterio de aliado estratégico para la operación de carga terrestre |
dc.title.alternative.eng.fl_str_mv |
Multicriteria selection of a strategic ally for land freight operation |
dc.title.alternative.por.fl_str_mv |
Seleção multicritério de aliado estratégico para a operação de carga terrestre |
title |
Selección multicriterio de aliado estratégico para la operación de carga terrestre |
spellingShingle |
Selección multicriterio de aliado estratégico para la operación de carga terrestre Logística en los negocios Transporte terrestre Land transport Business logistics Análisis jerárquico difuso Orden de preferencia Decisión multicriterio Alianza estratégica Fuzzy analytic hierarchy Order of preference Multicriteria decision Strategic alliance |
title_short |
Selección multicriterio de aliado estratégico para la operación de carga terrestre |
title_full |
Selección multicriterio de aliado estratégico para la operación de carga terrestre |
title_fullStr |
Selección multicriterio de aliado estratégico para la operación de carga terrestre |
title_full_unstemmed |
Selección multicriterio de aliado estratégico para la operación de carga terrestre |
title_sort |
Selección multicriterio de aliado estratégico para la operación de carga terrestre |
dc.creator.fl_str_mv |
Muñoz Marín, Luz Stella Urbano Guerrero, Luz Carime Osorio Gómez, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Muñoz Marín, Luz Stella Urbano Guerrero, Luz Carime Osorio Gómez, Juan Carlos |
dc.subject.lemb.sps.fl_str_mv |
Logística en los negocios |
topic |
Logística en los negocios Transporte terrestre Land transport Business logistics Análisis jerárquico difuso Orden de preferencia Decisión multicriterio Alianza estratégica Fuzzy analytic hierarchy Order of preference Multicriteria decision Strategic alliance |
dc.subject.lemb.spa.fl_str_mv |
Transporte terrestre |
dc.subject.lemb.eng.fl_str_mv |
Land transport Business logistics |
dc.subject.proposal.spa.fl_str_mv |
Análisis jerárquico difuso Orden de preferencia Decisión multicriterio Alianza estratégica |
dc.subject.proposal.eng.fl_str_mv |
Fuzzy analytic hierarchy Order of preference Multicriteria decision Strategic alliance |
description |
El objetivo de este artículo es presentar un modelo para seleccionar un operador de transporte terrestre, en calidad de aliado estratégico, que fortalezca la gestión integrada de la cadena de suministro. El proceso de selección exige el uso de instrumentos que contribuyan a la toma de decisiones de manera ágil, efectiva y eficaz. En este sentido, el modelo combina el Proceso de Análisis Jerárquico Difuso y la Técnica para el Orden de Preferencia por Similitud con Solución Ideal, considerando elementos científicos y analíticos que facilitan la inclusión de los diferentes criterios y actores conducentes. El modelo, que puede ser aplicable a diferentes tipos de organización, fue validado en una empresa industrial colombiana y permitió identificar el potencial aliado estratégico con las mejores ventajas competitivas |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2019-09-18T21:03:11Z |
dc.date.available.none.fl_str_mv |
2019-09-18T21:03:11Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0123-5923 (impresa) |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11124 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.estger.2015.09.002 |
identifier_str_mv |
0123-5923 (impresa) |
url |
http://hdl.handle.net/10614/11124 https://doi.org/10.1016/j.estger.2015.09.002 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.citationendpage.none.fl_str_mv |
43 |
dc.relation.citationissue.none.fl_str_mv |
138 |
dc.relation.citationstartpage.none.fl_str_mv |
35 |
dc.relation.citationvolume.none.fl_str_mv |
32 |
dc.relation.cites.spa.fl_str_mv |
