Diseño de mecanismos flexibles usando el método de optimización topológica

El trabajo inicia con la recopilación de la información relacionada con los diferentes métodos de optimización topológica, como son el criterio de optimalidad, el modelo SIMP (Solid Isotropic Material with Penalty). También sobre métodos de elementos finitos, necesarios para la solución de este tipo...

Full description

Autores:
Tamayo Potes, Fernando
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2013
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/4994
Acceso en línea:
http://hdl.handle.net/10614/4994
Palabra clave:
Ingeniería Mecánica
Diseño mecánico
Métodos de elementos finitos
Finite element method
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc/4.0/
id REPOUAO2_31ab4a4ca89a690b24b6a2c1572ece36
oai_identifier_str oai:red.uao.edu.co:10614/4994
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.spa.fl_str_mv Diseño de mecanismos flexibles usando el método de optimización topológica
title Diseño de mecanismos flexibles usando el método de optimización topológica
spellingShingle Diseño de mecanismos flexibles usando el método de optimización topológica
Ingeniería Mecánica
Diseño mecánico
Métodos de elementos finitos
Finite element method
title_short Diseño de mecanismos flexibles usando el método de optimización topológica
title_full Diseño de mecanismos flexibles usando el método de optimización topológica
title_fullStr Diseño de mecanismos flexibles usando el método de optimización topológica
title_full_unstemmed Diseño de mecanismos flexibles usando el método de optimización topológica
title_sort Diseño de mecanismos flexibles usando el método de optimización topológica
dc.creator.fl_str_mv Tamayo Potes, Fernando
dc.contributor.author.spa.fl_str_mv Tamayo Potes, Fernando
dc.subject.spa.fl_str_mv Ingeniería Mecánica
Diseño mecánico
Métodos de elementos finitos
topic Ingeniería Mecánica
Diseño mecánico
Métodos de elementos finitos
Finite element method
dc.subject.eng.fl_str_mv Finite element method
description El trabajo inicia con la recopilación de la información relacionada con los diferentes métodos de optimización topológica, como son el criterio de optimalidad, el modelo SIMP (Solid Isotropic Material with Penalty). También sobre métodos de elementos finitos, necesarios para la solución de este tipo de problemas, esto permitirá adquirir el conocimiento teórico y la destreza necesaria para abordar el problema de OT. Simultáneamente, se analizarán los método del criterio de optimalidad y la programación lineal secuencial (PLS), usados para solucionar el problema de optimización. Luego se realizarán análisis por elementos finitos de problemas simples, como el cálculo de esfuerzos en dominios unidimensionales y bidimensionales, usando los elementos rectangulares de cuatro nodos y los triangulares de tres nodos. Una vez dominados estos conceptos, se procederá a la implementación del código en Matlab. Se realizará una verificación del funcionamiento del código, solucionando problemas con soluciones conocidas reportadas en la literatura, como por ejemplo, el mecanismo inversor y el gripper (pinza). Una vez se compruebe el correcto funcionamiento del código, se usará para la síntesis de mecanismos flexibles en dominios bidimensionales, analizando el efecto de los parámetros de cálculo sobre el mecanismo final Finalmente, se diseñará y construirá un mecanismo flexible que reemplace un mecanismo de eslabones y juntas existente. Este mecanismo será diseñado por OT, Se interpretará y analizará con un software de análisis por elementos finitos como Ansys para corroborar el resultado obtenido y fabricado en la máquina de corte por láser usando algún material polimérico, como PVC o acrílico
publishDate 2013
dc.date.accessioned.spa.fl_str_mv 2013-05-03T01:23:13Z
dc.date.available.spa.fl_str_mv 2013-05-03T01:23:13Z
dc.date.issued.spa.fl_str_mv 2013-03
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/10614/4994
url http://hdl.handle.net/10614/4994
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.spa.fl_str_mv Universidad Autónoma de Occidente
dc.publisher.program.spa.fl_str_mv Ingeniería Mecánica
dc.publisher.department.spa.fl_str_mv Departamento de Energética y Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.source.spa.fl_str_mv instname:Universidad Autónoma de Occidente
reponame:Repositorio Institucional UAO
instname_str Universidad Autónoma de Occidente
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/875f90fd-94c2-467d-a01d-c2aae7a61eda/download
https://dspace7-uao.metacatalogo.com/bitstreams/5b8875eb-63ce-4a53-a085-29358703920e/download
https://dspace7-uao.metacatalogo.com/bitstreams/ac6f129a-7327-465d-a848-3c7cb481ab6a/download
https://dspace7-uao.metacatalogo.com/bitstreams/eccc176b-2dbf-4b14-a684-5b266c9851be/download
bitstream.checksum.fl_str_mv 1b0254684b3801bca8ba4013cef5d17b
ea2e7ed7d938eca28316e61e6fd08bcc
e2dd342f2c351b678ff0101de2d0e3d8
186913e7351000516bb95099d722afdc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259775928532992
spelling Tamayo Potes, Fernandofd1e1521e7b1cdc7e1077bc904ad8e52-1Ingeniero MecánicoUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2013-05-03T01:23:13Z2013-05-03T01:23:13Z2013-03http://hdl.handle.net/10614/4994El trabajo inicia con la recopilación de la información relacionada con los diferentes métodos de optimización topológica, como son el criterio de optimalidad, el modelo SIMP (Solid Isotropic Material with Penalty). También sobre métodos de elementos finitos, necesarios para la solución de este tipo de problemas, esto permitirá adquirir el conocimiento teórico y la destreza necesaria para abordar el problema de OT. Simultáneamente, se analizarán los método del criterio de optimalidad y la programación lineal secuencial (PLS), usados para solucionar el problema de optimización. Luego se realizarán análisis por elementos finitos de problemas simples, como el cálculo de esfuerzos en dominios unidimensionales y bidimensionales, usando los elementos rectangulares de cuatro nodos y los triangulares de tres nodos. Una vez dominados estos conceptos, se procederá a la implementación del código en Matlab. Se realizará una verificación del funcionamiento del código, solucionando problemas con soluciones conocidas reportadas en la literatura, como por ejemplo, el mecanismo inversor y el gripper (pinza). Una vez se compruebe el correcto funcionamiento del código, se usará para la síntesis de mecanismos flexibles en dominios bidimensionales, analizando el efecto de los parámetros de cálculo sobre el mecanismo final Finalmente, se diseñará y construirá un mecanismo flexible que reemplace un mecanismo de eslabones y juntas existente. Este mecanismo será diseñado por OT, Se interpretará y analizará con un software de análisis por elementos finitos como Ansys para corroborar el resultado obtenido y fabricado en la máquina de corte por láser usando algún material polimérico, como PVC o acrílicoProyecto de Grado (Ingeniero Mecánico)-- Universidad Autónoma de Occidente, 2013PregradoIngeniero(a) Mecánico(a)application/pdfspaUniversidad Autónoma de OccidenteIngeniería MecánicaDepartamento de Energética y MecánicaFacultad de IngenieríaEL AUTOR autoriza a la Universidad Autónoma de Occidente, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, la Decisión andina 351 de 1993, el Decreto 460 de 1995 y demás leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos. PARÁGRAFO: Esta autorización además de ser válida para las facultades y derechos de uso sobre la obra en formato o soporte material, también para formato digital, electrónico, virtual, para usos en red, Internet, extranet, intranet, biblioteca digital y demás para cualquier formato conocido o por conocer. EL AUTOR, expresa que el documento (trabajo de grado, pasantía, casos o tesis) objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, el documento (trabajo de grado, pasantía, casos o tesis) es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRADO: en caso de presentarse alguna reclamación o acción por parte de un tercero, referente a los derechos de autor sobre el documento (Trabajo de grado, Pasantía, casos o tesis) en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Autónoma de Occidente actúa como un tercero de buena fe. Toda persona que consulte ya sea en la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuente, es decir el título del trabajo y el autor. Esta autorización no implica renuncia a la facultad que tengo de publicar total o parcialmente la obra.https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAOIngeniería MecánicaDiseño mecánicoMétodos de elementos finitosFinite element methodDiseño de mecanismos flexibles usando el método de optimización topológicaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PublicationTHUMBNAILTME01377.pdf.jpgTME01377.pdf.jpgGenerated Thumbnailimage/jpeg5880https://dspace7-uao.metacatalogo.com/bitstreams/875f90fd-94c2-467d-a01d-c2aae7a61eda/download1b0254684b3801bca8ba4013cef5d17bMD54ORIGINALTME01377.pdfTME01377.pdfapplication/pdf8032784https://dspace7-uao.metacatalogo.com/bitstreams/5b8875eb-63ce-4a53-a085-29358703920e/downloadea2e7ed7d938eca28316e61e6fd08bccMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-816237https://dspace7-uao.metacatalogo.com/bitstreams/ac6f129a-7327-465d-a848-3c7cb481ab6a/downloade2dd342f2c351b678ff0101de2d0e3d8MD52TEXTTME01377.pdf.txtTME01377.pdf.txtExtracted