Selección multicriterio de aliado estratégico para la operación de carga terrestre

El objetivo de este artículo es presentar un modelo para seleccionar un operador de transporte terrestre, en calidad de aliado estratégico, que fortalezca la gestión integrada de la cadena de suministro. El proceso de selección exige el uso de instrumentos que contribuyan a la toma de decisiones de...

Full description

Autores:
Muñoz Marín, Luz Stella
Urbano Guerrero, Luz Carime
Osorio Gómez, Juan Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/11124
Acceso en línea:
http://hdl.handle.net/10614/11124
https://doi.org/10.1016/j.estger.2015.09.002
Palabra clave:
Logística en los negocios
Transporte terrestre
Land transport
Business logistics
Análisis jerárquico difuso
Orden de preferencia
Decisión multicriterio
Alianza estratégica
Fuzzy analytic hierarchy
Order of preference
Multicriteria decision
Strategic alliance
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_366986321d782ca17494e4c935eb78d6
oai_identifier_str oai:red.uao.edu.co:10614/11124
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.spa.fl_str_mv Selección multicriterio de aliado estratégico para la operación de carga terrestre
dc.title.alternative.eng.fl_str_mv Multicriteria selection of a strategic ally for land freight operation
dc.title.alternative.por.fl_str_mv Seleção multicritério de aliado estratégico para a operação de carga terrestre
title Selección multicriterio de aliado estratégico para la operación de carga terrestre
spellingShingle Selección multicriterio de aliado estratégico para la operación de carga terrestre
Logística en los negocios
Transporte terrestre
Land transport
Business logistics
Análisis jerárquico difuso
Orden de preferencia
Decisión multicriterio
Alianza estratégica
Fuzzy analytic hierarchy
Order of preference
Multicriteria decision
Strategic alliance
title_short Selección multicriterio de aliado estratégico para la operación de carga terrestre
title_full Selección multicriterio de aliado estratégico para la operación de carga terrestre
title_fullStr Selección multicriterio de aliado estratégico para la operación de carga terrestre
title_full_unstemmed Selección multicriterio de aliado estratégico para la operación de carga terrestre
title_sort Selección multicriterio de aliado estratégico para la operación de carga terrestre
dc.creator.fl_str_mv Muñoz Marín, Luz Stella
Urbano Guerrero, Luz Carime
Osorio Gómez, Juan Carlos
dc.contributor.author.none.fl_str_mv Muñoz Marín, Luz Stella
Urbano Guerrero, Luz Carime
Osorio Gómez, Juan Carlos
dc.subject.lemb.sps.fl_str_mv Logística en los negocios
topic Logística en los negocios
Transporte terrestre
Land transport
Business logistics
Análisis jerárquico difuso
Orden de preferencia
Decisión multicriterio
Alianza estratégica
Fuzzy analytic hierarchy
Order of preference
Multicriteria decision
Strategic alliance
dc.subject.lemb.spa.fl_str_mv Transporte terrestre
dc.subject.lemb.eng.fl_str_mv Land transport
Business logistics
dc.subject.proposal.spa.fl_str_mv Análisis jerárquico difuso
Orden de preferencia
Decisión multicriterio
Alianza estratégica
dc.subject.proposal.eng.fl_str_mv Fuzzy analytic hierarchy
Order of preference
Multicriteria decision
Strategic alliance
description El objetivo de este artículo es presentar un modelo para seleccionar un operador de transporte terrestre, en calidad de aliado estratégico, que fortalezca la gestión integrada de la cadena de suministro. El proceso de selección exige el uso de instrumentos que contribuyan a la toma de decisiones de manera ágil, efectiva y eficaz. En este sentido, el modelo combina el Proceso de Análisis Jerárquico Difuso y la Técnica para el Orden de Preferencia por Similitud con Solución Ideal, considerando elementos científicos y analíticos que facilitan la inclusión de los diferentes criterios y actores conducentes. El modelo, que puede ser aplicable a diferentes tipos de organización, fue validado en una empresa industrial colombiana y permitió identificar el potencial aliado estratégico con las mejores ventajas competitivas
