Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots
This research paper is about the kinetics of drying and pyrolysis processes of lulo (Solanum quitoense Lam.) peel powder, which was studied using thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and mass spectrometry (MS). TG data was fitted using theoretical approximation a...
- Autores:
-
Caicedo Chacon, Wilson Daniel
Ayala Valencia, Germán
Agudelo Henao, Ana Cecilia
Aparicio Rojas, Gladis Miriam
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13386
- Acceso en línea:
- https://hdl.handle.net/10614/13386
- Palabra clave:
- Biomasa
Biomass
Differential scanning calorimetry
Thermogravimetric analysis
Pyrolysis
Lignocellulosic biomass
- Rights
- openAccess
- License
- Derechos reservados - Springer, 2020
id |
REPOUAO2_2e32f97e1317c0903aa6cca61f7091a6 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13386 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots |
title |
Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots |
spellingShingle |
Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots Biomasa Biomass Differential scanning calorimetry Thermogravimetric analysis Pyrolysis Lignocellulosic biomass |
title_short |
Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots |
title_full |
Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots |
title_fullStr |
Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots |
title_full_unstemmed |
Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots |
title_sort |
Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots |
dc.creator.fl_str_mv |
Caicedo Chacon, Wilson Daniel Ayala Valencia, Germán Agudelo Henao, Ana Cecilia Aparicio Rojas, Gladis Miriam |
dc.contributor.author.spa.fl_str_mv |
Caicedo Chacon, Wilson Daniel Ayala Valencia, Germán Agudelo Henao, Ana Cecilia |
dc.contributor.author.none.fl_str_mv |
Aparicio Rojas, Gladis Miriam |
dc.contributor.corporatename.spa.fl_str_mv |
Springer Science |
dc.subject.armarc.spa.fl_str_mv |
Biomasa |
topic |
Biomasa Biomass Differential scanning calorimetry Thermogravimetric analysis Pyrolysis Lignocellulosic biomass |
dc.subject.armarc.eng.fl_str_mv |
Biomass |
dc.subject.proposal.eng.fl_str_mv |
Differential scanning calorimetry Thermogravimetric analysis Pyrolysis Lignocellulosic biomass |
description |
This research paper is about the kinetics of drying and pyrolysis processes of lulo (Solanum quitoense Lam.) peel powder, which was studied using thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and mass spectrometry (MS). TG data was fitted using theoretical approximation according to the Newton model to obtain the kinetic parameters of drying, and the isoconversional methodology using Friedman’s method for the pyrolysis process. The results of each thermogram showed a relation between each other. In all of them, three characteristic stages were identified related to drying, pyrolysis, and carbonaceous matter. At the same time, there was a decomposition of the lignocellulosic biomass and light volatiles in the pyrolysis process. In the thermograms, three characteristic stages were identified: the first stage is the dehydration which ended at 120 °C, the second is the pyrolysis which is between 120 and 450 °C, and from this temperature, the third stage, carbonization, begins. In the pyrolysis stage, five peaks corresponding to independent reactions were identified; activation energy (Ea) and the reaction mechanism (f(α)) of each peak were calculated by means of master curves. After comparing the theoretical and experimental master plots, it was observed that the reaction mechanism corresponds to the Avrami-Erofeev model. Thermal analyses indicate that lulo peel is a potential waste for the production of coal for power purposes. It could be contributing to improve the management of waste and at the same time it could be used as a power supply or for water treatments such as activated carbon |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-04-06 |
dc.date.accessioned.none.fl_str_mv |
2021-11-02T20:15:15Z |
dc.date.available.none.fl_str_mv |
2021-11-02T20:15:15Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
19391234 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13386 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s12155-020-10127-6 |
identifier_str_mv |
19391234 10.1007/s12155-020-10127-6 |
url |
https://hdl.handle.net/10614/13386 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 13 (2020) |