Urbano Guerrero, Luz Carime, Muñoz Marín, Luz Stella, & Osorio Gómez, Juan Carlos. (2016). Selección multicriterio de aliado estratégico para la operación de carga terrestre. Estudios Gerenciales, 32(138), 35-43. https://dx.doi.org/10.1016/j.estger.2015.09.002 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Estudios gerenciales |
dc.relation.references.none.fl_str_mv |
James W. Principles of psychology. New York: Dover; 1950 (1890) Brown G. On the activities of the central nervous system of the un-born fœtus of the cat; with a discussion of the question whether progression (walking, etc.) is a "learnt " complex. Journal of Physiology. 1915;49(4):208-215 Pearson K, Gordon J. Spinal reflexes. In: Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. New York, NY: McGraw-Hill; 2000. p. 713-736 Brown G. On the nature of the fundamental activity of nervous centers; together with an analysis of the conditioning of rhytmic activity in progression and a theory of the evolution of the nervous system. Journal of Physiology. 1914;48(1):18-46 Buzsáki G, Peyrache A, Kubie J. Emergence of cognition from action. Cold Spring Harbor Symposia on Quantitative Biology. 2015;79:41-50 Alnajjar F, Itkonen M, Berenz V, Tournier M, Nagai C, Shimoda S. Sensory synergy as environmental input integration. Frontiers in Neuroscience. 2015;8:436 Llinas R, Roy S. The ' prediction imperative ' as the basis for self-awareness. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 2009;364 (1521):1301-1307 Buzsáki G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron. 2010;68(3):362-385 Watson BO, Buzsáki G. Sleep, Memory & Brain Rhythms. Journal of Neurophysiology. 2015;144(1):67-82 Beer R, Chiel H, Sterling L. A biological perspective on autonomous agent design. Robotics and Autonomous Systems. 1990;6(1-2):169-186 Llinas R. I of the vortex: From neurons to self. Cambridge: MIT press; 2002. 302 p. Guertin PA. Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Frontiers in Neuroscience. 2013;8(3):183 Aoi S, Ogihara N, Funato T, Sugimoto Y, Tsuchiya K. Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Biological Cybernetics. 2010;102(5):373-387 Nandi GC, Gupta B. Bio-inspired control methodology of walking for intelligent prosthetic knee. In: Proceedings of the 3rd International Conference of Informatics in Control, Automation and Robotics, ICINCO. Nice, France. IEEE; 2006. p. 2368-2373 Bauer C, Braun S, Chen Y, Jakob W, Mikut R. Optimization of artificial central pattern generators with evolutionary algorithms. In: Mikut R, ed. Proceedings of the 18 Workshop Computational Intelligence; Dortmund, Germany: Universit tsverlag Karlsruhe; 2006. p. 40-54 Ambroise M , Levi T , Joucla S , Yvert B , Saïghi S . Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments. Frontiers in Neuroscience. 2013;7:215 Alcock J. Evolution, Nervous Systems, and Behavior. In: Alcock J. Animal Behavior: An Evolutionary Approach (10th edition). Sunderland, Massachusetts: Sinauer Associates, Inc.; 1998. p. 363-9 Mazur JE. Learning and Behavior (6th Edition). New Jersey: Prentice Hall; 2005. 448 p. Campbell NA. Animal behavior. In: Biology (9 ed). New York: Benjamin Cummings; 1996. p. 11-19 Wu G, Sieglerb S, Allardc P, Kirtleyd C, Leardinie A, Rosenbaumf D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion-part I: ankle, hip, and spine. Journal of Biomechanics. 2002;35(4):543-8 Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, et al. Quantitative comparison of five current protocols in gait analysis. Gait Posture. 2008;28(2):207-16 Silva J, Chau T, Naumann S, Heim W. Systematic characterisation of silicon-embedded accelerometers for mechanomyography. Medical and Biological Engineering and Computing. 2003;41(3):290-5 Silva J. Mechanomyography sensor design and multisensor fusion for upper-limb prosthesis control. Master thesis. Toronto: Mechanical Engineering Department, University of Toronto; 2004 Madeleine P, Cescon C, Farina D. Spatial and force dependency of mechanomyographic signal features. Journal of Neuroscience Methods. 