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2019-09-18T21:03:11Z
dc.date.available.none.fl_str_mv 2019-09-18T21:03:11Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0123-5923 (impresa)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11124
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.estger.2015.09.002
identifier_str_mv 0123-5923 (impresa)
url http://hdl.handle.net/10614/11124
https://doi.org/10.1016/j.estger.2015.09.002
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationendpage.none.fl_str_mv 43
dc.relation.citationissue.none.fl_str_mv 138
dc.relation.citationstartpage.none.fl_str_mv 35
dc.relation.citationvolume.none.fl_str_mv 32
dc.relation.cites.spa.fl_str_mv Urbano Guerrero, Luz Carime, Muñoz Marín, Luz Stella, & Osorio Gómez, Juan Carlos. (2016). Selección multicriterio de aliado estratégico para la operación de carga terrestre. Estudios Gerenciales, 32(138), 35-43. https://dx.doi.org/10.1016/j.estger.2015.09.002
dc.relation.ispartofjournal.spa.fl_str_mv Estudios gerenciales
dc.relation.references.none.fl_str_mv James W. Principles of psychology. New York: Dover; 1950 (1890)
Brown G. On the activities of the central nervous system of the un-born fœtus of the cat; with a discussion of the question whether progression (walking, etc.) is a "learnt " complex. Journal of Physiology. 1915;49(4):208-215
Pearson K, Gordon J. Spinal reflexes. In: Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. New York, NY: McGraw-Hill; 2000. p. 713-736
Brown G. On the nature of the fundamental activity of nervous centers; together with an analysis of the conditioning of rhytmic activity in progression and a theory of the evolution of the nervous system. Journal of Physiology. 1914;48(1):18-46
Buzsáki G, Peyrache A, Kubie J. Emergence of cognition from action. Cold Spring Harbor Symposia on Quantitative Biology. 2015;79:41-50
Alnajjar F, Itkonen M, Berenz V, Tournier M, Nagai C, Shimoda S. Sensory synergy as environmental input integration. Frontiers in Neuroscience. 2015;8:436
Llinas R, Roy S. The ' prediction imperative ' as the basis for self-awareness. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 2009;364 (1521):1301-1307
Buzsáki G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron. 2010;68(3):362-385
Watson BO, Buzsáki G. Sleep, Memory & Brain Rhythms. Journal of Neurophysiology. 2015;144(1):67-82
Beer R, Chiel H, Sterling L. A biological perspective on autonomous agent design. Robotics and Autonomous Systems. 1990;6(1-2):169-186
Llinas R. I of the vortex: From neurons to self. Cambridge: MIT press; 2002. 302 p.
Guertin PA. Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Frontiers in Neuroscience. 2013;8(3):183
Aoi S, Ogihara N, Funato T, Sugimoto Y, Tsuchiya K. Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Biological Cybernetics. 2010;102(5):373-387
Nandi GC, Gupta B. Bio-inspired control methodology of walking for intelligent prosthetic knee. In: Proceedings of the 3rd International Conference of Informatics in Control, Automation and Robotics, ICINCO. Nice, France. IEEE; 2006. p. 2368-2373
Bauer C, Braun S, Chen Y, Jakob W, Mikut R. Optimization of artificial central pattern generators with evolutionary algorithms. In: Mikut R, ed. Proceedings of the 18 Workshop Computational Intelligence; Dortmund, Germany: Universit tsverlag Karlsruhe; 2006. p. 40-54
Ambroise M , Levi T , Joucla S , Yvert B , Saïghi S . Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments. Frontiers in Neuroscience. 2013;7:215
Alcock J. Evolution, Nervous Systems, and Behavior. In: Alcock J. Animal Behavior: An Evolutionary Approach (10th edition). Sunderland, Massachusetts: Sinauer Associates, Inc.; 1998. p. 363-9
Mazur JE. Learning and Behavior (6th Edition). New Jersey: Prentice Hall; 2005. 448 p.
Campbell NA. Animal behavior. In: Biology (9 ed). New York: Benjamin Cummings; 1996. p. 11-19
Wu G, Sieglerb S, Allardc P, Kirtleyd C, Leardinie A, Rosenbaumf D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion-part I: ankle, hip, and spine. Journal of Biomechanics. 2002;35(4):543-8
Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, et al. Quantitative comparison of five current protocols in gait analysis. Gait Posture. 2008;28(2):207-16
Silva J, Chau T, Naumann S, Heim W. Systematic characterisation of silicon-embedded accelerometers for mechanomyography. Medical and Biological Engineering and Computing. 2003;41(3):290-5
Silva J. Mechanomyography sensor design and multisensor fusion for upper-limb prosthesis control. Master thesis. Toronto: Mechanical Engineering Department, University of Toronto; 2004
Madeleine P, Cescon C, Farina D. Spatial and force dependency of mechanomyographic signal features. Journal of Neuroscience Methods. 2006;158(1):89-99
Scott RN. An introduction to myoelectric prostheses,Volumen 1 U.N.B. Monographs on Myoelectric Prostheses. Bio-Engineering Institute, University of New Brunswick, 1984; pp 17
Wilkenfeld AJ. Biologically inspired autoadaptive control of a knee prosthesis. Master thesis. Massachusetts, USA: Massachusetts Institute of Technology; 2000
Jin D, Yang J, Zhang R, Wang R, Zhang J. Terrain identification for prosthetic knees based on electromyographic signal features. Tsinghua Science and Technology. 2006 ;11(1):74-9
Chen B, Zheng E, Fan X, Liang T, Wang Q, Wei K, et al. Locomotion mode classification using a wearable capacitive sensing system. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2013;21(5):744-55
Wang F, Su J, Xie H, Xu X. Terrain identification of intelligent bionic leg based on ground reaction force. In: IEEE International Conference on Integration Technology, ICIT-07; Shenzhen, China: IEEE; 2007. p. 609-13
Yuan K, Sun S, Wang Z, Wang Q, Wang L. A fuzzy logic based terrain identification approach to prosthesis control using multi-sensor fusion. In: IEEE International Conference on Robotics and Automation (ICRA); Karlsruhe, Alemania: IEEE; 2013. p. 3376-81
Smith L, Hargrove L, Lock B, Kuiken T. Determining the optimal window length for pattern recognition-based myoelectric control: Balancing the competing effects of classification error and controller delay. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2011;19(2):186-92
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 9 páginas
dc.coverage.spatial.none.fl_str_mv Colombia
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.source.eng.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0123592315000601?via%3Dihub
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/4c84eb79-6e8d-47f2-8acd-aa7eb2e8f39d/download
https://red.uao.edu.co/bitstreams/2df31a28-1874-48c4-a5a2-2a6f1f295b81/download
https://red.uao.edu.co/bitstreams/2f6db8f6-82b4-4b5a-9865-a3990527ba0e/download
https://red.uao.edu.co/bitstreams/34242197-ef42-462e-b76c-c09282b67e47/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
cd85706ccfee6f619298d159d3231102
6ec0aa4c408120439d685f24422a63b3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260044552732672
spelling Muñoz Marín, Luz Stellavirtual::3682-1Urbano Guerrero, Luz Carimevirtual::4812-1Osorio Gómez, Juan Carlos939a5c64815f2f13b9b85b9418898d94ColombiaUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-09-18T21:03:11Z2019-09-18T21:03:11Z20160123-5923 (impresa)http://hdl.handle.net/10614/11124https://doi.org/10.1016/j.estger.2015.09.002El objetivo de este artículo es presentar un modelo para seleccionar un operador de transporte terrestre, en calidad de aliado estratégico, que fortalezca la gestión integrada de la cadena de suministro. El proceso de selección exige el uso de instrumentos que contribuyan a la toma de decisiones de manera ágil, efectiva y eficaz. En este sentido, el modelo combina el Proceso de Análisis Jerárquico Difuso y la Técnica para el Orden de Preferencia por Similitud con Solución Ideal, considerando elementos científicos y analíticos que facilitan la inclusión de los diferentes criterios y actores conducentes. El modelo, que puede ser aplicable a diferentes tipos de organización, fue validado en una empresa industrial colombiana y permitió identificar el potencial aliado estratégico con las mejores ventajas competitivasThe purpose of this work is to present a model for selecting a strategic partner in the operation of land transportation, to strengthen the integrated supply chain management. The selection process involves the use of tools that contribute to decision making in an agile, effective and efficient way. In this context, the proposed model combines the fuzzy analytic hierarchy process and technique for order preference by similarity with ideal solution, including scientific and analytical elements that enable the inclusion of diverse criteria and leading actors. This model, which is applicable to different types of organization, was validated in a Colombian industrial company in order to identify the potential strategic partner with the best competitive advantagesapplication/pdf9 páginasspaDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S0123592315000601?via%3DihubSelección multicriterio de aliado estratégico para la operación de carga terrestreMulticriteria selection of a strategic ally for land freight operationSeleção multicritério de aliado estratégico para a operação de carga terrestreArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Logística en los negociosTransporte terrestreLand transportBusiness logisticsAnálisis jerárquico difusoOrden de preferenciaDecisión multicriterioAlianza estratégicaFuzzy analytic hierarchyOrder of preferenceMulticriteria decisionStrategic alliance431383532Urbano Guerrero, Luz Carime, Muñoz Marín, Luz Stella, & Osorio Gómez, Juan Carlos. (2016). Selección multicriterio de aliado estratégico para la operación de carga terrestre. Estudios Gerenciales, 32(138), 35-43. https://dx.doi.org/10.1016/j.estger.2015.09.002Estudios gerencialesJames W. Principles of psychology. New York: Dover; 1950 (1890)Brown G. On the activities of the central nervous system of the un-born fœtus of the cat; with a discussion of the question whether progression (walking, etc.) is a "learnt " complex. Journal of Physiology. 1915;49(4):208-215Pearson K, Gordon J. Spinal reflexes. In: Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. New York, NY: McGraw-Hill; 2000. p. 713-736Brown G. On the nature of the fundamental activity of nervous centers; together with an analysis of the conditioning of rhytmic activity in progression and a theory of the evolution of the nervous system. Journal of Physiology. 1914;48(1):18-46Buzsáki G, Peyrache A, Kubie J. Emergence of cognition from action. Cold Spring Harbor Symposia on Quantitative Biology. 2015;79:41-50Alnajjar F, Itkonen M, Berenz V, Tournier M, Nagai C, Shimoda S. Sensory synergy as environmental input integration. Frontiers in Neuroscience. 2015;8:436Llinas R, Roy S. The ' prediction imperative ' as the basis for self-awareness. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 2009;364 (1521):1301-1307Buzsáki G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron. 2010;68(3):362-385Watson BO, Buzsáki G. Sleep, Memory & Brain Rhythms. Journal of Neurophysiology. 2015;144(1):67-82Beer R, Chiel H, Sterling L. A biological perspective on autonomous agent design. Robotics and Autonomous Systems. 1990;6(1-2):169-186Llinas R. I of the vortex: From neurons to self. Cambridge: MIT press; 2002. 302 p.Guertin PA. Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Frontiers in Neuroscience. 2013;8(3):183Aoi S, Ogihara N, Funato T, Sugimoto Y, Tsuchiya K. Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Biological Cybernetics. 2010;102(5):373-387Nandi GC, Gupta B. Bio-inspired control methodology of walking for intelligent prosthetic knee. In: Proceedings of the 3rd International Conference of Informatics in Control, Automation and Robotics, ICINCO. Nice, France. IEEE; 2006. p. 2368-2373Bauer C, Braun S, Chen Y, Jakob W, Mikut R. Optimization of artificial central pattern generators with evolutionary algorithms. In: Mikut R, ed. Proceedings of the 18 Workshop Computational Intelligence; Dortmund, Germany: Universit tsverlag Karlsruhe; 2006. p. 40-54Ambroise M , Levi T , Joucla S , Yvert B , Saïghi S . Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments. Frontiers in Neuroscience. 2013;7:215Alcock J. Evolution, Nervous Systems, and Behavior. In: Alcock J. Animal Behavior: An Evolutionary Approach (10th edition). Sunderland, Massachusetts: Sinauer Associates, Inc.; 1998. p. 363-9Mazur JE. Learning and Behavior (6th Edition). New Jersey: Prentice Hall; 2005. 448 p.Campbell NA. Animal behavior. In: Biology (9 ed). New York: Benjamin Cummings; 1996. p. 11-19Wu G, Sieglerb S, Allardc P, Kirtleyd C, Leardinie A, Rosenbaumf D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion-part I: ankle, hip, and spine. Journal of Biomechanics. 2002;35(4):543-8Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, et al. Quantitative comparison of five current protocols in gait analysis. Gait Posture. 2008;28(2):207-16Silva J, Chau T, Naumann S, Heim W. Systematic characterisation of silicon-embedded accelerometers for mechanomyography. Medical and Biological Engineering and Computing. 2003;41(3):290-5Silva J. Mechanomyography sensor design and multisensor fusion for upper-limb prosthesis control. Master thesis. Toronto: Mechanical Engineering Department, University of Toronto; 2004Madeleine P, Cescon C, Farina D. Spatial and force dependency of mechanomyographic signal features. Journal of Neuroscience Methods. 2006;158(1):89-99Scott RN. An introduction to myoelectric prostheses,Volumen 1 U.N.B. Monographs on Myoelectric Prostheses. Bio-Engineering Institute, University of New Brunswick, 1984; pp 17Wilkenfeld AJ. Biologically inspired autoadaptive control of a knee prosthesis. Master thesis. Massachusetts, USA: Massachusetts Institute of Technology; 2000Jin D, Yang J, Zhang R, Wang R, Zhang J. Terrain identification for prosthetic knees based on electromyographic signal features. Tsinghua Science and Technology. 2006 ;11(1):74-9Chen B, Zheng E, Fan X, Liang T, Wang Q, Wei K, et al. Locomotion mode classification using a wearable capacitive sensing system. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2013;21(5):744-55Wang F, Su J, Xie H, Xu X. Terrain identification of intelligent bionic leg based on ground reaction force. In: IEEE International Conference on Integration Technology, ICIT-07; Shenzhen, China: IEEE; 2007. p. 609-13Yuan K, Sun S, Wang Z, Wang Q, Wang L. A fuzzy logic based terrain identification approach to prosthesis control using multi-sensor fusion. In: IEEE International Conference on Robotics and Automation (ICRA); Karlsruhe, Alemania: IEEE; 2013. p. 3376-81Smith L, Hargrove L, Lock B, Kuiken T. Determining the optimal window length for pattern recognition-based myoelectric control: Balancing the competing effects of classification error and controller delay. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2011;19(2):186-92Publication94535829-7365-40df-8336-00730b7b99a2virtual::3682-1a15e4c45-b4d2-45d3-8cc6-54a34cd71750virtual::4812-194535829-7365-40df-8336-00730b7b99a2virtual::3682-1a15e4c45-b4d2-45d3-8cc6-54a34cd71750virtual::4812-1https://scholar.google.com/citations?user=ViQZ42gAAAAJ&hl=esvirtual::4812-10000-0003-1949-9027virtual::4812-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/4c84eb79-6e8d-47f2-8acd-aa7eb2e8f39d/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/2df31a28-1874-48c4-a5a2-2a6f1f295b81/download20b5ba22b1117f71589c7318baa2c560MD53TEXT00337_Selección multicriterio de aliado estratégico para la operación de carga terrestre.pdf.txt00337_Selección multicriterio de aliado estratégico para la operación de carga terrestre.pdf.txtExtracted texttext/plain51581https://red.uao.edu.co/bitstreams/2f6db8f6-82b4-4b5a-9865-a3990527ba0e/downloadcd85706ccfee6f619298d159d3231102MD55THUMBNAIL00337_Selección multicriterio de aliado estratégico para la operación de carga terrestre.pdf.jpg00337_Selección multicriterio de aliado estratégico para la operación de carga terrestre.pdf.jpgGenerated Thumbnailimage/jpeg12214https://red.uao.edu.co/bitstreams/34242197-ef42-462e-b76c-c09282b67e47/download6ec0aa4c408120439d685f24422a63b3MD5610614/11124oai:red.uao.edu.co:10614/111242024-03-15 13:21:15.796https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K