Herramienta de ayuda diagnóstica basada en redes neuronales para analizar angiogramas reticulares implementada en el Instituto para Niños Ciegos y Sordos
Las redes neuronales artificiales son una herramienta computacional que permite realizar aplicaciones de manera automática que de momento solo podían ser realizadas por humanos. Esta tecnología lidera el campo de la visión por computadora y los procesos de automatización. En este trabajo de grado se...
- Autores:
-
Gómez Réndon, Mario Andrés
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/11785
- Acceso en línea:
- http://red.uao.edu.co//handle/10614/11785
- Palabra clave:
- Ingeniería Biomédica
Redes neurales (Computadores)
Angiografía reticular
Neural networks (Computer science)
Angiography
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
Summary: | Las redes neuronales artificiales son una herramienta computacional que permite realizar aplicaciones de manera automática que de momento solo podían ser realizadas por humanos. Esta tecnología lidera el campo de la visión por computadora y los procesos de automatización. En este trabajo de grado se busca la implementación de una red neuronal para resolver un problema de clasificación logística, la cual se puede entender como la probabilidad de que una entrada pertenezca a una clase en particular, esto, con el fin de suplir una necesidad identificada por el autor en una institución sin ánimo de lucro. En la institución se realizan exámenes de angiografía reticular de manera diaria y el acumulo de resultados se vuelve un trabajo tedioso para los médicos y a su vez el tiempo de esperar para la entrega de los resultados es considerable. Así pues, se propuso el diseño de una herramienta de ayuda diagnóstica que permite clasificar las angiografías reticulares con base a la probabilidad de ser patológica o no patológica; con el fin de entregar a los médicos en orden de mayor probabilidad patológica y tratar de disminuir el tiempo de intervención a los pacientes con alta probabilidad de patología. Para el desarrollo de la herramienta se usó el lenguaje de programación Python y la librería de redes neuronales Tensorflow y Keras. Fue necesario la creación de una base de datos con las imágenes angiográfica proporcionadas por la institución para el proceso de entrenamiento de la red neuronal. Posteriormente, se propusieron tres alternativas viables de redes neuronales artificiales que tuviesen la capacidad de procesar la información angiográfica; lo siguiente fue entrenar y validar cada uno de los modelos y comparar su desempeño en datos no vistos por medio de la construcción de una matriz de confusión. Finalmente, se eligió el modelo como mejor resultado en la matriz de confusión y se realizó el deployment del modelo por medio de una GUI que permite la interacción con el usuario y la herramienta de ayuda diagnóstica |
---|