dc.relation.citationendpage.spa.fl_str_mv |
938 |
dc.relation.citationstartpage.spa.fl_str_mv |
927 |
dc.relation.citationvolume.spa.fl_str_mv |
13 |
dc.relation.cites.eng.fl_str_mv |
Caicedo Chacón, W. D., Ayala Valencia, G., Aparicio Rojas, G.M., Agudelo Henao, A.C. (2020). Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots. BioEnergy Research. (Vol. 13), pp. 927-938. https://doi.org/10.1007/s12155-020-10127-6 |
dc.relation.ispartofjournal.eng.fl_str_mv |
BioEnergy Research |
dc.relation.references.none.fl_str_mv |
1. Lo SL, Huang YF, Te Chiueh P, Kuan WH (2017) Microwave pyrolysis of lignocellulosic biomass. Energy Procedia 105:41–46 2. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73 3. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog. Energy Combust Sci 62:33–86 4. Forero DP, Orrego CE, Peterson DG, Osorio C (2015) Chemical and sensory comparison of fresh and dried lulo (Solanum quitoense Lam.) fruit aroma. Food Chem 169:85–91 5. Loaiza DIG, Santos LFO, Mahecha PV, Amariles HDV (2014) Cambios en las propiedades fisicoquímicas de frutos de lulo (Solanumquitoense Lam.) cosechados en tres grados demadurez. Acta Agron 63:11–17 6. Laboratories PN, Beckman D (1991) Reviews developments in direct thermochemical liquefaction of. Energy Fuel 5:399–410 7. Zhao H, Li H, Song Q, Liu S, Yan J, Wang X (2019) Investigation on the physicochemical structure and gasification reactivity of nascent pyrolysis and gasification char prepared in the entrained flow reactor. Fuel 240:126–137 8. Zhao H, Li Y, Song Q, Liu S (2019) Investigation on the thermal behavior characteristics and products composition of four pulverized coals: its potential applications in coal cleaning. Int J Hydrogen Energ 44:23620–23638 9. Zhao H, Song Q, Liu S, Li Y, Wang X, Shu X (2018) Study on catalytic co-pyrolysis of physical mixture/staged pyrolysis characteristics of lignite and straw over an catalytic beds of char and its mechanism. Energy Convers Manag 161:13–26 10. Morais LC, Maia AAD, Guandique MEG, Rosa AH (2017) Pyrolysis and combustion of sugarcane bagasse. J Therm Anal Calorim 129:1813–1822 11. Lédé J (2012) Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrolysis 94:17–32 12. Salcedo MJG, Contreras LK, García LA, Fernandez QA (2016) Modelado de la cinética de secado del afrecho de yuca (Manihot esculenta crantz). Rev Mex Ing Quim 15:883–891 13. Chen D, Zhang Y, Zhu X (2012) Drying kinetics of rice straw under isothermal and nonisothermal conditions: a comparative study by thermogravimetric analysis. Energy and Fuels 26:4189–4194 14. Vyazovkin S, Burnham AK, Criado JM, Pérez MLA, Popescu C, SbirrazzuoliN(2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19 15. Alves JLF, Silva JCG, Filho VFS, Alves RF, GaldinoWVA, Andersen SLF, Sena RFS (2019) Determination of the bioenergy potential of Brazilian pine-fruit shell via pyrolysis kinetics, thermodynamic study, and evolved gas analysis. BioEnergy Res 12:168–183 16. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2010) Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A 114:7868–7876 17. Romero Millán LM, Sierra Vargas FE, Nzihou A (2017) Kinetic analysis of tropical lignocellulosic agrowaste pyrolysis. Bioenergy Res 10:832–845 18. Kar Y (2018) Environmental Effects Pyrolysis of waste pomegranate peels for bio-oil production. Energy Sources, Part A Recover. Util Environ Eff 00:1–10 19. AOAC, Official methods of analysis (1995) Assoc Anal Communities 1:141–144 20. Criado JM, Sánchez JPE, Pérez MLA (2008) Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim 92:199–203 21. Omrani A, Rostami AA, Ravari F (2013) Advanced isoconversional and master plot analyses on solid-state degradation kinetics of a novel nanocomposite. J Therm Anal Calorim 111:677–683 22. Sanchez SL, López GD, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–172 23. Greenhalf CE, Nowakowski DJ, Bridgwater AV, Titiloye J, Yates N, Riche A, Shield I (2012) Thermochemical characterization of straws and high yielding perennial grasses. Ind Crop Prod 36:449– 459 24. Omar R, Idris A, Yunus R, Khalid K, Isma MIA (2011) Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel 90:1536–1544 25. Li D, Chen L, Yi X, Zhang X, Ye N (2010) Pyrolytic characteristics and kinetics of two brown algae and sodium alginate. Bioresour Technol 101:7131–7136 26. Mishra RK, Mohanty K (2018) Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol 251:63–74 27. Sait HH, Hussain A, Salema AA, Ani FN (2012) Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol 118:382–389 28. Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, Bridgwater AV (2018) Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew Sust Energ Rev 82:2705–2715 29. Yang X, Zhao Y, Li R,Wu Y, YangM(2018) Thermochimica Acta A modified kinetic analysis method of cellulose pyrolysis based on TG–FTIR technique. Thermochim Acta 665:20–27 30. Mattos B, Lazzarotto M, Magalhães WLE, Gatto DA (2015) Thermal tools to evaluation of decayed and weathered wood polymer composites prepared by in situ polymerization. J Therm Anal Calorim 121:1263–1271 31. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781– 1788 32. Comesaña JA, Nieströj M, Granada E, Szlek A (2013) TG-DSC analysis of biomass heat capacity during pyrolysis process. J Energy Inst 86:153–159 33. Cai J, Chen S (2008) Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Dry Technol 26:1464–1468 34. Bruijn TJW, Jong WA, Berg WJ (1981) Kinetic parameters in Avrami-Erofeev type reactions from isothermal and nonisothermal experiments. Thermochim Acta 45:315–325 35. Zlatanović S, Ostojić S, Micić D, Rankov S, Dodevska M, Vukosavljević P, Gorjanović S (2019) Thermal behaviour and degradation kinetics of apple pomace flours. Thermochim Acta 673: 17–25 36. Saavedra LMZ, Alvarez SC, Esneider AMA, Toxqui TA, Pérez GSA, Ruiz CMA (2012) Towards an improved calorimetric methodology for glass transition temperature determination in amorphous sugars. J Food 10:258–267 37. Hurtta M, Pitkänen I, Knuutinen J (2004) Melting behaviour of Dsucrose, D-glucose and D-fructose. Carbohydr Res 339:2267–2273 38. Chen T, Wu J, Zhang J, Wu J, Sun L (2014) Gasification kinetic analysis of the three pseudocomponents of biomass-cellulose, semicellulose and lignin. Bioresour Technol 153:223–229 39. Wongsiriamnuay T, Tippayawong N (2010) Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Bioresour Technol 101:5638–5644 40. Jia C, Chen J, Bai J, Yang X, Song S, Wang Q (2018) Kinetics of the pyrolysis of oil sands based upon thermogravimetric analysis. Thermochim Acta 666:66–74 41. Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev 38:594–608 42. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150 43. Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498: 61–66 44. Wang X, Hu M, Hu W, Chen Z, Liu S, Hu Z, Xiao B (2016) Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresour Technol 219: 510–520 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Springer, 2020 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Springer, 2020 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Springer |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/f4daf09a-3ecb-4f3a-8203-486789d312ed/download https://red.uao.edu.co/bitstreams/708f564b-65dc-416d-abb6-89f89473bad9/download https://red.uao.edu.co/bitstreams/8c9e5ce6-a30a-4106-b27d-0ebc7ae4cfcc/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 debb457b863e371043415c8721d3aff5 0fe053a7f542eac8a6866f58d3aa7bcc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259869545398272 |
spelling |
Caicedo Chacon, Wilson Daniel994cca7a12c21acd9d1cd1e66a2eb21aAyala Valencia, Germán3495b08f6aaf044609ddd642686e78f5Agudelo Henao, Ana Cecilia51447f519820eb6cb1afffd13254039fAparicio Rojas, Gladis Miriamvirtual::297-1Springer Science2021-11-02T20:15:15Z2021-11-02T20:15:15Z2020-04-0619391234https://hdl.handle.net/10614/1338610.1007/s12155-020-10127-6This research paper is about the kinetics of drying and pyrolysis processes of lulo (Solanum quitoense Lam.) peel powder, which was studied using thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and mass spectrometry (MS). TG data was fitted using theoretical approximation according to the Newton model to obtain the kinetic parameters of drying, and the isoconversional methodology using Friedman’s method for the pyrolysis process. The results of each thermogram showed a relation between each other. In all of them, three characteristic stages were identified related to drying, pyrolysis, and carbonaceous matter. At the same time, there was a decomposition of the lignocellulosic biomass and light volatiles in the pyrolysis process. In the thermograms, three characteristic stages were identified: the first stage is the dehydration which ended at 120 °C, the second is the pyrolysis which is between 120 and 450 °C, and from this temperature, the third stage, carbonization, begins. In the pyrolysis stage, five peaks corresponding to independent reactions were identified; activation energy (Ea) and the reaction mechanism (f(α)) of each peak were calculated by means of master curves. After comparing the theoretical and experimental master plots, it was observed that the reaction mechanism corresponds to the Avrami-Erofeev model. Thermal analyses indicate that lulo peel is a potential waste for the production of coal for power purposes. It could be contributing to improve the management of waste and at the same time it could be used as a power supply or for water treatments such as activated carbon12 páginasapplication/pdfengSpringerDerechos reservados - Springer, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plotsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85BiomasaBiomassDifferential scanning calorimetryThermogravimetric analysisPyrolysisLignocellulosic biomassVolumen 13 (2020)93892713Caicedo Chacón, W. D., Ayala Valencia, G., Aparicio Rojas, G.M., Agudelo Henao, A.C. (2020). Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots. BioEnergy Research. (Vol. 13), pp. 927-938. https://doi.org/10.1007/s12155-020-10127-6BioEnergy Research1. Lo SL, Huang YF, Te Chiueh P, Kuan WH (2017) Microwave pyrolysis of lignocellulosic biomass. Energy Procedia 105:41–462. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–733. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog. Energy Combust Sci 62:33–864. Forero DP, Orrego CE, Peterson DG, Osorio C (2015) Chemical and sensory comparison of fresh and dried lulo (Solanum quitoense Lam.) fruit aroma. Food Chem 169:85–915. Loaiza DIG, Santos LFO, Mahecha PV, Amariles HDV (2014) Cambios en las propiedades fisicoquímicas de frutos de lulo (Solanumquitoense Lam.) cosechados en tres grados demadurez. Acta Agron 63:11–176. Laboratories PN, Beckman D (1991) Reviews developments in direct thermochemical liquefaction of. Energy Fuel 5:399–4107. Zhao H, Li H, Song Q, Liu S, Yan J, Wang X (2019) Investigation on the physicochemical structure and gasification reactivity of nascent pyrolysis and gasification char prepared in the entrained flow reactor. Fuel 240:126–1378. Zhao H, Li Y, Song Q, Liu S (2019) Investigation on the thermal behavior characteristics and products composition of four pulverized coals: its potential applications in coal cleaning. Int J Hydrogen Energ 44:23620–236389. Zhao H, Song Q, Liu S, Li Y, Wang X, Shu X (2018) Study on catalytic co-pyrolysis of physical mixture/staged pyrolysis characteristics of lignite and straw over an catalytic beds of char and its mechanism. Energy Convers Manag 161:13–2610. Morais LC, Maia AAD, Guandique MEG, Rosa AH (2017) Pyrolysis and combustion of sugarcane bagasse. J Therm Anal Calorim 129:1813–182211. Lédé J (2012) Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrolysis 94:17–3212. Salcedo MJG, Contreras LK, García LA, Fernandez QA (2016) Modelado de la cinética de secado del afrecho de yuca (Manihot esculenta crantz). Rev Mex Ing Quim 15:883–89113. Chen D, Zhang Y, Zhu X (2012) Drying kinetics of rice straw under isothermal and nonisothermal conditions: a comparative study by thermogravimetric analysis. Energy and Fuels 26:4189–419414. Vyazovkin S, Burnham AK, Criado JM, Pérez MLA, Popescu C, SbirrazzuoliN(2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–1915. Alves JLF, Silva JCG, Filho VFS, Alves RF, GaldinoWVA, Andersen SLF, Sena RFS (2019) Determination of the bioenergy potential of Brazilian pine-fruit shell via pyrolysis kinetics, thermodynamic study, and evolved gas analysis. BioEnergy Res 12:168–18316. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2010) Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A 114:7868–787617. Romero Millán LM, Sierra Vargas FE, Nzihou A (2017) Kinetic analysis of tropical lignocellulosic agrowaste pyrolysis. Bioenergy Res 10:832–84518. Kar Y (2018) Environmental Effects Pyrolysis of waste pomegranate peels for bio-oil production. Energy Sources, Part A Recover. Util Environ Eff 00:1–1019. AOAC, Official methods of analysis (1995) Assoc Anal Communities 1:141–14420. Criado JM, Sánchez JPE, Pérez MLA (2008) Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim 92:199–20321. Omrani A, Rostami AA, Ravari F (2013) Advanced isoconversional and master plot analyses on solid-state degradation kinetics of a novel nanocomposite. J Therm Anal Calorim 111:677–68322. Sanchez SL, López GD, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–17223. Greenhalf CE, Nowakowski DJ, Bridgwater AV, Titiloye J, Yates N, Riche A, Shield I (2012) Thermochemical characterization of straws and high yielding perennial grasses. Ind Crop Prod 36:449– 45924. Omar R, Idris A, Yunus R, Khalid K, Isma MIA (2011) Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel 90:1536–154425. Li D, Chen L, Yi X, Zhang X, Ye N (2010) Pyrolytic characteristics and kinetics of two brown algae and sodium alginate. Bioresour Technol 101:7131–713626. Mishra RK, Mohanty K (2018) Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol 251:63–7427. Sait HH, Hussain A, Salema AA, Ani FN (2012) Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol 118:382–38928. Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, Bridgwater AV (2018) Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew Sust Energ Rev 82:2705–271529. Yang X, Zhao Y, Li R,Wu Y, YangM(2018) Thermochimica Acta A modified kinetic analysis method of cellulose pyrolysis based on TG–FTIR technique. Thermochim Acta 665:20–2730. Mattos B, Lazzarotto M, Magalhães WLE, Gatto DA (2015) Thermal tools to evaluation of decayed and weathered wood polymer composites prepared by in situ polymerization. J Therm Anal Calorim 121:1263–127131. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781– 178832. Comesaña JA, Nieströj M, Granada E, Szlek A (2013) TG-DSC analysis of biomass heat capacity during pyrolysis process. J Energy Inst 86:153–15933. Cai J, Chen S (2008) Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Dry Technol 26:1464–146834. Bruijn TJW, Jong WA, Berg WJ (1981) Kinetic parameters in Avrami-Erofeev type reactions from isothermal and nonisothermal experiments. Thermochim Acta 45:315–32535. Zlatanović S, Ostojić S, Micić D, Rankov S, Dodevska M, Vukosavljević P, Gorjanović S (2019) Thermal behaviour and degradation kinetics of apple pomace flours. Thermochim Acta 673: 17–2536. Saavedra LMZ, Alvarez SC, Esneider AMA, Toxqui TA, Pérez GSA, Ruiz CMA (2012) Towards an improved calorimetric methodology for glass transition temperature determination in amorphous sugars. J Food 10:258–26737. Hurtta M, Pitkänen I, Knuutinen J (2004) Melting behaviour of Dsucrose, D-glucose and D-fructose. Carbohydr Res 339:2267–227338. Chen T, Wu J, Zhang J, Wu J, Sun L (2014) Gasification kinetic analysis of the three pseudocomponents of biomass-cellulose, semicellulose and lignin. Bioresour Technol 153:223–22939. Wongsiriamnuay T, Tippayawong N (2010) Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Bioresour Technol 101:5638–564440. Jia C, Chen J, Bai J, Yang X, Song S, Wang Q (2018) Kinetics of the pyrolysis of oil sands based upon thermogravimetric analysis. Thermochim Acta 666:66–7441. Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev 38:594–60842. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–15043. Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498: 61–6644. Wang X, Hu M, Hu W, Chen Z, Liu S, Hu Z, Xiao B (2016) Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresour Technol 219: 510–520GeneralPublicationb4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::297-1b4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::297-1https://scholar.google.com/citations?user=WtTqM8IAAAAJ&hl=esvirtual::297-10000-0002-7158-1223virtual::297-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000112399virtual::297-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/f4daf09a-3ecb-4f3a-8203-486789d312ed/download20b5ba22b1117f71589c7318baa2c560MD52TEXTDrying and pyrolysis of lulo peel non-isothermal analysis of physicochemical, kinetics, and master plots.pdf.txtDrying and pyrolysis of lulo peel non-isothermal analysis of physicochemical, kinetics, and master plots.pdf.txtExtracted texttext/plain52096https://red.uao.edu.co/bitstreams/708f564b-65dc-416d-abb6-89f89473bad9/downloaddebb457b863e371043415c8721d3aff5MD54THUMBNAILDrying and pyrolysis of lulo peel non-isothermal analysis of physicochemical, kinetics, and master plots.pdf.jpgDrying and pyrolysis of lulo peel non-isothermal analysis of physicochemical, kinetics, and master plots.pdf.jpgGenerated Thumbnailimage/jpeg14671https://red.uao.edu.co/bitstreams/8c9e5ce6-a30a-4106-b27d-0ebc7ae4cfcc/download0fe053a7f542eac8a6866f58d3aa7bccMD5510614/13386oai:red.uao.edu.co:10614/133862024-02-26 16:34:16.599https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Springer, 2020metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |