Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots

This research paper is about the kinetics of drying and pyrolysis processes of lulo (Solanum quitoense Lam.) peel powder, which was studied using thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and mass spectrometry (MS). TG data was fitted using theoretical approximation a...

Full description

Autores:
Caicedo Chacon, Wilson Daniel
Ayala Valencia, Germán
Agudelo Henao, Ana Cecilia
Aparicio Rojas, Gladis Miriam
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13386
Acceso en línea:
https://hdl.handle.net/10614/13386
Palabra clave:
Biomasa
Biomass
Differential scanning calorimetry
Thermogravimetric analysis
Pyrolysis
Lignocellulosic biomass
Rights
openAccess
License
Derechos reservados - Springer, 2020
id REPOUAO2_2e32f97e1317c0903aa6cca61f7091a6
oai_identifier_str oai:red.uao.edu.co:10614/13386
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots
title Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots
spellingShingle Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots
Biomasa
Biomass
Differential scanning calorimetry
Thermogravimetric analysis
Pyrolysis
Lignocellulosic biomass
title_short Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots
title_full Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots
title_fullStr Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots
title_full_unstemmed Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots
title_sort Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots
dc.creator.fl_str_mv Caicedo Chacon, Wilson Daniel
Ayala Valencia, Germán
Agudelo Henao, Ana Cecilia
Aparicio Rojas, Gladis Miriam
dc.contributor.author.spa.fl_str_mv Caicedo Chacon, Wilson Daniel
Ayala Valencia, Germán
Agudelo Henao, Ana Cecilia
dc.contributor.author.none.fl_str_mv Aparicio Rojas, Gladis Miriam
dc.contributor.corporatename.spa.fl_str_mv Springer Science
dc.subject.armarc.spa.fl_str_mv Biomasa
topic Biomasa
Biomass
Differential scanning calorimetry
Thermogravimetric analysis
Pyrolysis
Lignocellulosic biomass
dc.subject.armarc.eng.fl_str_mv Biomass
dc.subject.proposal.eng.fl_str_mv Differential scanning calorimetry
Thermogravimetric analysis
Pyrolysis
Lignocellulosic biomass
description This research paper is about the kinetics of drying and pyrolysis processes of lulo (Solanum quitoense Lam.) peel powder, which was studied using thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and mass spectrometry (MS). TG data was fitted using theoretical approximation according to the Newton model to obtain the kinetic parameters of drying, and the isoconversional methodology using Friedman’s method for the pyrolysis process. The results of each thermogram showed a relation between each other. In all of them, three characteristic stages were identified related to drying, pyrolysis, and carbonaceous matter. At the same time, there was a decomposition of the lignocellulosic biomass and light volatiles in the pyrolysis process. In the thermograms, three characteristic stages were identified: the first stage is the dehydration which ended at 120 °C, the second is the pyrolysis which is between 120 and 450 °C, and from this temperature, the third stage, carbonization, begins. In the pyrolysis stage, five peaks corresponding to independent reactions were identified; activation energy (Ea) and the reaction mechanism (f(α)) of each peak were calculated by means of master curves. After comparing the theoretical and experimental master plots, it was observed that the reaction mechanism corresponds to the Avrami-Erofeev model. Thermal analyses indicate that lulo peel is a potential waste for the production of coal for power purposes. It could be contributing to improve the management of waste and at the same time it could be used as a power supply or for water treatments such as activated carbon
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-04-06
dc.date.accessioned.none.fl_str_mv 2021-11-02T20:15:15Z
dc.date.available.none.fl_str_mv 2021-11-02T20:15:15Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 19391234
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13386
dc.identifier.doi.none.fl_str_mv 10.1007/s12155-020-10127-6
identifier_str_mv 19391234
10.1007/s12155-020-10127-6
url https://hdl.handle.net/10614/13386
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Volumen 13 (2020)
dc.relation.citationendpage.spa.fl_str_mv 938
dc.relation.citationstartpage.spa.fl_str_mv 927
dc.relation.citationvolume.spa.fl_str_mv 13
dc.relation.cites.eng.fl_str_mv Caicedo Chacón, W. D., Ayala Valencia, G., Aparicio Rojas, G.M., Agudelo Henao, A.C. (2020). Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots. BioEnergy Research. (Vol. 13), pp. 927-938. https://doi.org/10.1007/s12155-020-10127-6
dc.relation.ispartofjournal.eng.fl_str_mv BioEnergy Research
dc.relation.references.none.fl_str_mv 1. Lo SL, Huang YF, Te Chiueh P, Kuan WH (2017) Microwave pyrolysis of lignocellulosic biomass. Energy Procedia 105:41–46
2. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73
3. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog. Energy Combust Sci 62:33–86
4. Forero DP, Orrego CE, Peterson DG, Osorio C (2015) Chemical and sensory comparison of fresh and dried lulo (Solanum quitoense Lam.) fruit aroma. Food Chem 169:85–91
5. Loaiza DIG, Santos LFO, Mahecha PV, Amariles HDV (2014) Cambios en las propiedades fisicoquímicas de frutos de lulo (Solanumquitoense Lam.) cosechados en tres grados demadurez. Acta Agron 63:11–17
6. Laboratories PN, Beckman D (1991) Reviews developments in direct thermochemical liquefaction of. Energy Fuel 5:399–410
7. Zhao H, Li H, Song Q, Liu S, Yan J, Wang X (2019) Investigation on the physicochemical structure and gasification reactivity of nascent pyrolysis and gasification char prepared in the entrained flow reactor. Fuel 240:126–137
8. Zhao H, Li Y, Song Q, Liu S (2019) Investigation on the thermal behavior characteristics and products composition of four pulverized coals: its potential applications in coal cleaning. Int J Hydrogen Energ 44:23620–23638
9. Zhao H, Song Q, Liu S, Li Y, Wang X, Shu X (2018) Study on catalytic co-pyrolysis of physical mixture/staged pyrolysis characteristics of lignite and straw over an catalytic beds of char and its mechanism. Energy Convers Manag 161:13–26
10. Morais LC, Maia AAD, Guandique MEG, Rosa AH (2017) Pyrolysis and combustion of sugarcane bagasse. J Therm Anal Calorim 129:1813–1822
11. Lédé J (2012) Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrolysis 94:17–32
12. Salcedo MJG, Contreras LK, García LA, Fernandez QA (2016) Modelado de la cinética de secado del afrecho de yuca (Manihot esculenta crantz). Rev Mex Ing Quim 15:883–891
13. Chen D, Zhang Y, Zhu X (2012) Drying kinetics of rice straw under isothermal and nonisothermal conditions: a comparative study by thermogravimetric analysis. Energy and Fuels 26:4189–4194
14. Vyazovkin S, Burnham AK, Criado JM, Pérez MLA, Popescu C, SbirrazzuoliN(2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19
15. Alves JLF, Silva JCG, Filho VFS, Alves RF, GaldinoWVA, Andersen SLF, Sena RFS (2019) Determination of the bioenergy potential of Brazilian pine-fruit shell via pyrolysis kinetics, thermodynamic study, and evolved gas analysis. BioEnergy Res 12:168–183
16. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2010) Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A 114:7868–7876
17. Romero Millán LM, Sierra Vargas FE, Nzihou A (2017) Kinetic analysis of tropical lignocellulosic agrowaste pyrolysis. Bioenergy Res 10:832–845
18. Kar Y (2018) Environmental Effects Pyrolysis of waste pomegranate peels for bio-oil production. Energy Sources, Part A Recover. Util Environ Eff 00:1–10
19. AOAC, Official methods of analysis (1995) Assoc Anal Communities 1:141–144
20. Criado JM, Sánchez JPE, Pérez MLA (2008) Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim 92:199–203
21. Omrani A, Rostami AA, Ravari F (2013) Advanced isoconversional and master plot analyses on solid-state degradation kinetics of a novel nanocomposite. J Therm Anal Calorim 111:677–683
22. Sanchez SL, López GD, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–172
23. Greenhalf CE, Nowakowski DJ, Bridgwater AV, Titiloye J, Yates N, Riche A, Shield I (2012) Thermochemical characterization of straws and high yielding perennial grasses. Ind Crop Prod 36:449– 459
24. Omar R, Idris A, Yunus R, Khalid K, Isma MIA (2011) Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel 90:1536–1544
25. Li D, Chen L, Yi X, Zhang X, Ye N (2010) Pyrolytic characteristics and kinetics of two brown algae and sodium alginate. Bioresour Technol 101:7131–7136
26. Mishra RK, Mohanty K (2018) Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol 251:63–74
27. Sait HH, Hussain A, Salema AA, Ani FN (2012) Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol 118:382–389
28. Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, Bridgwater AV (2018) Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew Sust Energ Rev 82:2705–2715
29. Yang X, Zhao Y, Li R,Wu Y, YangM(2018) Thermochimica Acta A modified kinetic analysis method of cellulose pyrolysis based on TG–FTIR technique. Thermochim Acta 665:20–27
30. Mattos B, Lazzarotto M, Magalhães WLE, Gatto DA (2015) Thermal tools to evaluation of decayed and weathered wood polymer composites prepared by in situ polymerization. J Therm Anal Calorim 121:1263–1271
31. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781– 1788
32. Comesaña JA, Nieströj M, Granada E, Szlek A (2013) TG-DSC analysis of biomass heat capacity during pyrolysis process. J Energy Inst 86:153–159
33. Cai J, Chen S (2008) Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Dry Technol 26:1464–1468
34. Bruijn TJW, Jong WA, Berg WJ (1981) Kinetic parameters in Avrami-Erofeev type reactions from isothermal and nonisothermal experiments. Thermochim Acta 45:315–325
35. Zlatanović S, Ostojić S, Micić D, Rankov S, Dodevska M, Vukosavljević P, Gorjanović S (2019) Thermal behaviour and degradation kinetics of apple pomace flours. Thermochim Acta 673: 17–25
36. Saavedra LMZ, Alvarez SC, Esneider AMA, Toxqui TA, Pérez GSA, Ruiz CMA (2012) Towards an improved calorimetric methodology for glass transition temperature determination in amorphous sugars. J Food 10:258–267
37. Hurtta M, Pitkänen I, Knuutinen J (2004) Melting behaviour of Dsucrose, D-glucose and D-fructose. Carbohydr Res 339:2267–2273
38. Chen T, Wu J, Zhang J, Wu J, Sun L (2014) Gasification kinetic analysis of the three pseudocomponents of biomass-cellulose, semicellulose and lignin. Bioresour Technol 153:223–229
39. Wongsiriamnuay T, Tippayawong N (2010) Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Bioresour Technol 101:5638–5644
40. Jia C, Chen J, Bai J, Yang X, Song S, Wang Q (2018) Kinetics of the pyrolysis of oil sands based upon thermogravimetric analysis. Thermochim Acta 666:66–74
41. Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev 38:594–608
42. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150
43. Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498: 61–66
44. Wang X, Hu M, Hu W, Chen Z, Liu S, Hu Z, Xiao B (2016) Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresour Technol 219: 510–520
dc.rights.spa.fl_str_mv Derechos reservados - Springer, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Springer, 2020
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Springer
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/f4daf09a-3ecb-4f3a-8203-486789d312ed/download
https://red.uao.edu.co/bitstreams/708f564b-65dc-416d-abb6-89f89473bad9/download
https://red.uao.edu.co/bitstreams/8c9e5ce6-a30a-4106-b27d-0ebc7ae4cfcc/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
debb457b863e371043415c8721d3aff5
0fe053a7f542eac8a6866f58d3aa7bcc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259869545398272
spelling Caicedo Chacon, Wilson Daniel994cca7a12c21acd9d1cd1e66a2eb21aAyala Valencia, Germán3495b08f6aaf044609ddd642686e78f5Agudelo Henao, Ana Cecilia51447f519820eb6cb1afffd13254039fAparicio Rojas, Gladis Miriamvirtual::297-1Springer Science2021-11-02T20:15:15Z2021-11-02T20:15:15Z2020-04-0619391234https://hdl.handle.net/10614/1338610.1007/s12155-020-10127-6This research paper is about the kinetics of drying and pyrolysis processes of lulo (Solanum quitoense Lam.) peel powder, which was studied using thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and mass spectrometry (MS). TG data was fitted using theoretical approximation according to the Newton model to obtain the kinetic parameters of drying, and the isoconversional methodology using Friedman’s method for the pyrolysis process. The results of each thermogram showed a relation between each other. In all of them, three characteristic stages were identified related to drying, pyrolysis, and carbonaceous matter. At the same time, there was a decomposition of the lignocellulosic biomass and light volatiles in the pyrolysis process. In the thermograms, three characteristic stages were identified: the first stage is the dehydration which ended at 120 °C, the second is the pyrolysis which is between 120 and 450 °C, and from this temperature, the third stage, carbonization, begins. In the pyrolysis stage, five peaks corresponding to independent reactions were identified; activation energy (Ea) and the reaction mechanism (f(α)) of each peak were calculated by means of master curves. After comparing the theoretical and experimental master plots, it was observed that the reaction mechanism corresponds to the Avrami-Erofeev model. Thermal analyses indicate that lulo peel is a potential waste for the production of coal for power purposes. It could be contributing to improve the management of waste and at the same time it could be used as a power supply or for water treatments such as activated carbon12 páginasapplication/pdfengSpringerDerechos reservados - Springer, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plotsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85BiomasaBiomassDifferential scanning calorimetryThermogravimetric analysisPyrolysisLignocellulosic biomassVolumen 13 (2020)93892713Caicedo Chacón, W. D., Ayala Valencia, G., Aparicio Rojas, G.M., Agudelo Henao, A.C. (2020). Drying and pyrolysis of lulo peel: non-isothermal analysis of physicochemical, kinetics, and master plots. BioEnergy Research. (Vol. 13), pp. 927-938. https://doi.org/10.1007/s12155-020-10127-6BioEnergy Research1. Lo SL, Huang YF, Te Chiueh P, Kuan WH (2017) Microwave pyrolysis of lignocellulosic biomass. Energy Procedia 105:41–462. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–733. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog. Energy Combust Sci 62:33–864. Forero DP, Orrego CE, Peterson DG, Osorio C (2015) Chemical and sensory comparison of fresh and dried lulo (Solanum quitoense Lam.) fruit aroma. Food Chem 169:85–915. Loaiza DIG, Santos LFO, Mahecha PV, Amariles HDV (2014) Cambios en las propiedades fisicoquímicas de frutos de lulo (Solanumquitoense Lam.) cosechados en tres grados demadurez. Acta Agron 63:11–176. Laboratories PN, Beckman D (1991) Reviews developments in direct thermochemical liquefaction of. Energy Fuel 5:399–4107. Zhao H, Li H, Song Q, Liu S, Yan J, Wang X (2019) Investigation on the physicochemical structure and gasification reactivity of nascent pyrolysis and gasification char prepared in the entrained flow reactor. Fuel 240:126–1378. Zhao H, Li Y, Song Q, Liu S (2019) Investigation on the thermal behavior characteristics and products composition of four pulverized coals: its potential applications in coal cleaning. Int J Hydrogen Energ 44:23620–236389. Zhao H, Song Q, Liu S, Li Y, Wang X, Shu X (2018) Study on catalytic co-pyrolysis of physical mixture/staged pyrolysis characteristics of lignite and straw over an catalytic beds of char and its mechanism. Energy Convers Manag 161:13–2610. Morais LC, Maia AAD, Guandique MEG, Rosa AH (2017) Pyrolysis and combustion of sugarcane bagasse. J Therm Anal Calorim 129:1813–182211. Lédé J (2012) Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrolysis 94:17–3212. Salcedo MJG, Contreras LK, García LA, Fernandez QA (2016) Modelado de la cinética de secado del afrecho de yuca (Manihot esculenta crantz). Rev Mex Ing Quim 15:883–89113. Chen D, Zhang Y, Zhu X (2012) Drying kinetics of rice straw under isothermal and nonisothermal conditions: a comparative study by thermogravimetric analysis. Energy and Fuels 26:4189–419414. Vyazovkin S, Burnham AK, Criado JM, Pérez MLA, Popescu C, SbirrazzuoliN(2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–1915. Alves JLF, Silva JCG, Filho VFS, Alves RF, GaldinoWVA, Andersen SLF, Sena RFS (2019) Determination of the bioenergy potential of Brazilian pine-fruit shell via pyrolysis kinetics, thermodynamic study, and evolved gas analysis. BioEnergy Res 12:168–18316. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2010) Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A 114:7868–787617. Romero Millán LM, Sierra Vargas FE, Nzihou A (2017) Kinetic analysis of tropical lignocellulosic agrowaste pyrolysis. Bioenergy Res 10:832–84518. Kar Y (2018) Environmental Effects Pyrolysis of waste pomegranate peels for bio-oil production. Energy Sources, Part A Recover. Util Environ Eff 00:1–1019. AOAC, Official methods of analysis (1995) Assoc Anal Communities 1:141–14420. Criado JM, Sánchez JPE, Pérez MLA (2008) Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim 92:199–20321. Omrani A, Rostami AA, Ravari F (2013) Advanced isoconversional and master plot analyses on solid-state degradation kinetics of a novel nanocomposite. J Therm Anal Calorim 111:677–68322. Sanchez SL, López GD, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–17223. Greenhalf CE, Nowakowski DJ, Bridgwater AV, Titiloye J, Yates N, Riche A, Shield I (2012) Thermochemical characterization of straws and high yielding perennial grasses. Ind Crop Prod 36:449– 45924. Omar R, Idris A, Yunus R, Khalid K, Isma MIA (2011) Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel 90:1536–154425. Li D, Chen L, Yi X, Zhang X, Ye N (2010) Pyrolytic characteristics and kinetics of two brown algae and sodium alginate. Bioresour Technol 101:7131–713626. Mishra RK, Mohanty K (2018) Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol 251:63–7427. Sait HH, Hussain A, Salema AA, Ani FN (2012) Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol 118:382–38928. Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, Bridgwater AV (2018) Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew Sust Energ Rev 82:2705–271529. Yang X, Zhao Y, Li R,Wu Y, YangM(2018) Thermochimica Acta A modified kinetic analysis method of cellulose pyrolysis based on TG–FTIR technique. Thermochim Acta 665:20–2730. Mattos B, Lazzarotto M, Magalhães WLE, Gatto DA (2015) Thermal tools to evaluation of decayed and weathered wood polymer composites prepared by in situ polymerization. J Therm Anal Calorim 121:1263–127131. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781– 178832. Comesaña JA, Nieströj M, Granada E, Szlek A (2013) TG-DSC analysis of biomass heat capacity during pyrolysis process. J Energy Inst 86:153–15933. Cai J, Chen S (2008) Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Dry Technol 26:1464–146834. Bruijn TJW, Jong WA, Berg WJ (1981) Kinetic parameters in Avrami-Erofeev type reactions from isothermal and nonisothermal experiments. Thermochim Acta 45:315–32535. Zlatanović S, Ostojić S, Micić D, Rankov S, Dodevska M, Vukosavljević P, Gorjanović S (2019) Thermal behaviour and degradation kinetics of apple pomace flours. Thermochim Acta 673: 17–2536. Saavedra LMZ, Alvarez SC, Esneider AMA, Toxqui TA, Pérez GSA, Ruiz CMA (2012) Towards an improved calorimetric methodology for glass transition temperature determination in amorphous sugars. J Food 10:258–26737. Hurtta M, Pitkänen I, Knuutinen J (2004) Melting behaviour of Dsucrose, D-glucose and D-fructose. Carbohydr Res 339:2267–227338. Chen T, Wu J, Zhang J, Wu J, Sun L (2014) Gasification kinetic analysis of the three pseudocomponents of biomass-cellulose, semicellulose and lignin. Bioresour Technol 153:223–22939. Wongsiriamnuay T, Tippayawong N (2010) Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Bioresour Technol 101:5638–564440. Jia C, Chen J, Bai J, Yang X, Song S, Wang Q (2018) Kinetics of the pyrolysis of oil sands based upon thermogravimetric analysis. Thermochim Acta 666:66–7441. Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev 38:594–60842. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–15043. Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498: 61–6644. Wang X, Hu M, Hu W, Chen Z, Liu S, Hu Z, Xiao B (2016) Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresour Technol 219: 510–520GeneralPublicationb4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::297-1b4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::297-1https://scholar.google.com/citations?user=WtTqM8IAAAAJ&hl=esvirtual::297-10000-0002-7158-1223virtual::297-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000112399virtual::297-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/f4daf09a-3ecb-4f3a-8203-486789d312ed/download20b5ba22b1117f71589c7318baa2c560MD52TEXTDrying and pyrolysis of lulo peel non-isothermal analysis of physicochemical, kinetics, and master plots.pdf.txtDrying and pyrolysis of lulo peel non-isothermal analysis of physicochemical, kinetics, and master plots.pdf.txtExtracted texttext/plain52096https://red.uao.edu.co/bitstreams/708f564b-65dc-416d-abb6-89f89473bad9/downloaddebb457b863e371043415c8721d3aff5MD54THUMBNAILDrying and pyrolysis of lulo peel non-isothermal analysis of physicochemical, kinetics, and master plots.pdf.jpgDrying and pyrolysis of lulo peel non-isothermal analysis of physicochemical, kinetics, and master plots.pdf.jpgGenerated Thumbnailimage/jpeg14671https://red.uao.edu.co/bitstreams/8c9e5ce6-a30a-4106-b27d-0ebc7ae4cfcc/download0fe053a7f542eac8a6866f58d3aa7bccMD5510614/13386oai:red.uao.edu.co:10614/133862024-02-26 16:34:16.599https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Springer, 2020metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K