2006;158(1):89-99 Scott RN. An introduction to myoelectric prostheses,Volumen 1 U.N.B. Monographs on Myoelectric Prostheses. Bio-Engineering Institute, University of New Brunswick, 1984; pp 17 Wilkenfeld AJ. Biologically inspired autoadaptive control of a knee prosthesis. Master thesis. Massachusetts, USA: Massachusetts Institute of Technology; 2000 Jin D, Yang J, Zhang R, Wang R, Zhang J. Terrain identification for prosthetic knees based on electromyographic signal features. Tsinghua Science and Technology. 2006 ;11(1):74-9 Chen B, Zheng E, Fan X, Liang T, Wang Q, Wei K, et al. Locomotion mode classification using a wearable capacitive sensing system. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2013;21(5):744-55 Wang F, Su J, Xie H, Xu X. Terrain identification of intelligent bionic leg based on ground reaction force. In: IEEE International Conference on Integration Technology, ICIT-07; Shenzhen, China: IEEE; 2007. p. 609-13 Yuan K, Sun S, Wang Z, Wang Q, Wang L. A fuzzy logic based terrain identification approach to prosthesis control using multi-sensor fusion. In: IEEE International Conference on Robotics and Automation (ICRA); Karlsruhe, Alemania: IEEE; 2013. p. 3376-81 Smith L, Hargrove L, Lock B, Kuiken T. Determining the optimal window length for pattern recognition-based myoelectric control: Balancing the competing effects of classification error and controller delay. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2011;19(2):186-92 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.coverage.spatial.none.fl_str_mv |
Colombia Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.source.eng.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0123592315000601?via%3Dihub |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/4c84eb79-6e8d-47f2-8acd-aa7eb2e8f39d/download https://red.uao.edu.co/bitstreams/2df31a28-1874-48c4-a5a2-2a6f1f295b81/download https://red.uao.edu.co/bitstreams/2f6db8f6-82b4-4b5a-9865-a3990527ba0e/download https://red.uao.edu.co/bitstreams/34242197-ef42-462e-b76c-c09282b67e47/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 cd85706ccfee6f619298d159d3231102 6ec0aa4c408120439d685f24422a63b3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260044552732672 |
spelling |
Muñoz Marín, Luz Stellavirtual::3682-1Urbano Guerrero, Luz Carimevirtual::4812-1Osorio Gómez, Juan Carlos939a5c64815f2f13b9b85b9418898d94ColombiaUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-09-18T21:03:11Z2019-09-18T21:03:11Z20160123-5923 (impresa)http://hdl.handle.net/10614/11124https://doi.org/10.1016/j.estger.2015.09.002El objetivo de este artículo es presentar un modelo para seleccionar un operador de transporte terrestre, en calidad de aliado estratégico, que fortalezca la gestión integrada de la cadena de suministro. El proceso de selección exige el uso de instrumentos que contribuyan a la toma de decisiones de manera ágil, efectiva y eficaz. En este sentido, el modelo combina el Proceso de Análisis Jerárquico Difuso y la Técnica para el Orden de Preferencia por Similitud con Solución Ideal, considerando elementos científicos y analíticos que facilitan la inclusión de los diferentes criterios y actores conducentes. El modelo, que puede ser aplicable a diferentes tipos de organización, fue validado en una empresa industrial colombiana y permitió identificar el potencial aliado estratégico con las mejores ventajas competitivasThe purpose of this work is to present a model for selecting a strategic partner in the operation of land transportation, to strengthen the integrated supply chain management. The selection process involves the use of tools that contribute to decision making in an agile, effective and efficient way. In this context, the proposed model combines the fuzzy analytic hierarchy process and technique for order preference by similarity with ideal solution, including scientific and analytical elements that enable the inclusion of diverse criteria and leading actors. This model, which is applicable to different types of organization, was validated in a Colombian industrial company in order to identify the potential strategic partner with the best competitive advantagesapplication/pdf9 páginasspaDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S0123592315000601?via%3DihubSelección multicriterio de aliado estratégico para la operación de carga terrestreMulticriteria selection of a strategic ally for land freight operationSeleção multicritério de aliado estratégico para a operação de carga terrestreArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Logística en los negociosTransporte terrestreLand transportBusiness logisticsAnálisis jerárquico difusoOrden de preferenciaDecisión multicriterioAlianza estratégicaFuzzy analytic hierarchyOrder of preferenceMulticriteria decisionStrategic alliance431383532Urbano Guerrero, Luz Carime, Muñoz Marín, Luz Stella, & Osorio Gómez, Juan Carlos. (2016). Selección multicriterio de aliado estratégico para la operación de carga terrestre. Estudios Gerenciales, 32(138), 35-43. https://dx.doi.org/10.1016/j.estger.2015.09.002Estudios gerencialesJames W. Principles of psychology. New York: Dover; 1950 (1890)Brown G. On the activities of the central nervous system of the un-born fœtus of the cat; with a discussion of the question whether progression (walking, etc.) is a "learnt " complex. Journal of Physiology. 1915;49(4):208-215Pearson K, Gordon J. Spinal reflexes. In: Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. New York, NY: McGraw-Hill; 2000. p. 713-736Brown G. On the nature of the fundamental activity of nervous centers; together with an analysis of the conditioning of rhytmic activity in progression and a theory of the evolution of the nervous system. Journal of Physiology. 1914;48(1):18-46Buzsáki G, Peyrache A, Kubie J. Emergence of cognition from action. Cold Spring Harbor Symposia on Quantitative Biology. 2015;79:41-50Alnajjar F, Itkonen M, Berenz V, Tournier M, Nagai C, Shimoda S. Sensory synergy as environmental input integration. Frontiers in Neuroscience. 2015;8:436Llinas R, Roy S. The ' prediction imperative ' as the basis for self-awareness. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 2009;364 (1521):1301-1307Buzsáki G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron. 2010;68(3):362-385Watson BO, Buzsáki G. Sleep, Memory & Brain Rhythms. Journal of Neurophysiology. 2015;144(1):67-82Beer R, Chiel H, Sterling L. A biological perspective on autonomous agent design. Robotics and Autonomous Systems. 1990;6(1-2):169-186Llinas R. I of the vortex: From neurons to self. Cambridge: MIT press; 2002. 302 p.Guertin PA. Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Frontiers in Neuroscience. 2013;8(3):183Aoi S, Ogihara N, Funato T, Sugimoto Y, Tsuchiya K. Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Biological Cybernetics. 2010;102(5):373-387Nandi GC, Gupta B. Bio-inspired control methodology of walking for intelligent prosthetic knee. In: Proceedings of the 3rd International Conference of Informatics in Control, Automation and Robotics, ICINCO. Nice, France. IEEE; 2006. p. 2368-2373Bauer C, Braun S, Chen Y, Jakob W, Mikut R. Optimization of artificial central pattern generators with evolutionary algorithms. In: Mikut R, ed. Proceedings of the 18 Workshop Computational Intelligence; Dortmund, Germany: Universit tsverlag Karlsruhe; 2006. p. 40-54Ambroise M , Levi T , Joucla S , Yvert B , Saïghi S . Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments. Frontiers in Neuroscience. 2013;7:215Alcock J. Evolution, Nervous Systems, and Behavior. In: Alcock J. Animal Behavior: An Evolutionary Approach (10th edition). Sunderland, Massachusetts: Sinauer Associates, Inc.; 1998. p. 363-9Mazur JE. Learning and Behavior (6th Edition). New Jersey: Prentice Hall; 2005. 448 p.Campbell NA. Animal behavior. In: Biology (9 ed). New York: Benjamin Cummings; 1996. p. 11-19Wu G, Sieglerb S, Allardc P, Kirtleyd C, Leardinie A, Rosenbaumf D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion-part I: ankle, hip, and spine. Journal of Biomechanics. 2002;35(4):543-8Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, et al. Quantitative comparison of five current protocols in gait analysis. Gait Posture. 2008;28(2):207-16Silva J, Chau T, Naumann S, Heim W. Systematic characterisation of silicon-embedded accelerometers for mechanomyography. Medical and Biological Engineering and Computing. 2003;41(3):290-5Silva J. Mechanomyography sensor design and multisensor fusion for upper-limb prosthesis control. Master thesis. Toronto: Mechanical Engineering Department, University of Toronto; 2004Madeleine P, Cescon C, Farina D. Spatial and force dependency of mechanomyographic signal features. Journal of Neuroscience Methods. 2006;158(1):89-99Scott RN. An introduction to myoelectric prostheses,Volumen 1 U.N.B. Monographs on Myoelectric Prostheses. Bio-Engineering Institute, University of New Brunswick, 1984; pp 17Wilkenfeld AJ. Biologically inspired autoadaptive control of a knee prosthesis. Master thesis. Massachusetts, USA: Massachusetts Institute of Technology; 2000Jin D, Yang J, Zhang R, Wang R, Zhang J. Terrain identification for prosthetic knees based on electromyographic signal features. Tsinghua Science and Technology. 2006 ;11(1):74-9Chen B, Zheng E, Fan X, Liang T, Wang Q, Wei K, et al. Locomotion mode classification using a wearable capacitive sensing system. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2013;21(5):744-55Wang F, Su J, Xie H, Xu X. Terrain identification of intelligent bionic leg based on ground reaction force. In: IEEE International Conference on Integration Technology, ICIT-07; Shenzhen, China: IEEE; 2007. p. 609-13Yuan K, Sun S, Wang Z, Wang Q, Wang L. A fuzzy logic based terrain identification approach to prosthesis control using multi-sensor fusion. In: IEEE International Conference on Robotics and Automation (ICRA); Karlsruhe, Alemania: IEEE; 2013. p. 3376-81Smith L, Hargrove L, Lock B, Kuiken T. Determining the optimal window length for pattern recognition-based myoelectric control: Balancing the competing effects of classification error and controller delay. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2011;19(2):186-92Publication94535829-7365-40df-8336-00730b7b99a2virtual::3682-1a15e4c45-b4d2-45d3-8cc6-54a34cd71750virtual::4812-194535829-7365-40df-8336-00730b7b99a2virtual::3682-1a15e4c45-b4d2-45d3-8cc6-54a34cd71750virtual::4812-1https://scholar.google.com/citations?user=ViQZ42gAAAAJ&hl=esvirtual::4812-10000-0003-1949-9027virtual::4812-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/4c84eb79-6e8d-47f2-8acd-aa7eb2e8f39d/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/2df31a28-1874-48c4-a5a2-2a6f1f295b81/download20b5ba22b1117f71589c7318baa2c560MD53TEXT00337_Selección multicriterio de aliado estratégico para la operación de carga terrestre.pdf.txt00337_Selección multicriterio de aliado estratégico para la operación de carga terrestre.pdf.txtExtracted texttext/plain51581https://red.uao.edu.co/bitstreams/2f6db8f6-82b4-4b5a-9865-a3990527ba0e/downloadcd85706ccfee6f619298d159d3231102MD55THUMBNAIL00337_Selección multicriterio de aliado estratégico para la operación de carga terrestre.pdf.jpg00337_Selección multicriterio de aliado estratégico para la operación de carga terrestre.pdf.jpgGenerated Thumbnailimage/jpeg12214https://red.uao.edu.co/bitstreams/34242197-ef42-462e-b76c-c09282b67e47/download6ec0aa4c408120439d685f24422a63b3MD5610614/11124oai:red.uao.edu.co:10614/111242024-03-15 13:21:15.796https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |