Optimal control for enhancement of wolbachia frequency among aedes aegypti females

In this paper, we propose and thoroughly analyze the ODE model that describes the competition between wild Aedes aegypti female mosquitoes and those carrying Wolbachia bacterial symbiont in the same locality. Using this model in the context of optimal control, we further propose feasible strategies...

Full description

Autores:
Cardona Salgado, Daiver
Vasilieva, Olga
Campo Duarte, Doris Elena
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11215
Acceso en línea:
http://hdl.handle.net/10614/11215
Palabra clave:
Control vectorial
Vector control
Aedes aegypti
Wolbachia
Biological control
Optimal control
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_2d6c60c1b30f8acc27ca46f063412e5a
oai_identifier_str oai:red.uao.edu.co:10614/11215
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Optimal control for enhancement of wolbachia frequency among aedes aegypti females
title Optimal control for enhancement of wolbachia frequency among aedes aegypti females
spellingShingle Optimal control for enhancement of wolbachia frequency among aedes aegypti females
Control vectorial
Vector control
Aedes aegypti
Wolbachia
Biological control
Optimal control
title_short Optimal control for enhancement of wolbachia frequency among aedes aegypti females
title_full Optimal control for enhancement of wolbachia frequency among aedes aegypti females
title_fullStr Optimal control for enhancement of wolbachia frequency among aedes aegypti females
title_full_unstemmed Optimal control for enhancement of wolbachia frequency among aedes aegypti females
title_sort Optimal control for enhancement of wolbachia frequency among aedes aegypti females
dc.creator.fl_str_mv Cardona Salgado, Daiver
Vasilieva, Olga
Campo Duarte, Doris Elena
dc.contributor.author.none.fl_str_mv Cardona Salgado, Daiver
Vasilieva, Olga
Campo Duarte, Doris Elena
dc.subject.armarc.spa.fl_str_mv Control vectorial
topic Control vectorial
Vector control
Aedes aegypti
Wolbachia
Biological control
Optimal control
dc.subject.armarc.eng.fl_str_mv Vector control
dc.subject.proposal.eng.fl_str_mv Aedes aegypti
Wolbachia
Biological control
Optimal control
description In this paper, we propose and thoroughly analyze the ODE model that describes the competition between wild Aedes aegypti female mosquitoes and those carrying Wolbachia bacterial symbiont in the same locality. Using this model in the context of optimal control, we further propose feasible strategies for replacing the wild population with Wolbachia-carriers. The latter is known as Wolbachia-based biocontrol aimed at prevention of various arboviral infections (such as dengue, chikungunya, and zika diseases), given that Wolbachia drastically reduces the mosquito ability to acquire arboviral infections
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-01-27
dc.date.accessioned.none.fl_str_mv 2019-10-15T19:28:24Z
dc.date.available.none.fl_str_mv 2019-10-15T19:28:24Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1314-3395 (en línea)
1311-8080 (impresa)
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/10614/11215
identifier_str_mv 1314-3395 (en línea)
1311-8080 (impresa)
url http://hdl.handle.net/10614/11215
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 219
238
dc.relation.citationvolume.none.fl_str_mv 112
dc.relation.cites.eng.fl_str_mv Campo-Duarte, D. E., Vasilieva, O., & Cardona-Salgado, D. (2017). Optimal control for enhancement of Wolbachia frequency among Aedes aegypti females. International Journal of Pure and Applied Mathematics, 112(2), 219-238
dc.relation.ispartofjournal.eng.fl_str_mv International Electronic Journal of Pure and Applied Mathematics
dc.relation.references.none.fl_str_mv [1] M. Akiner, B. Demirci, G. Babuadze, V. Robert, and F. Schaffner. Spread of the invasive mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea region increases risk of chikungunya, dengue, and zika outbreaks in Europe. PLoS Negl Trop Dis, 10(4):e0004664, 2016. doi: 10.1371/journal.pntd.0004764.
[2] F. Ayala, M. Gilpin, and J. Ehrenfeld. Competition between species: theoretical mod-els and experimental tests. Theoretical Population Biology, 4(3):331–356, 1973. doi: 10.1016/0040-5809(73)90014-2.
[3] N. Barton and M. Turelli. Spatial waves of advance with bistable dynamics: cytoplasmic and genetic analogues of Allee effects. The American Naturalist, 178(3):E48–E75, 2011. doi: 10.1086/661246.
[4] D. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, and M. Svinin. Optimal control methods for establishing Wolbachia infection among wild Aedes aegypti populations. Preprint, submitted for review, 2016.
[5] N. Chitnis, J. Hyman, and J. Cushing. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathe-matical Biology, 70(5):1272–1296, 2008. doi: 10.1007/s11538-008-9299-0.
[6] A. Clements. The Biology of Mosquitoes: Viral, Arboviral and Bacterial Pathogens, volume 3. CABI, Cambridge, UK, 2012. ISBN 9781845932435. doi: 10.1079/9781845932428.0000.
[7] A. Costero, J. Edman, G. Clark, and T. Scott. Life table study of Aedes aegypti (Diptera: Culicidae) in Puerto Rico fed only human blood versus blood plus sugar. Journal of Medical Entomology, 35(5):809–813, 1998. doi: 10.1093/jmedent/35.5.809.
[8] H. Dutra, M. Rocha, F. Dias, S. Mansur, E. Caragata, and L. Moreira. Wolbachia blocks currently circulating zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell host & microbe, 19(6):771–774, 2016. doi: 10.1016/j.chom.2016.04.021.
[9] N. Ferguson, D. Kien, H. Clapham, R. Aguas, V. Trung, T. Chau, J. Popovici, P. A. Ryan, S. O’Neill, and E. McGraw. Modeling the impact on virus transmission of Wol-bachia-mediated blocking of dengue virus infection of Aedes aegypti. Science translational medicine, 7(279):279ra37–279ra37, 2015. doi: 10.1126/scitranslmed.3010370.
[10] F. Frentiu, T. Zakir, T. Walker, A. Popovici, J.and Pyke, A. van den Hurk, E. Mc-Graw, and S. O’Neill. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Neglected Tropical Diseases, 8(2):1–10, 2014. doi: 10.1371/journal.pntd.0002688.
[11] P. Hancock, S. Sinkins, and H. Godfray. Population dynamic models of the spread of Wolbachia. The American Naturalist, 177(3):323–333, 2011a. doi: 10.1086/658121.
[12] P. Hancock, S. Sinkins, and H. Godfray. Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. PLoS Negl Trop Dis, 5(4):e1024, 2011b. doi: 10.1371/journal.pntd.0001024.
[13] P. Hancock, V. White, A. Callahan, C. Godfray, A. Hoffmann, and S. Ritchie. Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia. Journal of Applied Ecology, 53:785–793, 2016. doi: 10.1111/1365-2664.12620.
[14] A. Hoffmann. Facilitating Wolbachia invasions. Austral Entomology, 53(2):125–132, 2014. doi: 10.1111/aen.12068.
[15] A. Hoffmann, B. Montgomery, J. Popovici, I. Iturbe-Ormaetxe, P. Johnson, F. Muzzi, M. Greenfield, M. Durkan, Y. Leong, Y. Dong, H. Cook, J. Axford, A. Callahan, N. Kenny, C. Omodei, E. McGraw, P. Ryan, S. Ritchie, M. Turelli, and S. O’Neill. Successful establishment of Wolbachia in Aedes populations to suppress dengue trans- mission. Nature, 476(7361):454–457, 2011. doi: 10.1038/nature10356.
[16] T. Hurst, G. Pittman, S. L. O’Neill, P. Ryan, H. Le Nguyen, and B. Kay. Impacts of Wolbachia infection on predator prey relationships: evaluating survival and horizontal transfer between wMelPop infected Aedes aegypti and its predators. Journal of medical entomology, 49(3):624–630, 2012. doi: 10.1603/ME11277.
[17] M. Kot. Elements of Mathematical Ecology. Cambridge University Press, 2001. ISBN 9780521001502.
[18] C. Lord. Density dependence in larval Aedes albopictus (diptera: Culicidae). Journal of Medical Entomology, 35(5):825–829, 1998. doi: 10.1093/jmedent/35.5.825.
[19] C. Manore, K. Hickmann, S. Xu, H. Wearing, and J. Hyman. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. Jour-nal of Theoretical Biology, 356:174–191, 2014. doi: 10.1016/j.jtbi.2014.04.033.
[20] C. McMeniman and S. O’Neill. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis, 4(7):e748, 2010. doi: 10.1371/journal.pntd.0000748.
[21] C. McMeniman, R. Lane, B. Cass, A. Fong, M. Sidhu, Y. Wang, and S. O’Neill. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science, 323(5910):141–144, 2009. doi: 10.1126/science.1165326.
[22] L. Moreira, I. Iturbe-Ormaetxe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, B. Rocha, S. Hall-Mendelin, A. Day, M. Riegler, L. Hugo, K. Johnson, B. Kay, E. McGraw, A. van den Hurk, P. Ryan, and S. O’Neill. Wolbachia symbiont in Aedes aegypti limits infec-tion with dengue, chikungunya, and plasmodium. Cell, 139(7):1268–1278, 2009. doi: 10.1016/j.cell.2009.11.042.
[23] H. Nur Aida, A. Abu Hassan, A. Nurita, M. Che Salmah, and B. Norasmah. Population analysis of Aedes albopictus (skuse) (Diptera: Culicidae) under uncontrolled laboratory conditions. Tropical Biomedicine, 25(2):117–125, 2008.
[24] J. Popovici, L. Moreira, A. Poinsignon, I. Iturbe-Ormaetxe, D. McNaughton, and S. O’Neill. Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes. Mem´orias do Instituto Oswaldo Cruz, 105(8):957–964, 2010. doi: 10.1590/S0074-02762010000800002.
[25] S. Ritchie, M. Townsend, C. Paton, A. Callahan, and A. Hoffmann. Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti. PLoS Negl Trop Dis, 9(7):e0003930, 2015. doi: 10.1371/journal.pntd.0003930.
[26] L. Rockwood. Introduction to Population Ecology. Wiley-Blackwell, 2 edition, 2015. ISBN 9781118947586.
[27] P. Ross, N. Endersby, H. Yeap, and A. Hoffmann. Larval competition extends de-velopmental time and decreases adult size of wMelPop Wolbachia-infected Aedes ae-gypti. The American journal of tropical medicine and hygiene, 91(1):198–205, 2014. doi: 10.4269/ajtmh.13-0576.
[28] T. Ruang-Areerate and P. Kittayapong. Wolbachia transinfection in Aedes aegypti : a potential gene driver of dengue vectors. Proceedings of the National Academy of Sciences, 103(33):12534–12539, 2006. doi: 10.1073/pnas.0508879103.
[29] J. Schraiber, A. Kaczmarczyk, R. Kwok, M. Park, R. Silverstein, F. Rutaganira, T. Ag-garwal, M. Schwemmer, C. Hom, and R. Grosberg. Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. Journal of theoretical biology, 297:26–32, 2012. doi: 10.1016/j.jtbi.2011.12.006.
[30] P. Sheppard,W. Macdonald, R. Tonn, and B. Grab. The dynamics of an adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok. Journal of Animal
Ecology, 38(3):661–702, 1969.
[31] S. Sinkins. Wolbachia and arbovirus inhibition in mosquitoes. Future microbiology, 8 (10):1249–1256, 2013. doi: 10.2217/fmb.13.95.
[32] M. Trpis and W. Hausermann. Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. American Journal of Tropical Medicine and Hygiene, 35(6):1263–1279, 1986.
[33] M. Trpis, W. Hausermann, and G. Craig. Estimates of population size, dispersal, and longevity of domestic Aedes aegypti (Diptera: Culicidae) by mark–release–recapture in the village of Shauri Moyo in Eastern Kenya. Journal of Medical Entomology, 32(1): 27–33, 1995. doi: s10.1093/jmedent/32.1.27.
[34] M. Turelli. Cytoplasmic incompatibility in populations with overlapping generations. Evolution, 64(1):232–241, 2010. doi: 10.1111/j.1558-5646.2009.00822.x.
[35] T. Walker, L. Johnson, P.and Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeni-man, Y. Leong, Y. Dong, J. Axford, P. Kriesner, A. Lloyd, S. Ritchie, S. O’Neill, and A. Hoffmann. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 476(7361):450–453, 2011. doi: 10.1038/nature10356.
[36] Z. Xi, C. Khoo, and S. Dobson. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science, 310(5746):326–328, 2005. doi: 10.1126/science.1117607.
[37] H. Yeap, P. Mee, T. Walker, A. Weeks, S. O’Neill, P. Johnson, S. Ritchie, K. Richardson, C. Doig, N. Endersby, and A. Hoffmann. Dynamics of the “popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics, 187 (2):583–595, 2011. doi: 10.1534/genetics.110.122390.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 20 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Academic Publications
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/307cc03d-732b-43f8-a57e-96c823398118/download
https://red.uao.edu.co/bitstreams/1f9f3a1b-bc15-4edf-a5dd-da86f237276a/download
https://red.uao.edu.co/bitstreams/1bdf8217-ed68-4415-bf3f-c74a72be9ee2/download
https://red.uao.edu.co/bitstreams/f64c5854-dbeb-478b-b44b-4aabea4767bc/download
https://red.uao.edu.co/bitstreams/a1f4a2a0-e347-4f17-bcc5-8a35cbadb7f7/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
0ab46dc5496050a83f1f92166dc68997
2eeb10c032203c40f5c3cffde8fbacdd
d3c49fda0e5e544dbd6c5f211928e1e7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1808478985460383744
spelling Cardona Salgado, Daivervirtual::1172-1Vasilieva, Olga31f6a4db00254953edddbca148e36487Campo Duarte, Doris Elenavirtual::1003-1Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-10-15T19:28:24Z2019-10-15T19:28:24Z2017-01-271314-3395 (en línea)1311-8080 (impresa)http://hdl.handle.net/10614/11215In this paper, we propose and thoroughly analyze the ODE model that describes the competition between wild Aedes aegypti female mosquitoes and those carrying Wolbachia bacterial symbiont in the same locality. Using this model in the context of optimal control, we further propose feasible strategies for replacing the wild population with Wolbachia-carriers. The latter is known as Wolbachia-based biocontrol aimed at prevention of various arboviral infections (such as dengue, chikungunya, and zika diseases), given that Wolbachia drastically reduces the mosquito ability to acquire arboviral infectionsapplication/pdf20 páginasengAcademic PublicationsDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Optimal control for enhancement of wolbachia frequency among aedes aegypti femalesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Control vectorialVector controlAedes aegyptiWolbachiaBiological controlOptimal control2219238112Campo-Duarte, D. E., Vasilieva, O., & Cardona-Salgado, D. (2017). Optimal control for enhancement of Wolbachia frequency among Aedes aegypti females. International Journal of Pure and Applied Mathematics, 112(2), 219-238International Electronic Journal of Pure and Applied Mathematics[1] M. Akiner, B. Demirci, G. Babuadze, V. Robert, and F. Schaffner. Spread of the invasive mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea region increases risk of chikungunya, dengue, and zika outbreaks in Europe. PLoS Negl Trop Dis, 10(4):e0004664, 2016. doi: 10.1371/journal.pntd.0004764.[2] F. Ayala, M. Gilpin, and J. Ehrenfeld. Competition between species: theoretical mod-els and experimental tests. Theoretical Population Biology, 4(3):331–356, 1973. doi: 10.1016/0040-5809(73)90014-2.[3] N. Barton and M. Turelli. Spatial waves of advance with bistable dynamics: cytoplasmic and genetic analogues of Allee effects. The American Naturalist, 178(3):E48–E75, 2011. doi: 10.1086/661246.[4] D. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, and M. Svinin. Optimal control methods for establishing Wolbachia infection among wild Aedes aegypti populations. Preprint, submitted for review, 2016.[5] N. Chitnis, J. Hyman, and J. Cushing. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathe-matical Biology, 70(5):1272–1296, 2008. doi: 10.1007/s11538-008-9299-0.[6] A. Clements. The Biology of Mosquitoes: Viral, Arboviral and Bacterial Pathogens, volume 3. CABI, Cambridge, UK, 2012. ISBN 9781845932435. doi: 10.1079/9781845932428.0000.[7] A. Costero, J. Edman, G. Clark, and T. Scott. Life table study of Aedes aegypti (Diptera: Culicidae) in Puerto Rico fed only human blood versus blood plus sugar. Journal of Medical Entomology, 35(5):809–813, 1998. doi: 10.1093/jmedent/35.5.809.[8] H. Dutra, M. Rocha, F. Dias, S. Mansur, E. Caragata, and L. Moreira. Wolbachia blocks currently circulating zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell host & microbe, 19(6):771–774, 2016. doi: 10.1016/j.chom.2016.04.021.[9] N. Ferguson, D. Kien, H. Clapham, R. Aguas, V. Trung, T. Chau, J. Popovici, P. A. Ryan, S. O’Neill, and E. McGraw. Modeling the impact on virus transmission of Wol-bachia-mediated blocking of dengue virus infection of Aedes aegypti. Science translational medicine, 7(279):279ra37–279ra37, 2015. doi: 10.1126/scitranslmed.3010370.[10] F. Frentiu, T. Zakir, T. Walker, A. Popovici, J.and Pyke, A. van den Hurk, E. Mc-Graw, and S. O’Neill. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Neglected Tropical Diseases, 8(2):1–10, 2014. doi: 10.1371/journal.pntd.0002688.[11] P. Hancock, S. Sinkins, and H. Godfray. Population dynamic models of the spread of Wolbachia. The American Naturalist, 177(3):323–333, 2011a. doi: 10.1086/658121.[12] P. Hancock, S. Sinkins, and H. Godfray. Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. PLoS Negl Trop Dis, 5(4):e1024, 2011b. doi: 10.1371/journal.pntd.0001024.[13] P. Hancock, V. White, A. Callahan, C. Godfray, A. Hoffmann, and S. Ritchie. Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia. Journal of Applied Ecology, 53:785–793, 2016. doi: 10.1111/1365-2664.12620.[14] A. Hoffmann. Facilitating Wolbachia invasions. Austral Entomology, 53(2):125–132, 2014. doi: 10.1111/aen.12068.[15] A. Hoffmann, B. Montgomery, J. Popovici, I. Iturbe-Ormaetxe, P. Johnson, F. Muzzi, M. Greenfield, M. Durkan, Y. Leong, Y. Dong, H. Cook, J. Axford, A. Callahan, N. Kenny, C. Omodei, E. McGraw, P. Ryan, S. Ritchie, M. Turelli, and S. O’Neill. Successful establishment of Wolbachia in Aedes populations to suppress dengue trans- mission. Nature, 476(7361):454–457, 2011. doi: 10.1038/nature10356.[16] T. Hurst, G. Pittman, S. L. O’Neill, P. Ryan, H. Le Nguyen, and B. Kay. Impacts of Wolbachia infection on predator prey relationships: evaluating survival and horizontal transfer between wMelPop infected Aedes aegypti and its predators. Journal of medical entomology, 49(3):624–630, 2012. doi: 10.1603/ME11277.[17] M. Kot. Elements of Mathematical Ecology. Cambridge University Press, 2001. ISBN 9780521001502.[18] C. Lord. Density dependence in larval Aedes albopictus (diptera: Culicidae). Journal of Medical Entomology, 35(5):825–829, 1998. doi: 10.1093/jmedent/35.5.825.[19] C. Manore, K. Hickmann, S. Xu, H. Wearing, and J. Hyman. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. Jour-nal of Theoretical Biology, 356:174–191, 2014. doi: 10.1016/j.jtbi.2014.04.033.[20] C. McMeniman and S. O’Neill. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis, 4(7):e748, 2010. doi: 10.1371/journal.pntd.0000748.[21] C. McMeniman, R. Lane, B. Cass, A. Fong, M. Sidhu, Y. Wang, and S. O’Neill. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science, 323(5910):141–144, 2009. doi: 10.1126/science.1165326.[22] L. Moreira, I. Iturbe-Ormaetxe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, B. Rocha, S. Hall-Mendelin, A. Day, M. Riegler, L. Hugo, K. Johnson, B. Kay, E. McGraw, A. van den Hurk, P. Ryan, and S. O’Neill. Wolbachia symbiont in Aedes aegypti limits infec-tion with dengue, chikungunya, and plasmodium. Cell, 139(7):1268–1278, 2009. doi: 10.1016/j.cell.2009.11.042.[23] H. Nur Aida, A. Abu Hassan, A. Nurita, M. Che Salmah, and B. Norasmah. Population analysis of Aedes albopictus (skuse) (Diptera: Culicidae) under uncontrolled laboratory conditions. Tropical Biomedicine, 25(2):117–125, 2008.[24] J. Popovici, L. Moreira, A. Poinsignon, I. Iturbe-Ormaetxe, D. McNaughton, and S. O’Neill. Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes. Mem´orias do Instituto Oswaldo Cruz, 105(8):957–964, 2010. doi: 10.1590/S0074-02762010000800002.[25] S. Ritchie, M. Townsend, C. Paton, A. Callahan, and A. Hoffmann. Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti. PLoS Negl Trop Dis, 9(7):e0003930, 2015. doi: 10.1371/journal.pntd.0003930.[26] L. Rockwood. Introduction to Population Ecology. Wiley-Blackwell, 2 edition, 2015. ISBN 9781118947586.[27] P. Ross, N. Endersby, H. Yeap, and A. Hoffmann. Larval competition extends de-velopmental time and decreases adult size of wMelPop Wolbachia-infected Aedes ae-gypti. The American journal of tropical medicine and hygiene, 91(1):198–205, 2014. doi: 10.4269/ajtmh.13-0576.[28] T. Ruang-Areerate and P. Kittayapong. Wolbachia transinfection in Aedes aegypti : a potential gene driver of dengue vectors. Proceedings of the National Academy of Sciences, 103(33):12534–12539, 2006. doi: 10.1073/pnas.0508879103.[29] J. Schraiber, A. Kaczmarczyk, R. Kwok, M. Park, R. Silverstein, F. Rutaganira, T. Ag-garwal, M. Schwemmer, C. Hom, and R. Grosberg. Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. Journal of theoretical biology, 297:26–32, 2012. doi: 10.1016/j.jtbi.2011.12.006.[30] P. Sheppard,W. Macdonald, R. Tonn, and B. Grab. The dynamics of an adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok. Journal of AnimalEcology, 38(3):661–702, 1969.[31] S. Sinkins. Wolbachia and arbovirus inhibition in mosquitoes. Future microbiology, 8 (10):1249–1256, 2013. doi: 10.2217/fmb.13.95.[32] M. Trpis and W. Hausermann. Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. American Journal of Tropical Medicine and Hygiene, 35(6):1263–1279, 1986.[33] M. Trpis, W. Hausermann, and G. Craig. Estimates of population size, dispersal, and longevity of domestic Aedes aegypti (Diptera: Culicidae) by mark–release–recapture in the village of Shauri Moyo in Eastern Kenya. Journal of Medical Entomology, 32(1): 27–33, 1995. doi: s10.1093/jmedent/32.1.27.[34] M. Turelli. Cytoplasmic incompatibility in populations with overlapping generations. Evolution, 64(1):232–241, 2010. doi: 10.1111/j.1558-5646.2009.00822.x.[35] T. Walker, L. Johnson, P.and Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeni-man, Y. Leong, Y. Dong, J. Axford, P. Kriesner, A. Lloyd, S. Ritchie, S. O’Neill, and A. Hoffmann. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 476(7361):450–453, 2011. doi: 10.1038/nature10356.[36] Z. Xi, C. Khoo, and S. Dobson. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science, 310(5746):326–328, 2005. doi: 10.1126/science.1117607.[37] H. Yeap, P. Mee, T. Walker, A. Weeks, S. O’Neill, P. Johnson, S. Ritchie, K. Richardson, C. Doig, N. Endersby, and A. Hoffmann. Dynamics of the “popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics, 187 (2):583–595, 2011. doi: 10.1534/genetics.110.122390.Publication72f68479-5914-43da-8996-02353d27d5dcvirtual::1172-15d52813a-b7be-448d-bc24-492faea43f0fvirtual::1003-15d52813a-b7be-448d-bc24-492faea43f0fvirtual::1003-172f68479-5914-43da-8996-02353d27d5dcvirtual::1172-1https://scholar.google.com.co/citations?user=KcfKIyEAAAAJ&hl=esvirtual::1172-1https://scholar.google.com/citations?hl=es&user=wyuT448AAAAJvirtual::1003-10000-0003-4828-9360virtual::1172-10000-0001-6832-9265virtual::1003-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001474886virtual::1172-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001349182virtual::1003-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/307cc03d-732b-43f8-a57e-96c823398118/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/1f9f3a1b-bc15-4edf-a5dd-da86f237276a/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALOptimal control for enhancement of Wolbachia frequency among Aedes aegypti females.pdfOptimal control for enhancement of Wolbachia frequency among Aedes aegypti females.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf309885https://red.uao.edu.co/bitstreams/1bdf8217-ed68-4415-bf3f-c74a72be9ee2/download0ab46dc5496050a83f1f92166dc68997MD54TEXTOptimal control for enhancement of Wolbachia frequency among Aedes aegypti females.pdf.txtOptimal control for enhancement of Wolbachia frequency among Aedes aegypti females.pdf.txtExtracted texttext/plain42230https://red.uao.edu.co/bitstreams/f64c5854-dbeb-478b-b44b-4aabea4767bc/download2eeb10c032203c40f5c3cffde8fbacddMD55THUMBNAILOptimal control for enhancement of Wolbachia frequency among Aedes aegypti females.pdf.jpgOptimal control for enhancement of Wolbachia frequency among Aedes aegypti females.pdf.jpgGenerated Thumbnailimage/jpeg10196https://red.uao.edu.co/bitstreams/a1f4a2a0-e347-4f17-bcc5-8a35cbadb7f7/downloadd3c49fda0e5e544dbd6c5f211928e1e7MD5610614/11215oai:red.uao.edu.co:10614/112152024-03-01 14:59:31.022https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K