Strategies of expansion for electric power systems based on hydroelectric plants in the context of climate change: case of analysis of Colombia
The phenomena of climatic variability such as El Niño affect the expansion planning of electricity supply systems with hydroelectric power plants due to the uncertainty presented in the variables of rainfall patterns, temperature, wind, solar radiation changes, among others. The El Niño affects the...
- Autores:
-
Restrepo Trujillo, J
Moreno-Chuquen, Ricardo
Jiménez garcía, Francy Nelly
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/13289
- Acceso en línea:
- https://hdl.handle.net/10614/13289
- Palabra clave:
- Fenómeno del niño
Cambios climáticos
Producción de energía eléctrica
Climatic changes
Electric power production
El Niño Phenomenon
Vulnerability
Water resource
Development planning
Colombia
- Rights
- openAccess
- License
- Derechos reservados International Journal of Energy Economics and Policy
id |
REPOUAO2_35c9b88362057df7f70ed7346db18b38 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13289 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Strategies of expansion for electric power systems based on hydroelectric plants in the context of climate change: case of analysis of Colombia |
title |
Strategies of expansion for electric power systems based on hydroelectric plants in the context of climate change: case of analysis of Colombia |
spellingShingle |
Strategies of expansion for electric power systems based on hydroelectric plants in the context of climate change: case of analysis of Colombia Fenómeno del niño Cambios climáticos Producción de energía eléctrica Climatic changes Electric power production El Niño Phenomenon Vulnerability Water resource Development planning Colombia |
title_short |
Strategies of expansion for electric power systems based on hydroelectric plants in the context of climate change: case of analysis of Colombia |
title_full |
Strategies of expansion for electric power systems based on hydroelectric plants in the context of climate change: case of analysis of Colombia |
title_fullStr |
Strategies of expansion for electric power systems based on hydroelectric plants in the context of climate change: case of analysis of Colombia |
title_full_unstemmed |
Strategies of expansion for electric power systems based on hydroelectric plants in the context of climate change: case of analysis of Colombia |
title_sort |
Strategies of expansion for electric power systems based on hydroelectric plants in the context of climate change: case of analysis of Colombia |
dc.creator.fl_str_mv |
Restrepo Trujillo, J Moreno-Chuquen, Ricardo Jiménez garcía, Francy Nelly |
dc.contributor.author.none.fl_str_mv |
Restrepo Trujillo, J Moreno-Chuquen, Ricardo Jiménez garcía, Francy Nelly |
dc.subject.spa.fl_str_mv |
Fenómeno del niño |
topic |
Fenómeno del niño Cambios climáticos Producción de energía eléctrica Climatic changes Electric power production El Niño Phenomenon Vulnerability Water resource Development planning Colombia |
dc.subject.armarc.spa.fl_str_mv |
Cambios climáticos Producción de energía eléctrica |
dc.subject.armarc.eng.fl_str_mv |
Climatic changes Electric power production |
dc.subject.proposal.eng.fl_str_mv |
El Niño Phenomenon Vulnerability Water resource Development planning |
dc.subject.proposal.spa.fl_str_mv |
Colombia |
description |
The phenomena of climatic variability such as El Niño affect the expansion planning of electricity supply systems with hydroelectric power plants due to the uncertainty presented in the variables of rainfall patterns, temperature, wind, solar radiation changes, among others. The El Niño affects the electricity generation in Colombia, Venezuela and northwestern Brazil due to severe droughts that reduce water flows in rivers and water volume in dams. While in Peru, Paraguay, Bolivia, Uruguay, Argentina and southern Brazil, causes heavy rains that lead to an increase in reservoirs. Recent findings provide sufficient evidence on how climate change modifies the patterns of duration, frequency and intensity of El Niño and therefore will introduce additional uncertainties to the expansion planning of electricity generation systems in countries that uses predominantly hydroelectric power. The vulnerability of electricity supply systems with a significant participation of hydroelectric power plants in Colombia, Brazil, Ecuador, Peru, Panama, Canada, Norway, Costa Rica and New Zealand is associated with fluctuations in the availability of water resources. This document aims to analyze the current plans for the expansion of electric power generation systems by the aforementioned countries in the context of climate change in medium and long term. Additionally, this document provides a detailed analysis of the situation of electricity supply systems in Colombia |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-08-17 |
dc.date.accessioned.none.fl_str_mv |
2021-09-29T20:28:19Z |
dc.date.available.none.fl_str_mv |
2021-09-29T20:28:19Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
21464553 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13289 |
identifier_str_mv |
21464553 |
url |
https://hdl.handle.net/10614/13289 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 10, número 6 (2020) |
dc.relation.citationendpage.spa.fl_str_mv |
74 |
dc.relation.citationissue.spa.fl_str_mv |
Número 6 |
dc.relation.citationstartpage.spa.fl_str_mv |
66 |
dc.relation.citationvolume.spa.fl_str_mv |
Volumen 10 |
dc.relation.cites.spa.fl_str_mv |
Restrepo Trujillo, J., Moreno Chuquen, R., Jiménez García F. N. (2020). Strategies of expansion for electric power systems based on hydroelectric plants in the context of climate change: case of analysis of Colombia. International Journal of Energy Economics and Policy. (Vol. 10 (6), pp. 66-74. DOI: https://doi.org/10.32479/ijeep.9813 |
dc.relation.ispartofjournal.spa.fl_str_mv |
International Journal of Energy Economics and Policy |
dc.relation.references.spa.fl_str_mv |
Aita, P.G. (2006), Perú potencial energético: Propuestas y desafíos. Revista de Derecho Administrativo, 16, 217-231 Alley, R., Berntsen, T., Bindoff, N. L., Chen, Z., Chidthaisong, A., Friedlingstein, P., Zwiers, F. (2007), Intergovernmental Panel on Climate Change Climate Change 2007: The Physical Science Basis Summary for Policymakers Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Summary for Policymakers IPCC WGI Fourth Assessment Report Andrade, E.M., Cosenza, J.P., Rosa, L.P., Lacerda, G. (2012), The vulnerability of hydroelectric generation in the Nortneast of Barzil: The environmental and business risks for CHESF. Renewable and Sustainable Energy Reviews, 16, 5760-5769 Australian Bureau of Meteorology, Commonwealth Scientific and Industrial Research Organisation. (2011), Climate Change in the Pacific: Scientific Assessment and New Research, Regional Overview. Vol. 1. Canberra: Commonwealth Scientific and Industrial Research Organisation Cai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y., Carréric, A., McPhaden, M.J. (2018), Increased variability of eastern pacific El Niño under greenhouse warming. Nature, 564(7735), 201-206 Carvajal, P.E., Li, F.G.N., Soria, R., Cronin, J., Anandarajah, G., Mulugetta, Y. (2019), Large hydropower, decarbonisation and climate change uncertainty: Modelling power sector pathways for Ecuador. Energy Strategy Reviews, 23, 86-99. Chilkoti, V., Bolisetti, T., Balachandar, R. (2017), Climate change impact assessment on hydropower generation using multi-model climate ensemble. Renewable Energy, 109, 510-517 Comisión de Regulación de Energía y Gas. (2006), Resolución 071 de 2006. Available from: http://www.apolo.creg.gov.co/publicac.nsf/ indice01/resolucion-2006-creg071-2006 De Jong, P., Souza, C., Santos, A., Dargaville, R., Kiperstok, A., Andrade, E. (2018), Hydroelectric production from Brazil’s São Francisco River could cease due to climate change and inter-annual variability. Science of the Total Environment, 634, 1540-1553 Dubrovsky, H., Sbroiavacca, N.D., Nadal, G., Lisperguer, R.C. (2019), Rol y Perspectivas del Sector Eléctrico en la Transformación Energética de América Latina-Aportes a la Implementación del Observatorio Regional Sobre Energías Sostenibles. Available from: http://www. cepal.org/apps Government of Canada. (2015), Indicators of Climate Variability and Change Natural Resources Canada. Available from: http://www. nrcan.gc.ca/environment/resources/publications/impacts-adaptation/ reports/assessments/2008/ch8/10387. [Last accessed on 2018 Jul 26]. Instituto Costarricense de Electricidad. (2016a), Plan de Expansion de la Generacion Electrica Periodo 2016-2035. Available from: http:// www.grupoice.com Instituto Costarricense de Electricidad. (2017), Sistema Eléctrico de Costa Rica se Consolida Como Modelo de Generación RenovablePresidencia de la República de Costa Rica. Available from: https:// www.presidencia.go.cr/comunicados/2017/12/sistema-electricode-costa-rica-se-consolida-como-modelo-de-generacion-renovable. [Last accessed on 2018 Jul 21]. nternational Energy Agency (IEA). (2016), Energy Policies of International Energy Agengy-Norway 2017 Review. International Energy Agency (IEA). Available from: http://www.iea.org/publications/ freepublications/publication/energypoliciesofieacountriesnorway2017. pdf International Energy Agency. (2015), Statistics Costa Rica-Total Primary Energy Supply (TPES) by Source (Chart). Available from: https:// www.iea.org/statistics/?country=costarica&year=2016&category=k ey indicators&indicator=tpesbysource&mode=chart&categorybrow se=false&datatable=balances&showdatatable=false. [Last accessed on 2018 Oct 06 International Energy Agency. (2017a), Brazil. Available from: https:// www.iea.org/countries/brazil. [Last accessed on 2019 Feb 09 International Energy Agency. (2017f), Norway. Available from: https:// www.iea.org/countries/norway. [Last accessed on 2019 Feb 09 International Energy Agency. (2017h), Venezuela. Available from: https:// www.iea.org/countries/venezuela. [Last accessed on 2019 Feb 09 IPCC. (2007), Cambio Climático 2007: Informe de Síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de Evaluación del Grupo Intergubernamental de Expertos Sobre el Cambio Climático. Vol. 446. Geneva: Intergovernmental Panel on Climate Change Irandoust, M. (2018), Innovations and renewables in the Nordic countries: A panel causality approach. Technology in Society, 54, 87-92 Ministerio de Energía y Minas. (2016), Anuario Ejecutivo de Electricidad 2016 Gobierno del Perú. Available from: https://www.gob.pe/ institucion/minem/informes-publicaciones/112025-anuarioejecutivo-de-electricidad-2016 Miremadi, I., Saboohi, Y. (2018), Planning for investment in energy innovation: Developing an analytical tool to explore the impact of knowledge flow. International Journal of Energy Economics and Policy, 8(2), 7-19 Neelin, J.D., Battisti, D.S., Hirst, A.C., Jin, F.F., Wakata, Y., Yamagata, T., Zebiak, S.E. (1998), ENSO theory. Journal of Geophysical Research: Oceans, 103, 14261-14290 Ollila, J. (2017), Nordic Energy Co-Operation: Strong Today-Stronger Tomorrow. Copenhagen: Nordisk Ministerråd Paz, J., Kelman, R., Navas, S., Okamura, L., Feliu, E., Del Jesus, M. (2019), Vulnerabilidad al Cambio Climático y Medidas de Adaptación de los Sistemas Hidroeléctricos en los Países Andinos Publications. Available from: https://www.publications.iadb.org/publications/ spanish/document/Vulnerabilidad_al_cambio_climático_y_ medidas_de_adaptación_de_los_sistemas_hidroeléctricos_en_los_ países_andinos.pdf Programa de las Naciones Unidas Para el Desarrollo. (2015), Plan Energético Nacional 2015-2050. Available from: http://www.pa.undp. org/content/panama/es/home/search.html?q=plan+energético. [Last accessed on 2019 Jan 28] Samprogna, G., Rodriguez, D., Tomasella, J., Siqueira, J. (2015), Exploratory analyses for the assessment of climate change impacts on the energy production in an Amazon run-of-river hydropower plant. Journal of Hydrology: Regional Studies, 4, 41-59 Sociedad. (2016), Represa Itaipú, Símbolo de Energía Limpia en Paraguay, Lucha Contra El Niño-Socieda-d-Diario La Informacion, La Información. Available from: https://www. lainformacion.com/catastrofes-y-accidentes/inundaciones/represaitaipu-simbolo-de-energia-limpia-en-paraguay-lucha-contra-elnino_l6qrho5xdreaop5d3ake76 Trenberth, K.E., Stepaniak, D.P., Trenberth, K.E., Stepaniak, D.P. (2001), Indices of El Niño evolution. Journal of Climate, 14(8), 1697-1701 Unión Temporal ACOM-OPTIM. (2013), Estudio Para Determinar la Vulnerabilidad y las Opciones de Adaptación del Sector Energético Colombiano Frente al Cambio Climático, Bogotá. Available from: https://www.drive.google.com/drive/folders/1xljrs07vht-m78- 2jiuje4c_a4q9htq0 XM Compañía de Expertos en Mercados. (2019b), Generación del SIN. Available from: http://www.informesanuales.xm.com.co/2017/ sitepages/operacion/3-6-generacion-del-sin.aspx. [Last accessed on 2019 May 22 |
dc.rights.spa.fl_str_mv |
Derechos reservados International Journal of Energy Economics and Policy |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.eng.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados International Journal of Energy Economics and Policy https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/ef4338f9-51eb-48d4-be29-701d8e43f994/download https://dspace7-uao.metacatalogo.com/bitstreams/7fb36d13-4b79-44ca-acd3-aeb880f9a1e1/download https://dspace7-uao.metacatalogo.com/bitstreams/bd5ea97f-97ed-4c17-9363-581a389459d1/download https://dspace7-uao.metacatalogo.com/bitstreams/ee495c74-714c-4502-843f-7bc869b7e2db/download |
bitstream.checksum.fl_str_mv |
6161736fbbb4827eb121f3791a45e61d 20b5ba22b1117f71589c7318baa2c560 ac49f283c73dd85193d6d6e93ba3cc45 b1a5285b3530d26b7eae4a6e5486d204 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260104641380352 |
spelling |
Restrepo Trujillo, Jdb0c8fe5057a6ca2d9726788bd53e6bbMoreno-Chuquen, Ricardof36efacf1d947d7410ab7d332d414753Jiménez garcía, Francy Nellye956af0d3e2746d9bb1ab1c26ddeaf7e2021-09-29T20:28:19Z2021-09-29T20:28:19Z2020-08-1721464553https://hdl.handle.net/10614/13289The phenomena of climatic variability such as El Niño affect the expansion planning of electricity supply systems with hydroelectric power plants due to the uncertainty presented in the variables of rainfall patterns, temperature, wind, solar radiation changes, among others. The El Niño affects the electricity generation in Colombia, Venezuela and northwestern Brazil due to severe droughts that reduce water flows in rivers and water volume in dams. While in Peru, Paraguay, Bolivia, Uruguay, Argentina and southern Brazil, causes heavy rains that lead to an increase in reservoirs. Recent findings provide sufficient evidence on how climate change modifies the patterns of duration, frequency and intensity of El Niño and therefore will introduce additional uncertainties to the expansion planning of electricity generation systems in countries that uses predominantly hydroelectric power. The vulnerability of electricity supply systems with a significant participation of hydroelectric power plants in Colombia, Brazil, Ecuador, Peru, Panama, Canada, Norway, Costa Rica and New Zealand is associated with fluctuations in the availability of water resources. This document aims to analyze the current plans for the expansion of electric power generation systems by the aforementioned countries in the context of climate change in medium and long term. Additionally, this document provides a detailed analysis of the situation of electricity supply systems in Colombia12 páginasapplication/pdfspaDerechos reservados International Journal of Energy Economics and Policyhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Fenómeno del niñoCambios climáticosProducción de energía eléctricaClimatic changesElectric power productionEl Niño PhenomenonVulnerabilityWater resourceDevelopment planningColombiaStrategies of expansion for electric power systems based on hydroelectric plants in the context of climate change: case of analysis of ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Volumen 10, número 6 (2020)74Número 666Volumen 10Restrepo Trujillo, J., Moreno Chuquen, R., Jiménez García F. N. (2020). Strategies of expansion for electric power systems based on hydroelectric plants in the context of climate change: case of analysis of Colombia. International Journal of Energy Economics and Policy. (Vol. 10 (6), pp. 66-74. DOI: https://doi.org/10.32479/ijeep.9813International Journal of Energy Economics and PolicyAita, P.G. (2006), Perú potencial energético: Propuestas y desafíos. Revista de Derecho Administrativo, 16, 217-231Alley, R., Berntsen, T., Bindoff, N. L., Chen, Z., Chidthaisong, A., Friedlingstein, P., Zwiers, F. (2007), Intergovernmental Panel on Climate Change Climate Change 2007: The Physical Science Basis Summary for Policymakers Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Summary for Policymakers IPCC WGI Fourth Assessment ReportAndrade, E.M., Cosenza, J.P., Rosa, L.P., Lacerda, G. (2012), The vulnerability of hydroelectric generation in the Nortneast of Barzil: The environmental and business risks for CHESF. Renewable and Sustainable Energy Reviews, 16, 5760-5769Australian Bureau of Meteorology, Commonwealth Scientific and Industrial Research Organisation. (2011), Climate Change in the Pacific: Scientific Assessment and New Research, Regional Overview. Vol. 1. Canberra: Commonwealth Scientific and Industrial Research OrganisationCai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y., Carréric, A., McPhaden, M.J. (2018), Increased variability of eastern pacific El Niño under greenhouse warming. Nature, 564(7735), 201-206Carvajal, P.E., Li, F.G.N., Soria, R., Cronin, J., Anandarajah, G., Mulugetta, Y. (2019), Large hydropower, decarbonisation and climate change uncertainty: Modelling power sector pathways for Ecuador. Energy Strategy Reviews, 23, 86-99.Chilkoti, V., Bolisetti, T., Balachandar, R. (2017), Climate change impact assessment on hydropower generation using multi-model climate ensemble. Renewable Energy, 109, 510-517Comisión de Regulación de Energía y Gas. (2006), Resolución 071 de 2006. Available from: http://www.apolo.creg.gov.co/publicac.nsf/ indice01/resolucion-2006-creg071-2006De Jong, P., Souza, C., Santos, A., Dargaville, R., Kiperstok, A., Andrade, E. (2018), Hydroelectric production from Brazil’s São Francisco River could cease due to climate change and inter-annual variability. Science of the Total Environment, 634, 1540-1553Dubrovsky, H., Sbroiavacca, N.D., Nadal, G., Lisperguer, R.C. (2019), Rol y Perspectivas del Sector Eléctrico en la Transformación Energética de América Latina-Aportes a la Implementación del Observatorio Regional Sobre Energías Sostenibles. Available from: http://www. cepal.org/appsGovernment of Canada. (2015), Indicators of Climate Variability and Change Natural Resources Canada. Available from: http://www. nrcan.gc.ca/environment/resources/publications/impacts-adaptation/ reports/assessments/2008/ch8/10387. [Last accessed on 2018 Jul 26].Instituto Costarricense de Electricidad. (2016a), Plan de Expansion de la Generacion Electrica Periodo 2016-2035. Available from: http:// www.grupoice.comInstituto Costarricense de Electricidad. (2017), Sistema Eléctrico de Costa Rica se Consolida Como Modelo de Generación RenovablePresidencia de la República de Costa Rica. Available from: https:// www.presidencia.go.cr/comunicados/2017/12/sistema-electricode-costa-rica-se-consolida-como-modelo-de-generacion-renovable. [Last accessed on 2018 Jul 21].nternational Energy Agency (IEA). (2016), Energy Policies of International Energy Agengy-Norway 2017 Review. International Energy Agency (IEA). Available from: http://www.iea.org/publications/ freepublications/publication/energypoliciesofieacountriesnorway2017. pdfInternational Energy Agency. (2015), Statistics Costa Rica-Total Primary Energy Supply (TPES) by Source (Chart). Available from: https:// www.iea.org/statistics/?country=costarica&year=2016&category=k ey indicators&indicator=tpesbysource&mode=chart&categorybrow se=false&datatable=balances&showdatatable=false. [Last accessed on 2018 Oct 06International Energy Agency. (2017a), Brazil. Available from: https:// www.iea.org/countries/brazil. [Last accessed on 2019 Feb 09International Energy Agency. (2017f), Norway. Available from: https:// www.iea.org/countries/norway. [Last accessed on 2019 Feb 09International Energy Agency. (2017h), Venezuela. Available from: https:// www.iea.org/countries/venezuela. [Last accessed on 2019 Feb 09IPCC. (2007), Cambio Climático 2007: Informe de Síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de Evaluación del Grupo Intergubernamental de Expertos Sobre el Cambio Climático. Vol. 446. Geneva: Intergovernmental Panel on Climate ChangeIrandoust, M. (2018), Innovations and renewables in the Nordic countries: A panel causality approach. Technology in Society, 54, 87-92Ministerio de Energía y Minas. (2016), Anuario Ejecutivo de Electricidad 2016 Gobierno del Perú. Available from: https://www.gob.pe/ institucion/minem/informes-publicaciones/112025-anuarioejecutivo-de-electricidad-2016Miremadi, I., Saboohi, Y. (2018), Planning for investment in energy innovation: Developing an analytical tool to explore the impact of knowledge flow. International Journal of Energy Economics and Policy, 8(2), 7-19Neelin, J.D., Battisti, D.S., Hirst, A.C., Jin, F.F., Wakata, Y., Yamagata, T., Zebiak, S.E. (1998), ENSO theory. Journal of Geophysical Research: Oceans, 103, 14261-14290Ollila, J. (2017), Nordic Energy Co-Operation: Strong Today-Stronger Tomorrow. Copenhagen: Nordisk MinisterrådPaz, J., Kelman, R., Navas, S., Okamura, L., Feliu, E., Del Jesus, M. (2019), Vulnerabilidad al Cambio Climático y Medidas de Adaptación de los Sistemas Hidroeléctricos en los Países Andinos Publications. Available from: https://www.publications.iadb.org/publications/ spanish/document/Vulnerabilidad_al_cambio_climático_y_ medidas_de_adaptación_de_los_sistemas_hidroeléctricos_en_los_ países_andinos.pdfPrograma de las Naciones Unidas Para el Desarrollo. (2015), Plan Energético Nacional 2015-2050. Available from: http://www.pa.undp. org/content/panama/es/home/search.html?q=plan+energético. [Last accessed on 2019 Jan 28]Samprogna, G., Rodriguez, D., Tomasella, J., Siqueira, J. (2015), Exploratory analyses for the assessment of climate change impacts on the energy production in an Amazon run-of-river hydropower plant. Journal of Hydrology: Regional Studies, 4, 41-59Sociedad. (2016), Represa Itaipú, Símbolo de Energía Limpia en Paraguay, Lucha Contra El Niño-Socieda-d-Diario La Informacion, La Información. Available from: https://www. lainformacion.com/catastrofes-y-accidentes/inundaciones/represaitaipu-simbolo-de-energia-limpia-en-paraguay-lucha-contra-elnino_l6qrho5xdreaop5d3ake76Trenberth, K.E., Stepaniak, D.P., Trenberth, K.E., Stepaniak, D.P. (2001), Indices of El Niño evolution. Journal of Climate, 14(8), 1697-1701Unión Temporal ACOM-OPTIM. (2013), Estudio Para Determinar la Vulnerabilidad y las Opciones de Adaptación del Sector Energético Colombiano Frente al Cambio Climático, Bogotá. Available from: https://www.drive.google.com/drive/folders/1xljrs07vht-m78- 2jiuje4c_a4q9htq0XM Compañía de Expertos en Mercados. (2019b), Generación del SIN. Available from: http://www.informesanuales.xm.com.co/2017/ sitepages/operacion/3-6-generacion-del-sin.aspx. [Last accessed on 2019 May 22Comunidad universitaria en generalPublicationORIGINALStrategies_of_Expansion_for_Electric_Power_Systems.pdfStrategies_of_Expansion_for_Electric_Power_Systems.pdfTexto completo del artículoapplication/pdf1016972https://dspace7-uao.metacatalogo.com/bitstreams/ef4338f9-51eb-48d4-be29-701d8e43f994/download6161736fbbb4827eb121f3791a45e61dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/7fb36d13-4b79-44ca-acd3-aeb880f9a1e1/download20b5ba22b1117f71589c7318baa2c560MD52TEXTStrategies_of_Expansion_for_Electric_Power_Systems.pdf.txtStrategies_of_Expansion_for_Electric_Power_Systems.pdf.txtExtracted texttext/plain50661https://dspace7-uao.metacatalogo.com/bitstreams/bd5ea97f-97ed-4c17-9363-581a389459d1/downloadac49f283c73dd85193d6d6e93ba3cc45MD53THUMBNAILStrategies_of_Expansion_for_Electric_Power_Systems.pdf.jpgStrategies_of_Expansion_for_Electric_Power_Systems.pdf.jpgGenerated Thumbnailimage/jpeg16210https://dspace7-uao.metacatalogo.com/bitstreams/ee495c74-714c-4502-843f-7bc869b7e2db/downloadb1a5285b3530d26b7eae4a6e5486d204MD5410614/13289oai:dspace7-uao.metacatalogo.com:10614/132892024-01-19 17:02:24.476https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados International Journal of Energy Economics and Policyopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |