Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach
The present contribution summarizes research related to the numerical computation of pneumatic conveying systems applying the Euler/Lagrange approach. For that purpose, a rigorous modelling of the particulate phase was aspired, including the relevant fluid dynamic forces, particle‐wall collisions wi...
- Autores:
-
Laín Beatove, Santiago
Sommerfeld, Martin
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2014
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/12166
- Acceso en línea:
- http://hdl.handle.net/10614/12166
https://doi.org/10.1002/cjce.22105
- Palabra clave:
- Control neumático
Pneumatic control
Pneumatic conveying
Numerical calculation (CFD)
Euler/Lagrange approach
Horizontal pipe/bend/vertical pipe
- Rights
- openAccess
- License
- Derechos Reservados - Canadian Society for Chemical Engineering, 2015
id |
REPOUAO2_2ff79d04dcb1530d31a12a13570ff2fd |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/12166 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach |
title |
Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach |
spellingShingle |
Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach Control neumático Pneumatic control Pneumatic conveying Numerical calculation (CFD) Euler/Lagrange approach Horizontal pipe/bend/vertical pipe |
title_short |
Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach |
title_full |
Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach |
title_fullStr |
Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach |
title_full_unstemmed |
Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach |
title_sort |
Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach |
dc.creator.fl_str_mv |
Laín Beatove, Santiago Sommerfeld, Martin |
dc.contributor.author.none.fl_str_mv |
Laín Beatove, Santiago Sommerfeld, Martin |
dc.subject.armarc.spa.fl_str_mv |
Control neumático |
topic |
Control neumático Pneumatic control Pneumatic conveying Numerical calculation (CFD) Euler/Lagrange approach Horizontal pipe/bend/vertical pipe |
dc.subject.armarc.eng.fl_str_mv |
Pneumatic control |
dc.subject.proposal.eng.fl_str_mv |
Pneumatic conveying Numerical calculation (CFD) Euler/Lagrange approach Horizontal pipe/bend/vertical pipe |
description |
The present contribution summarizes research related to the numerical computation of pneumatic conveying systems applying the Euler/Lagrange approach. For that purpose, a rigorous modelling of the particulate phase was aspired, including the relevant fluid dynamic forces, particle‐wall collisions with wall roughness and inter‐particle collisions. For the validation of the computations, experiments of Huber and Sommerfeld were selected for the conveying through a 80 mm stainless steel pipe with 5 m horizontal pipe, bend and 5 m vertical pipe. The majority of the computations were done for the same pipe system; however, in this instance, consisting of 150 mm stainless steel pipes. In these cases the average conveying velocity was 27 m/s and the particle mass loading was 0.3 (mass flow rate of particles/mass flow rate of air). For this configuration the influence of wall roughness, inter‐particle collisions, particle size, and mass loading on the resulting particle concentration distribution, the secondary flow as well as the pressure drop in the different pipe elements was analyzed. Moreover, a segregation parameter was defined which describes the location of the maximum particle concentration throughout the pipe system. The secondary flow intensity (SFI) was used to characterize the influence of the particle phase on the developing structure of the secondary flow |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014-11 |
dc.date.accessioned.none.fl_str_mv |
2020-03-25T18:04:22Z |
dc.date.available.none.fl_str_mv |
2020-03-25T18:04:22Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0008-4034 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/12166 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1002/cjce.22105 |
dc.identifier.eissn.none.fl_str_mv |
ISSN:1939-019X |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
identifier_str_mv |
0008-4034 ISSN:1939-019X Universidad Autónoma de Occidente Repositorio Educativo Digital |
url |
http://hdl.handle.net/10614/12166 https://doi.org/10.1002/cjce.22105 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.eng.fl_str_mv |
The Canadian Journal Of Chemical Engineering. Volumen 93, número 1, (enero 2015); páginas 1-17 |
dc.relation.citationendpage.none.fl_str_mv |
17 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.citationstartpage.none.fl_str_mv |
1 93 |
dc.relation.cites.eng.fl_str_mv |
Lain Beatove, S., Sommerfeld, M. (2015). Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach. The Canadian Journal Of Chemical Engineering. 93(1), 1-17. https://doi.org/10.1002/cjce.22105 |
dc.relation.ispartofjournal.eng.fl_str_mv |
The Canadian Journal of Chemical Engineering |
dc.relation.references.none.fl_str_mv |
N. Huber, M. Sommerfeld, Powder Technology 1994, 79, 191 W. Siegel, Pneumatische Förderung: Grundlagen, Auslegung, Anlagenbau, Betrieb. Vogel Verlag, Würzburg 1991 S. Laín, R. Aliod, Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments. Int. J. Heat Fluid Flow 2000, 21, 374 S. Dasgupta, R. Jackson, S. Sundaresan, Powder Technology 1998, 96, 6 M.Hidayat, A. Rasmuson, Powder Technology 2005, 153, 1 H. Bilirgen, E.K. Levy, Powder Technology 2001, 119, 134 Z.F. Tian, K. Inthavong, J.Y. Tu, G.H. Yeoh, Int. J. Heat and Mass Transfer 2008, 51, 1238. A.S. Berrouk, D. Laurence, Int. J. Heat and Fluid Flow 2008, 29, 1010 M. Sommerfeld, S. Lain, Multiphase Science and Technology 2009, 21, 123 G. Kohnen, M. Rüger, M. Sommerfeld, Numerical Methods in Multiphase Flows 1994, (Eds. C.T. Crowe et al.), ASME Fluids Engineering Division Summer Meeting, Lake Tahoe, U.S.A. 1994, FED-Vol. 185, 191 S. Lain, M. Sommerfeld, CD-ROM Proceedings 7th International Conference on Multiphase Flow, ICMF2010, Tampa, FL USA, May 30. – June 4. 2010 S. Lain, M. Sommerfeld, 9th International ERCOFTAC Symposium ETMM9, Thessaloniki, Greece, 6. – 8. June 2012 S. Lain, M. Sommerfeld, 12th Int. Conf. on Multiphase Flow in Industrial Plants. Paper No. 141, Ischia (Napoli), Italy September 21-23, 2011 M. Sommerfeld, B. van Wachem, R. Oliemans, Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC, Brussels, ISBN 978-91-633-3564-8, 2008 M. Sommerfeld, G. Kohnen, M. Rüger, Proc. 9th Symp. on Turbulent Shear Flows, Kyoto, Japan, paper 15-1, 1993 Ho, C.A. and Sommerfeld, M. (2002) Modelling of micro-particle agglomeration in turbulent flow. Chemical Engineering Science, 57, 3073-3084 C.A. Ho, M. Sommerfeld, Chemie Ingenieur Technik 2005, 77, 282 M. Sommerfeld, S. Lain, Ninth International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 10-12 December 2012 M. Sommerfeld, Part. and Part. Systems Characterization 1990, 7, 209 S. Lain, M. Sommerfeld, Int. Journal of Heat and Fluid Flow, 2003, 24, 616 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Canadian Society for Chemical Engineering, 2015 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Canadian Society for Chemical Engineering, 2015 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
17 páginas |
dc.publisher.eng.fl_str_mv |
Wiley |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/858f003a-66b9-4f50-8be7-57ad7ea9a434/download https://red.uao.edu.co/bitstreams/ed20a739-d086-4ad7-9d88-da91687e844e/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259930199228416 |
spelling |
Laín Beatove, Santiagovirtual::2559-1Sommerfeld, Martin4225b01693727b10986bcc383715fa702020-03-25T18:04:22Z2020-03-25T18:04:22Z2014-110008-4034http://hdl.handle.net/10614/12166https://doi.org/10.1002/cjce.22105ISSN:1939-019XUniversidad Autónoma de OccidenteRepositorio Educativo DigitalThe present contribution summarizes research related to the numerical computation of pneumatic conveying systems applying the Euler/Lagrange approach. For that purpose, a rigorous modelling of the particulate phase was aspired, including the relevant fluid dynamic forces, particle‐wall collisions with wall roughness and inter‐particle collisions. For the validation of the computations, experiments of Huber and Sommerfeld were selected for the conveying through a 80 mm stainless steel pipe with 5 m horizontal pipe, bend and 5 m vertical pipe. The majority of the computations were done for the same pipe system; however, in this instance, consisting of 150 mm stainless steel pipes. In these cases the average conveying velocity was 27 m/s and the particle mass loading was 0.3 (mass flow rate of particles/mass flow rate of air). For this configuration the influence of wall roughness, inter‐particle collisions, particle size, and mass loading on the resulting particle concentration distribution, the secondary flow as well as the pressure drop in the different pipe elements was analyzed. Moreover, a segregation parameter was defined which describes the location of the maximum particle concentration throughout the pipe system. The secondary flow intensity (SFI) was used to characterize the influence of the particle phase on the developing structure of the secondary flowapplication/pdf17 páginasengWileyThe Canadian Journal Of Chemical Engineering. Volumen 93, número 1, (enero 2015); páginas 1-17171193Lain Beatove, S., Sommerfeld, M. (2015). Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach. The Canadian Journal Of Chemical Engineering. 93(1), 1-17. https://doi.org/10.1002/cjce.22105The Canadian Journal of Chemical EngineeringN. Huber, M. Sommerfeld, Powder Technology 1994, 79, 191W. Siegel, Pneumatische Förderung: Grundlagen, Auslegung, Anlagenbau, Betrieb. Vogel Verlag, Würzburg 1991S. Laín, R. Aliod, Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments. Int. J. Heat Fluid Flow 2000, 21, 374S. Dasgupta, R. Jackson, S. Sundaresan, Powder Technology 1998, 96, 6M.Hidayat, A. Rasmuson, Powder Technology 2005, 153, 1H. Bilirgen, E.K. Levy, Powder Technology 2001, 119, 134Z.F. Tian, K. Inthavong, J.Y. Tu, G.H. Yeoh, Int. J. Heat and Mass Transfer 2008, 51, 1238.A.S. Berrouk, D. Laurence, Int. J. Heat and Fluid Flow 2008, 29, 1010M. Sommerfeld, S. Lain, Multiphase Science and Technology 2009, 21, 123G. Kohnen, M. Rüger, M. Sommerfeld, Numerical Methods in Multiphase Flows 1994, (Eds. C.T. Crowe et al.), ASME Fluids Engineering Division Summer Meeting, Lake Tahoe, U.S.A. 1994, FED-Vol. 185, 191S. Lain, M. Sommerfeld, CD-ROM Proceedings 7th International Conference on Multiphase Flow, ICMF2010, Tampa, FL USA, May 30. – June 4. 2010S. Lain, M. Sommerfeld, 9th International ERCOFTAC Symposium ETMM9, Thessaloniki, Greece, 6. – 8. June 2012S. Lain, M. Sommerfeld, 12th Int. Conf. on Multiphase Flow in Industrial Plants. Paper No. 141, Ischia (Napoli), Italy September 21-23, 2011M. Sommerfeld, B. van Wachem, R. Oliemans, Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC, Brussels, ISBN 978-91-633-3564-8, 2008M. Sommerfeld, G. Kohnen, M. Rüger, Proc. 9th Symp. on Turbulent Shear Flows, Kyoto, Japan, paper 15-1, 1993Ho, C.A. and Sommerfeld, M. (2002) Modelling of micro-particle agglomeration in turbulent flow. Chemical Engineering Science, 57, 3073-3084C.A. Ho, M. Sommerfeld, Chemie Ingenieur Technik 2005, 77, 282M. Sommerfeld, S. Lain, Ninth International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 10-12 December 2012M. Sommerfeld, Part. and Part. Systems Characterization 1990, 7, 209S. Lain, M. Sommerfeld, Int. Journal of Heat and Fluid Flow, 2003, 24, 616Derechos Reservados - Canadian Society for Chemical Engineering, 2015https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Control neumáticoPneumatic controlPneumatic conveyingNumerical calculation (CFD)Euler/Lagrange approachHorizontal pipe/bend/vertical pipePublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2559-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2559-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2559-10000-0002-0269-2608virtual::2559-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2559-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/858f003a-66b9-4f50-8be7-57ad7ea9a434/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/ed20a739-d086-4ad7-9d88-da91687e844e/download20b5ba22b1117f71589c7318baa2c560MD5310614/12166oai:red.uao.edu.co:10614/121662024-03-06 16:42:02.976https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Canadian Society for Chemical Engineering, 2015metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |