Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach

The present contribution summarizes research related to the numerical computation of pneumatic conveying systems applying the Euler/Lagrange approach. For that purpose, a rigorous modelling of the particulate phase was aspired, including the relevant fluid dynamic forces, particle‐wall collisions wi...

Full description

Autores:
Laín Beatove, Santiago
Sommerfeld, Martin
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/12166
Acceso en línea:
http://hdl.handle.net/10614/12166
https://doi.org/10.1002/cjce.22105
Palabra clave:
Control neumático
Pneumatic control
Pneumatic conveying
Numerical calculation (CFD)
Euler/Lagrange approach
Horizontal pipe/bend/vertical pipe
Rights
openAccess
License
Derechos Reservados - Canadian Society for Chemical Engineering, 2015
id REPOUAO2_2ff79d04dcb1530d31a12a13570ff2fd
oai_identifier_str oai:red.uao.edu.co:10614/12166
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach
title Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach
spellingShingle Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach
Control neumático
Pneumatic control
Pneumatic conveying
Numerical calculation (CFD)
Euler/Lagrange approach
Horizontal pipe/bend/vertical pipe
title_short Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach
title_full Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach
title_fullStr Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach
title_full_unstemmed Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach
title_sort Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach
dc.creator.fl_str_mv Laín Beatove, Santiago
Sommerfeld, Martin
dc.contributor.author.none.fl_str_mv Laín Beatove, Santiago
Sommerfeld, Martin
dc.subject.armarc.spa.fl_str_mv Control neumático
topic Control neumático
Pneumatic control
Pneumatic conveying
Numerical calculation (CFD)
Euler/Lagrange approach
Horizontal pipe/bend/vertical pipe
dc.subject.armarc.eng.fl_str_mv Pneumatic control
dc.subject.proposal.eng.fl_str_mv Pneumatic conveying
Numerical calculation (CFD)
Euler/Lagrange approach
Horizontal pipe/bend/vertical pipe
description The present contribution summarizes research related to the numerical computation of pneumatic conveying systems applying the Euler/Lagrange approach. For that purpose, a rigorous modelling of the particulate phase was aspired, including the relevant fluid dynamic forces, particle‐wall collisions with wall roughness and inter‐particle collisions. For the validation of the computations, experiments of Huber and Sommerfeld were selected for the conveying through a 80 mm stainless steel pipe with 5 m horizontal pipe, bend and 5 m vertical pipe. The majority of the computations were done for the same pipe system; however, in this instance, consisting of 150 mm stainless steel pipes. In these cases the average conveying velocity was 27 m/s and the particle mass loading was 0.3 (mass flow rate of particles/mass flow rate of air). For this configuration the influence of wall roughness, inter‐particle collisions, particle size, and mass loading on the resulting particle concentration distribution, the secondary flow as well as the pressure drop in the different pipe elements was analyzed. Moreover, a segregation parameter was defined which describes the location of the maximum particle concentration throughout the pipe system. The secondary flow intensity (SFI) was used to characterize the influence of the particle phase on the developing structure of the secondary flow
publishDate 2014
dc.date.issued.none.fl_str_mv 2014-11
dc.date.accessioned.none.fl_str_mv 2020-03-25T18:04:22Z
dc.date.available.none.fl_str_mv 2020-03-25T18:04:22Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0008-4034
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/12166
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1002/cjce.22105
dc.identifier.eissn.none.fl_str_mv ISSN:1939-019X
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
identifier_str_mv 0008-4034
ISSN:1939-019X
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url http://hdl.handle.net/10614/12166
https://doi.org/10.1002/cjce.22105
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.eng.fl_str_mv The Canadian Journal Of Chemical Engineering. Volumen 93, número 1, (enero 2015); páginas 1-17
dc.relation.citationendpage.none.fl_str_mv 17
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 1
93
dc.relation.cites.eng.fl_str_mv Lain Beatove, S., Sommerfeld, M. (2015). Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach. The Canadian Journal Of Chemical Engineering. 93(1), 1-17. https://doi.org/10.1002/cjce.22105
dc.relation.ispartofjournal.eng.fl_str_mv The Canadian Journal of Chemical Engineering
dc.relation.references.none.fl_str_mv N. Huber, M. Sommerfeld, Powder Technology 1994, 79, 191
W. Siegel, Pneumatische Förderung: Grundlagen, Auslegung, Anlagenbau, Betrieb. Vogel Verlag, Würzburg 1991
S. Laín, R. Aliod, Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments. Int. J. Heat Fluid Flow 2000, 21, 374
S. Dasgupta, R. Jackson, S. Sundaresan, Powder Technology 1998, 96, 6
M.Hidayat, A. Rasmuson, Powder Technology 2005, 153, 1
H. Bilirgen, E.K. Levy, Powder Technology 2001, 119, 134
Z.F. Tian, K. Inthavong, J.Y. Tu, G.H. Yeoh, Int. J. Heat and Mass Transfer 2008, 51, 1238.
A.S. Berrouk, D. Laurence, Int. J. Heat and Fluid Flow 2008, 29, 1010
M. Sommerfeld, S. Lain, Multiphase Science and Technology 2009, 21, 123
G. Kohnen, M. Rüger, M. Sommerfeld, Numerical Methods in Multiphase Flows 1994, (Eds. C.T. Crowe et al.), ASME Fluids Engineering Division Summer Meeting, Lake Tahoe, U.S.A. 1994, FED-Vol. 185, 191
S. Lain, M. Sommerfeld, CD-ROM Proceedings 7th International Conference on Multiphase Flow, ICMF2010, Tampa, FL USA, May 30. – June 4. 2010
S. Lain, M. Sommerfeld, 9th International ERCOFTAC Symposium ETMM9, Thessaloniki, Greece, 6. – 8. June 2012
S. Lain, M. Sommerfeld, 12th Int. Conf. on Multiphase Flow in Industrial Plants. Paper No. 141, Ischia (Napoli), Italy September 21-23, 2011
M. Sommerfeld, B. van Wachem, R. Oliemans, Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC, Brussels, ISBN 978-91-633-3564-8, 2008
M. Sommerfeld, G. Kohnen, M. Rüger, Proc. 9th Symp. on Turbulent Shear Flows, Kyoto, Japan, paper 15-1, 1993
Ho, C.A. and Sommerfeld, M. (2002) Modelling of micro-particle agglomeration in turbulent flow. Chemical Engineering Science, 57, 3073-3084
C.A. Ho, M. Sommerfeld, Chemie Ingenieur Technik 2005, 77, 282
M. Sommerfeld, S. Lain, Ninth International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 10-12 December 2012
M. Sommerfeld, Part. and Part. Systems Characterization 1990, 7, 209
S. Lain, M. Sommerfeld, Int. Journal of Heat and Fluid Flow, 2003, 24, 616
dc.rights.spa.fl_str_mv Derechos Reservados - Canadian Society for Chemical Engineering, 2015
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Canadian Society for Chemical Engineering, 2015
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 17 páginas
dc.publisher.eng.fl_str_mv Wiley
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/858f003a-66b9-4f50-8be7-57ad7ea9a434/download
https://red.uao.edu.co/bitstreams/ed20a739-d086-4ad7-9d88-da91687e844e/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259930199228416
spelling Laín Beatove, Santiagovirtual::2559-1Sommerfeld, Martin4225b01693727b10986bcc383715fa702020-03-25T18:04:22Z2020-03-25T18:04:22Z2014-110008-4034http://hdl.handle.net/10614/12166https://doi.org/10.1002/cjce.22105ISSN:1939-019XUniversidad Autónoma de OccidenteRepositorio Educativo DigitalThe present contribution summarizes research related to the numerical computation of pneumatic conveying systems applying the Euler/Lagrange approach. For that purpose, a rigorous modelling of the particulate phase was aspired, including the relevant fluid dynamic forces, particle‐wall collisions with wall roughness and inter‐particle collisions. For the validation of the computations, experiments of Huber and Sommerfeld were selected for the conveying through a 80 mm stainless steel pipe with 5 m horizontal pipe, bend and 5 m vertical pipe. The majority of the computations were done for the same pipe system; however, in this instance, consisting of 150 mm stainless steel pipes. In these cases the average conveying velocity was 27 m/s and the particle mass loading was 0.3 (mass flow rate of particles/mass flow rate of air). For this configuration the influence of wall roughness, inter‐particle collisions, particle size, and mass loading on the resulting particle concentration distribution, the secondary flow as well as the pressure drop in the different pipe elements was analyzed. Moreover, a segregation parameter was defined which describes the location of the maximum particle concentration throughout the pipe system. The secondary flow intensity (SFI) was used to characterize the influence of the particle phase on the developing structure of the secondary flowapplication/pdf17 páginasengWileyThe Canadian Journal Of Chemical Engineering. Volumen 93, número 1, (enero 2015); páginas 1-17171193Lain Beatove, S., Sommerfeld, M. (2015). Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach. The Canadian Journal Of Chemical Engineering. 93(1), 1-17. https://doi.org/10.1002/cjce.22105The Canadian Journal of Chemical EngineeringN. Huber, M. Sommerfeld, Powder Technology 1994, 79, 191W. Siegel, Pneumatische Förderung: Grundlagen, Auslegung, Anlagenbau, Betrieb. Vogel Verlag, Würzburg 1991S. Laín, R. Aliod, Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments. Int. J. Heat Fluid Flow 2000, 21, 374S. Dasgupta, R. Jackson, S. Sundaresan, Powder Technology 1998, 96, 6M.Hidayat, A. Rasmuson, Powder Technology 2005, 153, 1H. Bilirgen, E.K. Levy, Powder Technology 2001, 119, 134Z.F. Tian, K. Inthavong, J.Y. Tu, G.H. Yeoh, Int. J. Heat and Mass Transfer 2008, 51, 1238.A.S. Berrouk, D. Laurence, Int. J. Heat and Fluid Flow 2008, 29, 1010M. Sommerfeld, S. Lain, Multiphase Science and Technology 2009, 21, 123G. Kohnen, M. Rüger, M. Sommerfeld, Numerical Methods in Multiphase Flows 1994, (Eds. C.T. Crowe et al.), ASME Fluids Engineering Division Summer Meeting, Lake Tahoe, U.S.A. 1994, FED-Vol. 185, 191S. Lain, M. Sommerfeld, CD-ROM Proceedings 7th International Conference on Multiphase Flow, ICMF2010, Tampa, FL USA, May 30. – June 4. 2010S. Lain, M. Sommerfeld, 9th International ERCOFTAC Symposium ETMM9, Thessaloniki, Greece, 6. – 8. June 2012S. Lain, M. Sommerfeld, 12th Int. Conf. on Multiphase Flow in Industrial Plants. Paper No. 141, Ischia (Napoli), Italy September 21-23, 2011M. Sommerfeld, B. van Wachem, R. Oliemans, Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC, Brussels, ISBN 978-91-633-3564-8, 2008M. Sommerfeld, G. Kohnen, M. Rüger, Proc. 9th Symp. on Turbulent Shear Flows, Kyoto, Japan, paper 15-1, 1993Ho, C.A. and Sommerfeld, M. (2002) Modelling of micro-particle agglomeration in turbulent flow. Chemical Engineering Science, 57, 3073-3084C.A. Ho, M. Sommerfeld, Chemie Ingenieur Technik 2005, 77, 282M. Sommerfeld, S. Lain, Ninth International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 10-12 December 2012M. Sommerfeld, Part. and Part. Systems Characterization 1990, 7, 209S. Lain, M. Sommerfeld, Int. Journal of Heat and Fluid Flow, 2003, 24, 616Derechos Reservados - Canadian Society for Chemical Engineering, 2015https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Parameters influencing dilute‐phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Control neumáticoPneumatic controlPneumatic conveyingNumerical calculation (CFD)Euler/Lagrange approachHorizontal pipe/bend/vertical pipePublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2559-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2559-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2559-10000-0002-0269-2608virtual::2559-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2559-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/858f003a-66b9-4f50-8be7-57ad7ea9a434/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/ed20a739-d086-4ad7-9d88-da91687e844e/download20b5ba22b1117f71589c7318baa2c560MD5310614/12166oai:red.uao.edu.co:10614/121662024-03-06 16:42:02.976https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Canadian Society for Chemical Engineering, 2015metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K