texttext/plain76333https://dspace7-uao.metacatalogo.com/bitstreams/eccc176b-2dbf-4b14-a684-5b266c9851be/download186913e7351000516bb95099d722afdcMD5310614/4994oai:dspace7-uao.metacatalogo.com:10614/49942024-01-19 15:34:50.536https://creativecommons.org/licenses/by-nc/4.0/EL AUTOR autoriza a la Universidad Autónoma de Occidente, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, la Decisión andina 351 de 1993, el Decreto 460 de 1995 y demás leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos. PARÁGRAFO: Esta autorización además de ser válida para las facultades y derechos de uso sobre la obra en formato o soporte material, también para formato digital, electrónico, virtual, para usos en red, Internet, extranet, intranet, biblioteca digital y demás para cualquier formato conocido o por conocer. EL AUTOR, expresa que el documento (trabajo de grado, pasantía, casos o tesis) objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, el documento (trabajo de grado, pasantía, casos o tesis) es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRADO: en caso de presentarse alguna reclamación o acción por parte de un tercero, referente a los derechos de autor sobre el documento (Trabajo de grado, Pasantía, casos o tesis) en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Autónoma de Occidente actúa como un tercero de buena fe. Toda persona que consulte ya sea en la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuente, es decir el título del trabajo y el autor. Esta autorización no implica renuncia a la facultad que tengo de publicar total o parcialmente la obra.open.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coPGh0bWw+CjxoZWFkPgo8dGl0bGU+Q3JlYXRpdmUgQ29tbW9ucyBDb2xvbWJpYTwvdGl0bGU+CjwvaGVhZD4KPGJvZHkgPgoKPGRpdiBpZD0iZGVlZCI+Cjxici8+Cgo8dGQgYWxpZ249Imp1c3RpZnkiPgo8cD48c3Ryb25nPlBhcmEgdGVuZXIgbcOhcyBpbmZvcm1hY2nDs24gdmlzaXRlOjwvc3Ryb25nPjwvcD4KPHA+Q3JlYXRpdmUgQ29tbW9ucyBDb2xvbWJpYSAKPGEgaHJlZj0iaHR0cDovL2NvLmNyZWF0aXZlY29tbW9ucy5vcmcvIiBUQVJHRVQ9Il9uZXciPmh0dHA6Ly9jby5jcmVhdGl2ZWNvbW1vbnMub3JnLwo8L2E+PC9wPgo8cD5DcmVhdGl2ZSBDb21tb25zCjxhIGhyZWY9Imh0dHA6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnLyIgVEFSR0VUPSJfbmV3Ij5odHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy88L2E+CjwvcD48YnI+Cgo8ZGl2IHN0eWxlPSJ3aWR0aDo4MDBweDtoZWlnaHQ6MjQyMHB4O2JvcmRlcjoycHggZG91YmxlICMxOTU4OTc7Ij4KCjxwIGFsaWduPSJjZW50ZXIiPjxzdHJvbmc+TGljZW5jaWEgPC9zdHJvbmc+PC9wPgoKICA8cD48Zm9udCBzaXplPSIxIj5MQSBPQlJBIChUQUwgWSBDT01PIFNFIERFRklORSBNw4FTIEFERUxBTlRFKSBTRSBPVE9SR0EgQkFKTyBMT1MgVEVSTUlOT1MgREUgRVNUQSBMSUNFTkNJQSBQw5pCTElDQSBERSBDUkVBVElWRSBDT01NT05TICjigJxMUEND4oCdIE8g4oCcTElDRU5DSUHigJ0pLiBMQSBPQlJBIEVTVMOBIFBST1RFR0lEQSBQT1IgREVSRUNIT1MgREUgQVVUT1IgWS9VIE9UUkFTIExFWUVTIEFQTElDQUJMRVMuIFFVRURBIFBST0hJQklETyBDVUFMUVVJRVIgVVNPIFFVRSBTRSBIQUdBIERFIExBIE9CUkEgUVVFIE5PIENVRU5URSBDT04gTEEgQVVUT1JJWkFDScOTTiBQRVJUSU5FTlRFIERFIENPTkZPUk1JREFEIENPTiBMT1MgVMOJUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgWSBERSBMQSBMRVkgREUgREVSRUNITyBERSBBVVRPUi48L3A+CgogIDxwPk1FRElBTlRFIEVMIEVKRVJDSUNJTyBERSBDVUFMUVVJRVJBIERFIExPUyBERVJFQ0hPUyBRVUUgU0UgT1RPUkdBTiBFTiBFU1RBIExJQ0VOQ0lBLCBVU1RFRCBBQ0VQVEEgWSBBQ1VFUkRBIFFVRURBUiBPQkxJR0FETyBFTiBMT1MgVEVSTUlOT1MgUVVFIFNFIFNFw5FBTEFOIEVOIEVMTEEuIEVMIExJQ0VOQ0lBTlRFIENPTkNFREUgQSBVU1RFRCBMT1MgREVSRUNIT1MgQ09OVEVOSURPUyBFTiBFU1RBIExJQ0VOQ0lBIENPTkRJQ0lPTkFET1MgQSBMQSBBQ0VQVEFDScOTTiBERSBTVVMgVEVSTUlOT1MgWSBDT05ESUNJT05FUy4gPC9mb250PjwvcD4KCiAgPHA+PHN0cm9uZz4xLiBEZWZpbmljaW9uZXMgPC9zdHJvbmc+PC9wPgoKICA8b2wgdHlwZT0nYSc+CgogICAgPGxpPjxzdHJvbmc+T2JyYSBDb2xlY3RpdmEgPC9zdHJvbmc+IGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4gPC9saT4KCiAgPGxpPjxzdHJvbmc+T2JyYSBEZXJpdmFkYSA8L3N0cm9uZz4gc2lnbmlmaWNhIHVuYSBvYnJhIGJhc2FkYSBlbiBsYSBvYnJhIG9iamV0byBkZSBlc3RhIGxpY2VuY2lhIG8gZW4gw6lzdGEgeSBvdHJhcyBvYnJhcyBwcmVleGlzdGVudGVzLCB0YWxlcyBjb21vIHRyYWR1Y2Npb25lcywgYXJyZWdsb3MgbXVzaWNhbGVzLCBkcmFtYXRpemFjaW9uZXMsIOKAnGZpY2Npb25hbGl6YWNpb25lc+KAnSwgdmVyc2lvbmVzIHBhcmEgY2luZSwg4oCcZ3JhYmFjaW9uZXMgZGUgc29uaWRv4oCdLCByZXByb2R1Y2Npb25lcyBkZSBhcnRlLCByZXPDum1lbmVzLCBjb25kZW5zYWNpb25lcywgbyBjdWFscXVpZXIgb3RyYSBlbiBsYSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgdHJhbnNmb3JtYWRhLCBjYW1iaWFkYSBvIGFkYXB0YWRhLCBleGNlcHRvIGFxdWVsbGFzIHF1ZSBjb25zdGl0dXlhbiB1bmEgb2JyYSBjb2xlY3RpdmEsIGxhcyBxdWUgbm8gc2Vyw6FuIGNvbnNpZGVyYWRhcyB1bmEgb2JyYSBkZXJpdmFkYSBwYXJhIGVmZWN0b3MgZGUgZXN0YSBsaWNlbmNpYS4gKFBhcmEgZXZpdGFyIGR1ZGFzLCBlbiBlbCBjYXNvIGRlIHF1ZSBsYSBPYnJhIHNlYSB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWwgbyB1bmEgZ3JhYmFjacOzbiBzb25vcmEsIHBhcmEgbG9zIGVmZWN0b3MgZGUgZXN0YSBMaWNlbmNpYSBsYSBzaW5jcm9uaXphY2nDs24gdGVtcG9yYWwgZGUgbGEgT2JyYSBjb24gdW5hIGltYWdlbiBlbiBtb3ZpbWllbnRvIHNlIGNvbnNpZGVyYXLDoSB1bmEgT2JyYSBEZXJpdmFkYSBwYXJhIGxvcyBmaW5lcyBkZSBlc3RhIGxpY2VuY2lhKS4gPC9saT4KCiAgPGxpPjxzdHJvbmc+TGljZW5jaWFudGUsIDwvc3Ryb25nPiBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIDwvbGk+CgogIDxsaT48c3Ryb25nPkF1dG9yIG9yaWdpbmFsLCA8L3N0cm9uZz5lcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuIDwvbGk+CgogIDxsaT48c3Ryb25nPk9icmE8L3N0cm9uZz4sIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEgPC9saT4KCiAgPGxpPjxzdHJvbmc+VXN0ZWQ8L3N0cm9uZz4sIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuIDwvbGk+CgogIDwvb2w+CgogIDxwPjxzdHJvbmc+Mi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuIDwvc3Ryb25nPjwvcD4KCiAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuIDwvcD4KCiAgPHA+PHN0cm9uZz4zLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLiA8L3N0cm9uZz48L3A+CgogIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246IDwvcD4KCiAgPG9sIHR5cGU9J2EnPgoKICAgIDxsaT4gUmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhczsgPC9saT4KCiAgPGxpPiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGE7IDwvbGk+CgogIDxsaT4gRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gPC9saT4KCiAgPC9vbD4KCiAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4gPC9wPgoKICA8cD48c3Ryb25nPjQuIFJlc3RyaWNjaW9uZXMuIDwvc3Ryb25nPjwvcD4KCiAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6IDwvcD4KCiAgPG9sIHR5cGU9J2EnPgoKICAgIDxsaT4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLiA8L2xpPgoKICA8bGk+IFVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4gPC9saT4KCiAgPGxpPiBTaSB1c3RlZCBkaXN0cmlidXllLCBleGhpYmUgcMO6YmxpY2FtZW50ZSwgZWplY3V0YSBww7pibGljYW1lbnRlIG8gZWplY3V0YSBww7pibGljYW1lbnRlIGVuIGZvcm1hIGRpZ2l0YWwgbGEgT2JyYSBvIGN1YWxxdWllciBPYnJhIERlcml2YWRhIHUgT2JyYSBDb2xlY3RpdmEsIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0YSB0b2RhIGxhIGluZm9ybWFjacOzbiBkZSBkZXJlY2hvIGRlIGF1dG9yIGRlIGxhIE9icmEgeSBwcm9wb3JjaW9uYXIsIGRlIGZvcm1hIHJhem9uYWJsZSBzZWfDum4gZWwgbWVkaW8gbyBtYW5lcmEgcXVlIFVzdGVkIGVzdMOpIHV0aWxpemFuZG86IChpKSBlbCBub21icmUgZGVsIEF1dG9yIE9yaWdpbmFsIHNpIGVzdMOhIHByb3Zpc3RvIChvIHNldWTDs25pbW8sIHNpIGZ1ZXJlIGFwbGljYWJsZSksIHkvbyAoaWkpIGVsIG5vbWJyZSBkZSBsYSBwYXJ0ZSBvIGxhcyBwYXJ0ZXMgcXVlIGVsIEF1dG9yIE9yaWdpbmFsIHkvbyBlbCBMaWNlbmNpYW50ZSBodWJpZXJlbiBkZXNpZ25hZG8gcGFyYSBsYSBhdHJpYnVjacOzbiAodi5nLiwgdW4gaW5zdGl0dXRvIHBhdHJvY2luYWRvciwgZWRpdG9yaWFsLCBwdWJsaWNhY2nDs24pIGVuIGxhIGluZm9ybWFjacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGVsIExpY2VuY2lhbnRlLCB0w6lybWlub3MgZGUgc2VydmljaW9zIG8gZGUgb3RyYXMgZm9ybWFzIHJhem9uYWJsZXM7IGVsIHTDrXR1bG8gZGUgbGEgT2JyYSBzaSBlc3TDoSBwcm92aXN0bzsgZW4gbGEgbWVkaWRhIGRlIGxvIHJhem9uYWJsZW1lbnRlIGZhY3RpYmxlIHksIHNpIGVzdMOhIHByb3Zpc3RvLCBlbCBJZGVudGlmaWNhZG9yIFVuaWZvcm1lIGRlIFJlY3Vyc29zIChVbmlmb3JtIFJlc291cmNlIElkZW50aWZpZXIpIHF1ZSBlbCBMaWNlbmNpYW50ZSBlc3BlY2lmaWNhIHBhcmEgc2VyIGFzb2NpYWRvIGNvbiBsYSBPYnJhLCBzYWx2byBxdWUgdGFsIFVSSSBubyBzZSByZWZpZXJhIGEgbGEgbm90YSBzb2JyZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgbyBhIGxhIGluZm9ybWFjacOzbiBzb2JyZSBlbCBsaWNlbmNpYW1pZW50byBkZSBsYSBPYnJhOyB5IGVuIGVsIGNhc28gZGUgdW5hIE9icmEgRGVyaXZhZGEsIGF0cmlidWlyIGVsIGNyw6lkaXRvIGlkZW50aWZpY2FuZG8gZWwgdXNvIGRlIGxhIE9icmEgZW4gbGEgT2JyYSBEZXJpdmFkYSAodi5nLiwgIlRyYWR1Y2Npw7NuIEZyYW5jZXNhIGRlIGxhIE9icmEgZGVsIEF1dG9yIE9yaWdpbmFsLCIgbyAiR3Vpw7NuIENpbmVtYXRvZ3LDoWZpY28gYmFzYWRvIGVuIGxhIE9icmEgb3JpZ2luYWwgZGVsIEF1dG9yIE9yaWdpbmFsIikuIFRhbCBjcsOpZGl0byBwdWVkZSBzZXIgaW1wbGVtZW50YWRvIGRlIGN1YWxxdWllciBmb3JtYSByYXpvbmFibGU7IGVuIGVsIGNhc28sIHNpbiBlbWJhcmdvLCBkZSBPYnJhcyBEZXJpdmFkYXMgdSBPYnJhcyBDb2xlY3RpdmFzLCB0YWwgY3LDqWRpdG8gYXBhcmVjZXLDoSwgY29tbyBtw61uaW1vLCBkb25kZSBhcGFyZWNlIGVsIGNyw6lkaXRvIGRlIGN1YWxxdWllciBvdHJvIGF1dG9yIGNvbXBhcmFibGUgeSBkZSB1bmEgbWFuZXJhLCBhbCBtZW5vcywgdGFuIGRlc3RhY2FkYSBjb21vIGVsIGNyw6lkaXRvIGRlIG90cm8gYXV0b3IgY29tcGFyYWJsZS4gPC9saT4KCiAgPGxpPiBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKCiAgICA8b2wgdHlwZT0naSc+CgogICAgICA8bGk+IFJlZ2Fsw61hcyBwb3IgaW50ZXJwcmV0YWNpw7NuIHkgZWplY3VjacOzbiBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMuIEVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgYXV0b3JpemFyIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgbyBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSB5IGRlIHJlY29sZWN0YXIsIHNlYSBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBTQVlDTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgbyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvIFdlYmNhc3QpIGxpY2VuY2lhZGEgYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLCBzaSBsYSBpbnRlcnByZXRhY2nDs24gbyBlamVjdWNpw7NuIGRlIGxhIG9icmEgZXN0w6EgcHJpbW9yZGlhbG1lbnRlIG9yaWVudGFkYSBwb3IgbyBkaXJpZ2lkYSBhIGxhIG9idGVuY2nDs24gZGUgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuIDwvbGk+CgogICAgPGxpPiBSZWdhbMOtYXMgcG9yIEZvbm9ncmFtYXMuIEVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCB1bmEgYWdlbmNpYSBkZSBkZXJlY2hvcyBtdXNpY2FsZXMgbyBhbGfDum4gYWdlbnRlIGRlc2lnbmFkbywgbGFzIHJlZ2Fsw61hcyBwb3IgY3VhbHF1aWVyIGZvbm9ncmFtYSBxdWUgVXN0ZWQgY3JlZSBhIHBhcnRpciBkZSBsYSBvYnJhICjigJx2ZXJzacOzbiBjb3ZlcuKAnSkgeSBkaXN0cmlidXlhLCBlbiBsb3MgdMOpcm1pbm9zIGRlbCByw6lnaW1lbiBkZSBkZXJlY2hvcyBkZSBhdXRvciwgc2kgbGEgY3JlYWNpw7NuIG8gZGlzdHJpYnVjacOzbiBkZSBlc2EgdmVyc2nDs24gY292ZXIgZXN0w6EgcHJpbW9yZGlhbG1lbnRlIGRlc3RpbmFkYSBvIGRpcmlnaWRhIGEgb2J0ZW5lciB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gPC9saT4KCiAgICA8L29sPjwvbGk+CgogIDxsaT4gR2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFjaW5wcm8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiA8L2xpPgoKICAgIAoKICA8L29sPgoKICA8cD48c3Ryb25nPjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLiA8L3N0cm9uZz48L3A+CgogIDxwPjxmb250IHNpemU9IjEiPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuIDwvcD4KCiAgPHA+PHN0cm9uZz42LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuIDwvc3Ryb25nPjwvcD4KCiAgPHA+QSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4gPC9mb250PjwvcD4KCiAgPHA+PHN0cm9uZz43LiBUw6lybWlubzwvc3Ryb25nPi4gPHN0cm9uZz48L3N0cm9uZz48L3A+CgogIDxvbCB0eXBlPSdhJz4KCiAgICA8bGk+RXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuIDwvbGk+CgogICAgPGxpPlN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLiA8L2xpPgoKICA8L29sPgoKICA8cD48c3Ryb25nPjguIFZhcmlvcy4gPC9zdHJvbmc+PC9wPgoKICA8b2wgdHlwZT0nYSc+CgogICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuIDwvbGk+CgogIDxsaT5TaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyA8c3Ryb25nPjwvc3Ryb25nPnBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLiA8L2xpPgoKICA8bGk+TmluZ8O6biB0w6lybWlubyBvIGRpc3Bvc2ljacOzbiBkZSBlc3RhIExpY2VuY2lhIHNlIGVzdGltYXLDoSByZW51bmNpYWRhIHkgbmluZ3VuYSB2aW9sYWNpw7NuIGRlIGVsbGEgc2Vyw6EgY29uc2VudGlkYSBhIG1lbm9zIHF1ZSBlc2EgcmVudW5jaWEgbyBjb25zZW50aW1pZW50byBzZWEgb3RvcmdhZG8gcG9yIGVzY3JpdG8geSBmaXJtYWRvIHBvciBsYSBwYXJ0ZSBxdWUgcmVudW5jaWUgbyBjb25zaWVudGEuIDwvbGk+CgogIDxsaT5Fc3RhIExpY2VuY2lhIHJlZmxlamEgZWwgYWN1ZXJkbyBwbGVubyBlbnRyZSBsYXMgcGFydGVzIHJlc3BlY3RvIGEgbGEgT2JyYSBhcXXDrSBsaWNlbmNpYWRhLiBObyBoYXkgYXJyZWdsb3MsIGFjdWVyZG9zIG8gZGVjbGFyYWNpb25lcyByZXNwZWN0byBhIGxhIE9icmEgcXVlIG5vIGVzdMOpbiBlc3BlY2lmaWNhZG9zIGVuIGVzdGUgZG9jdW1lbnRvLiBFbCBMaWNlbmNpYW50ZSBubyBzZSB2ZXLDoSBsaW1pdGFkbyBwb3IgbmluZ3VuYSBkaXNwb3NpY2nDs24gYWRpY2lvbmFsIHF1ZSBwdWVkYSBzdXJnaXIgZW4gYWxndW5hIGNvbXVuaWNhY2nDs24gZW1hbmFkYSBkZSBVc3RlZC4gRXN0YSBMaWNlbmNpYSBubyBwdWVkZSBzZXIgbW9kaWZpY2FkYSBzaW4gZWwgY29uc2VudGltaWVudG8gbXV0dW8gcG9yIGVzY3JpdG8gZGVsIExpY2VuY2lhbnRlIHkgVXN0ZWQuIDwvbGk+CgogIDwvb2w+Cgo8L2Rpdj4KPC9ib2R5Pgo8L2h0bWw+Cg==