Optimal control for enhancement of wolbachia frequency among aedes aegypti females
In this paper, we propose and thoroughly analyze the ODE model that describes the competition between wild Aedes aegypti female mosquitoes and those carrying Wolbachia bacterial symbiont in the same locality. Using this model in the context of optimal control, we further propose feasible strategies...
- Autores:
-
Cardona Salgado, Daiver
Vasilieva, Olga
Campo Duarte, Doris Elena
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11215
- Acceso en línea:
- http://hdl.handle.net/10614/11215
- Palabra clave:
- Control vectorial
Vector control
Aedes aegypti
Wolbachia
Biological control
Optimal control
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_2d6c60c1b30f8acc27ca46f063412e5a |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11215 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Optimal control for enhancement of wolbachia frequency among aedes aegypti females |
title |
Optimal control for enhancement of wolbachia frequency among aedes aegypti females |
spellingShingle |
Optimal control for enhancement of wolbachia frequency among aedes aegypti females Control vectorial Vector control Aedes aegypti Wolbachia Biological control Optimal control |
title_short |
Optimal control for enhancement of wolbachia frequency among aedes aegypti females |
title_full |
Optimal control for enhancement of wolbachia frequency among aedes aegypti females |
title_fullStr |
Optimal control for enhancement of wolbachia frequency among aedes aegypti females |
title_full_unstemmed |
Optimal control for enhancement of wolbachia frequency among aedes aegypti females |
title_sort |
Optimal control for enhancement of wolbachia frequency among aedes aegypti females |
dc.creator.fl_str_mv |
Cardona Salgado, Daiver Vasilieva, Olga Campo Duarte, Doris Elena |
dc.contributor.author.none.fl_str_mv |
Cardona Salgado, Daiver Vasilieva, Olga Campo Duarte, Doris Elena |
dc.subject.armarc.spa.fl_str_mv |
Control vectorial |
topic |
Control vectorial Vector control Aedes aegypti Wolbachia Biological control Optimal control |
dc.subject.armarc.eng.fl_str_mv |
Vector control |
dc.subject.proposal.eng.fl_str_mv |
Aedes aegypti Wolbachia Biological control Optimal control |
description |
In this paper, we propose and thoroughly analyze the ODE model that describes the competition between wild Aedes aegypti female mosquitoes and those carrying Wolbachia bacterial symbiont in the same locality. Using this model in the context of optimal control, we further propose feasible strategies for replacing the wild population with Wolbachia-carriers. The latter is known as Wolbachia-based biocontrol aimed at prevention of various arboviral infections (such as dengue, chikungunya, and zika diseases), given that Wolbachia drastically reduces the mosquito ability to acquire arboviral infections |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017-01-27 |
dc.date.accessioned.none.fl_str_mv |
2019-10-15T19:28:24Z |
dc.date.available.none.fl_str_mv |
2019-10-15T19:28:24Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1314-3395 (en línea) 1311-8080 (impresa) |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/10614/11215 |
identifier_str_mv |
1314-3395 (en línea) 1311-8080 (impresa) |
url |
http://hdl.handle.net/10614/11215 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationissue.none.fl_str_mv |
2 |
dc.relation.citationstartpage.none.fl_str_mv |
219 238 |
dc.relation.citationvolume.none.fl_str_mv |
112 |
dc.relation.cites.eng.fl_str_mv |
Campo-Duarte, D. E., Vasilieva, O., & Cardona-Salgado, D. (2017). Optimal control for enhancement of Wolbachia frequency among Aedes aegypti females. International Journal of Pure and Applied Mathematics, 112(2), 219-238 |
dc.relation.ispartofjournal.eng.fl_str_mv |
International Electronic Journal of Pure and Applied Mathematics |
dc.relation.references.none.fl_str_mv |
[1] M. Akiner, B. Demirci, G. Babuadze, V. Robert, and F. Schaffner. Spread of the invasive mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea region increases risk of chikungunya, dengue, and zika outbreaks in Europe. PLoS Negl Trop Dis, 10(4):e0004664, 2016. doi: 10.1371/journal.pntd.0004764. [2] F. Ayala, M. Gilpin, and J. Ehrenfeld. Competition between species: theoretical mod-els and experimental tests. Theoretical Population Biology, 4(3):331–356, 1973. doi: 10.1016/0040-5809(73)90014-2. [3] N. Barton and M. Turelli. Spatial waves of advance with bistable dynamics: cytoplasmic and genetic analogues of Allee effects. The American Naturalist, 178(3):E48–E75, 2011. doi: 10.1086/661246. [4] D. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, and M. Svinin. Optimal control methods for establishing Wolbachia infection among wild Aedes aegypti populations. Preprint, submitted for review, 2016. [5] N. Chitnis, J. Hyman, and J. Cushing. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathe-matical Biology, 70(5):1272–1296, 2008. doi: 10.1007/s11538-008-9299-0. [6] A. Clements. The Biology of Mosquitoes: Viral, Arboviral and Bacterial Pathogens, volume 3. CABI, Cambridge, UK, 2012. ISBN 9781845932435. doi: 10.1079/9781845932428.0000. [7] A. Costero, J. Edman, G. Clark, and T. Scott. Life table study of Aedes aegypti (Diptera: Culicidae) in Puerto Rico fed only human blood versus blood plus sugar. Journal of Medical Entomology, 35(5):809–813, 1998. doi: 10.1093/jmedent/35.5.809. [8] H. Dutra, M. Rocha, F. Dias, S. Mansur, E. Caragata, and L. Moreira. Wolbachia blocks currently circulating zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell host & microbe, 19(6):771–774, 2016. doi: 10.1016/j.chom.2016.04.021. [9] N. Ferguson, D. Kien, H. Clapham, R. Aguas, V. Trung, T. Chau, J. Popovici, P. A. Ryan, S. O’Neill, and E. McGraw. Modeling the impact on virus transmission of Wol-bachia-mediated blocking of dengue virus infection of Aedes aegypti. Science translational medicine, 7(279):279ra37–279ra37, 2015. doi: 10.1126/scitranslmed.3010370. [10] F. Frentiu, T. Zakir, T. Walker, A. Popovici, J.and Pyke, A. van den Hurk, E. Mc-Graw, and S. O’Neill. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Neglected Tropical Diseases, 8(2):1–10, 2014. doi: 10.1371/journal.pntd.0002688. [11] P. Hancock, S. Sinkins, and H. Godfray. Population dynamic models of the spread of Wolbachia. The American Naturalist, 177(3):323–333, 2011a. doi: 10.1086/658121. [12] P. Hancock, S. Sinkins, and H. Godfray. Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. PLoS Negl Trop Dis, 5(4):e1024, 2011b. doi: 10.1371/journal.pntd.0001024. [13] P. Hancock, V. White, A. Callahan, C. Godfray, A. Hoffmann, and S. Ritchie. Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia. Journal of Applied Ecology, 53:785–793, 2016. doi: 10.1111/1365-2664.12620. [14] A. Hoffmann. Facilitating Wolbachia invasions. Austral Entomology, 53(2):125–132, 2014. doi: 10.1111/aen.12068. [15] A. Hoffmann, B. Montgomery, J. Popovici, I. Iturbe-Ormaetxe, P. Johnson, F. Muzzi, M. Greenfield, M. Durkan, Y. Leong, Y. Dong, H. Cook, J. Axford, A. Callahan, N. Kenny, C. Omodei, E. McGraw, P. Ryan, S. Ritchie, M. Turelli, and S. O’Neill. Successful establishment of Wolbachia in Aedes populations to suppress dengue trans- mission. Nature, 476(7361):454–457, 2011. doi: 10.1038/nature10356. [16] T. Hurst, G. Pittman, S. L. O’Neill, P. Ryan, H. Le Nguyen, and B. Kay. Impacts of Wolbachia infection on predator prey relationships: evaluating survival and horizontal transfer between wMelPop infected Aedes aegypti and its predators. Journal of medical entomology, 49(3):624–630, 2012. doi: 10.1603/ME11277. [17] M. Kot. Elements of Mathematical Ecology. Cambridge University Press, 2001. ISBN 9780521001502. [18] C. Lord. Density dependence in larval Aedes albopictus (diptera: Culicidae). Journal of Medical Entomology, 35(5):825–829, 1998. doi: 10.1093/jmedent/35.5.825. [19] C. Manore, K. Hickmann, S. Xu, H. Wearing, and J. Hyman. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. Jour-nal of Theoretical Biology, 356:174–191, 2014. doi: 10.1016/j.jtbi.2014.04.033. [20] C. McMeniman and S. O’Neill. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis, 4(7):e748, 2010. doi: 10.1371/journal.pntd.0000748. [21] C. McMeniman, R. Lane, B. Cass, A. Fong, M. Sidhu, Y. Wang, and S. O’Neill. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science, 323(5910):141–144, 2009. doi: 10.1126/science.1165326. [22] L. Moreira, I. Iturbe-Ormaetxe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, B. Rocha, S. Hall-Mendelin, A. Day, M. Riegler, L. Hugo, K. Johnson, B. Kay, E. McGraw, A. van den Hurk, P. Ryan, and S. O’Neill. Wolbachia symbiont in Aedes aegypti limits infec-tion with dengue, chikungunya, and plasmodium. Cell, 139(7):1268–1278, 2009. doi: 10.1016/j.cell.2009.11.042. [23] H. Nur Aida, A. Abu Hassan, A. Nurita, M. Che Salmah, and B. Norasmah. Population analysis of Aedes albopictus (skuse) (Diptera: Culicidae) under uncontrolled laboratory conditions. Tropical Biomedicine, 25(2):117–125, 2008. [24] J. Popovici, L. Moreira, A. Poinsignon, I. Iturbe-Ormaetxe, D. McNaughton, and S. O’Neill. Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes. Mem´orias do Instituto Oswaldo Cruz, 105(8):957–964, 2010. doi: 10.1590/S0074-02762010000800002. [25] S. Ritchie, M. Townsend, C. Paton, A. Callahan, and A. Hoffmann. Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti. PLoS Negl Trop Dis, 9(7):e0003930, 2015. doi: 10.1371/journal.pntd.0003930. [26] L. Rockwood. Introduction to Population Ecology. Wiley-Blackwell, 2 edition, 2015. ISBN 9781118947586. [27] P. Ross, N. Endersby, H. Yeap, and A. Hoffmann. Larval competition extends de-velopmental time and decreases adult size of wMelPop Wolbachia-infected Aedes ae-gypti. The American journal of tropical medicine and hygiene, 91(1):198–205, 2014. doi: 10.4269/ajtmh.13-0576. [28] T. Ruang-Areerate and P. Kittayapong. Wolbachia transinfection in Aedes aegypti : a potential gene driver of dengue vectors. Proceedings of the National Academy of Sciences, 103(33):12534–12539, 2006. doi: 10.1073/pnas.0508879103. [29] J. Schraiber, A. Kaczmarczyk, R. Kwok, M. Park, R. Silverstein, F. Rutaganira, T. Ag-garwal, M. Schwemmer, C. Hom, and R. Grosberg. Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. Journal of theoretical biology, 297:26–32, 2012. doi: 10.1016/j.jtbi.2011.12.006. [30] P. Sheppard,W. Macdonald, R. Tonn, and B. Grab. The dynamics of an adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok. Journal of Animal Ecology, 38(3):661–702, 1969. [31] S. Sinkins. Wolbachia and arbovirus inhibition in mosquitoes. Future microbiology, 8 (10):1249–1256, 2013. doi: 10.2217/fmb.13.95. [32] M. Trpis and W. Hausermann. Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. American Journal of Tropical Medicine and Hygiene, 35(6):1263–1279, 1986. [33] M. Trpis, W. Hausermann, and G. Craig. Estimates of population size, dispersal, and longevity of domestic Aedes aegypti (Diptera: Culicidae) by mark–release–recapture in the village of Shauri Moyo in Eastern Kenya. Journal of Medical Entomology, 32(1): 27–33, 1995. doi: s10.1093/jmedent/32.1.27. [34] M. Turelli. Cytoplasmic incompatibility in populations with overlapping generations. Evolution, 64(1):232–241, 2010. doi: 10.1111/j.1558-5646.2009.00822.x. [35] T. Walker, L. Johnson, P.and Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeni-man, Y. Leong, Y. Dong, J. Axford, P. Kriesner, A. Lloyd, S. Ritchie, S. O’Neill, and A. Hoffmann. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 476(7361):450–453, 2011. doi: 10.1038/nature10356. [36] Z. Xi, C. Khoo, and S. Dobson. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science, 310(5746):326–328, 2005. doi: 10.1126/science.1117607. [37] H. Yeap, P. Mee, T. Walker, A. Weeks, S. O’Neill, P. Johnson, S. Ritchie, K. Richardson, C. Doig, N. Endersby, and A. Hoffmann. Dynamics of the “popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics, 187 (2):583–595, 2011. doi: 10.1534/genetics.110.122390. |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
20 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Academic Publications |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/307cc03d-732b-43f8-a57e-96c823398118/download https://red.uao.edu.co/bitstreams/1f9f3a1b-bc15-4edf-a5dd-da86f237276a/download https://red.uao.edu.co/bitstreams/1bdf8217-ed68-4415-bf3f-c74a72be9ee2/download https://red.uao.edu.co/bitstreams/f64c5854-dbeb-478b-b44b-4aabea4767bc/download https://red.uao.edu.co/bitstreams/a1f4a2a0-e347-4f17-bcc5-8a35cbadb7f7/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 0ab46dc5496050a83f1f92166dc68997 2eeb10c032203c40f5c3cffde8fbacdd d3c49fda0e5e544dbd6c5f211928e1e7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260151419404288 |
spelling |
Cardona Salgado, Daivervirtual::1172-1Vasilieva, Olga31f6a4db00254953edddbca148e36487Campo Duarte, Doris Elenavirtual::1003-1Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-10-15T19:28:24Z2019-10-15T19:28:24Z2017-01-271314-3395 (en línea)1311-8080 (impresa)http://hdl.handle.net/10614/11215In this paper, we propose and thoroughly analyze the ODE model that describes the competition between wild Aedes aegypti female mosquitoes and those carrying Wolbachia bacterial symbiont in the same locality. Using this model in the context of optimal control, we further propose feasible strategies for replacing the wild population with Wolbachia-carriers. The latter is known as Wolbachia-based biocontrol aimed at prevention of various arboviral infections (such as dengue, chikungunya, and zika diseases), given that Wolbachia drastically reduces the mosquito ability to acquire arboviral infectionsapplication/pdf20 páginasengAcademic PublicationsDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Optimal control for enhancement of wolbachia frequency among aedes aegypti femalesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Control vectorialVector controlAedes aegyptiWolbachiaBiological controlOptimal control2219238112Campo-Duarte, D. E., Vasilieva, O., & Cardona-Salgado, D. (2017). Optimal control for enhancement of Wolbachia frequency among Aedes aegypti females. International Journal of Pure and Applied Mathematics, 112(2), 219-238International Electronic Journal of Pure and Applied Mathematics[1] M. Akiner, B. Demirci, G. Babuadze, V. Robert, and F. Schaffner. Spread of the invasive mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea region increases risk of chikungunya, dengue, and zika outbreaks in Europe. PLoS Negl Trop Dis, 10(4):e0004664, 2016. doi: 10.1371/journal.pntd.0004764.[2] F. Ayala, M. Gilpin, and J. Ehrenfeld. Competition between species: theoretical mod-els and experimental tests. Theoretical Population Biology, 4(3):331–356, 1973. doi: 10.1016/0040-5809(73)90014-2.[3] N. Barton and M. Turelli. Spatial waves of advance with bistable dynamics: cytoplasmic and genetic analogues of Allee effects. The American Naturalist, 178(3):E48–E75, 2011. doi: 10.1086/661246.[4] D. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, and M. Svinin. Optimal control methods for establishing Wolbachia infection among wild Aedes aegypti populations. Preprint, submitted for review, 2016.[5] N. Chitnis, J. Hyman, and J. Cushing. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathe-matical Biology, 70(5):1272–1296, 2008. doi: 10.1007/s11538-008-9299-0.[6] A. Clements. The Biology of Mosquitoes: Viral, Arboviral and Bacterial Pathogens, volume 3. CABI, Cambridge, UK, 2012. ISBN 9781845932435. doi: 10.1079/9781845932428.0000.[7] A. Costero, J. Edman, G. Clark, and T. Scott. Life table study of Aedes aegypti (Diptera: Culicidae) in Puerto Rico fed only human blood versus blood plus sugar. Journal of Medical Entomology, 35(5):809–813, 1998. doi: 10.1093/jmedent/35.5.809.[8] H. Dutra, M. Rocha, F. Dias, S. Mansur, E. Caragata, and L. Moreira. Wolbachia blocks currently circulating zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell host & microbe, 19(6):771–774, 2016. doi: 10.1016/j.chom.2016.04.021.[9] N. Ferguson, D. Kien, H. Clapham, R. Aguas, V. Trung, T. Chau, J. Popovici, P. A. Ryan, S. O’Neill, and E. McGraw. Modeling the impact on virus transmission of Wol-bachia-mediated blocking of dengue virus infection of Aedes aegypti. Science translational medicine, 7(279):279ra37–279ra37, 2015. doi: 10.1126/scitranslmed.3010370.[10] F. Frentiu, T. Zakir, T. Walker, A. Popovici, J.and Pyke, A. van den Hurk, E. Mc-Graw, and S. O’Neill. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Neglected Tropical Diseases, 8(2):1–10, 2014. doi: 10.1371/journal.pntd.0002688.[11] P. Hancock, S. Sinkins, and H. Godfray. Population dynamic models of the spread of Wolbachia. The American Naturalist, 177(3):323–333, 2011a. doi: 10.1086/658121.[12] P. Hancock, S. Sinkins, and H. Godfray. Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. PLoS Negl Trop Dis, 5(4):e1024, 2011b. doi: 10.1371/journal.pntd.0001024.[13] P. Hancock, V. White, A. Callahan, C. Godfray, A. Hoffmann, and S. Ritchie. Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia. Journal of Applied Ecology, 53:785–793, 2016. doi: 10.1111/1365-2664.12620.[14] A. Hoffmann. Facilitating Wolbachia invasions. Austral Entomology, 53(2):125–132, 2014. doi: 10.1111/aen.12068.[15] A. Hoffmann, B. Montgomery, J. Popovici, I. Iturbe-Ormaetxe, P. Johnson, F. Muzzi, M. Greenfield, M. Durkan, Y. Leong, Y. Dong, H. Cook, J. Axford, A. Callahan, N. Kenny, C. Omodei, E. McGraw, P. Ryan, S. Ritchie, M. Turelli, and S. O’Neill. Successful establishment of Wolbachia in Aedes populations to suppress dengue trans- mission. Nature, 476(7361):454–457, 2011. doi: 10.1038/nature10356.[16] T. Hurst, G. Pittman, S. L. O’Neill, P. Ryan, H. Le Nguyen, and B. Kay. Impacts of Wolbachia infection on predator prey relationships: evaluating survival and horizontal transfer between wMelPop infected Aedes aegypti and its predators. Journal of medical entomology, 49(3):624–630, 2012. doi: 10.1603/ME11277.[17] M. Kot. Elements of Mathematical Ecology. Cambridge University Press, 2001. ISBN 9780521001502.[18] C. Lord. Density dependence in larval Aedes albopictus (diptera: Culicidae). Journal of Medical Entomology, 35(5):825–829, 1998. doi: 10.1093/jmedent/35.5.825.[19] C. Manore, K. Hickmann, S. Xu, H. Wearing, and J. Hyman. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. Jour-nal of Theoretical Biology, 356:174–191, 2014. doi: 10.1016/j.jtbi.2014.04.033.[20] C. McMeniman and S. O’Neill. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis, 4(7):e748, 2010. doi: 10.1371/journal.pntd.0000748.[21] C. McMeniman, R. Lane, B. Cass, A. Fong, M. Sidhu, Y. Wang, and S. O’Neill. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science, 323(5910):141–144, 2009. doi: 10.1126/science.1165326.[22] L. Moreira, I. Iturbe-Ormaetxe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, B. Rocha, S. Hall-Mendelin, A. Day, M. Riegler, L. Hugo, K. Johnson, B. Kay, E. McGraw, A. van den Hurk, P. Ryan, and S. O’Neill. Wolbachia symbiont in Aedes aegypti limits infec-tion with dengue, chikungunya, and plasmodium. Cell, 139(7):1268–1278, 2009. doi: 10.1016/j.cell.2009.11.042.[23] H. Nur Aida, A. Abu Hassan, A. Nurita, M. Che Salmah, and B. Norasmah. Population analysis of Aedes albopictus (skuse) (Diptera: Culicidae) under uncontrolled laboratory conditions. Tropical Biomedicine, 25(2):117–125, 2008.[24] J. Popovici, L. Moreira, A. Poinsignon, I. Iturbe-Ormaetxe, D. McNaughton, and S. O’Neill. Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes. Mem´orias do Instituto Oswaldo Cruz, 105(8):957–964, 2010. doi: 10.1590/S0074-02762010000800002.[25] S. Ritchie, M. Townsend, C. Paton, A. Callahan, and A. Hoffmann. Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti. PLoS Negl Trop Dis, 9(7):e0003930, 2015. doi: 10.1371/journal.pntd.0003930.[26] L. Rockwood. Introduction to Population Ecology. Wiley-Blackwell, 2 edition, 2015. ISBN 9781118947586.[27] P. Ross, N. Endersby, H. Yeap, and A. Hoffmann. Larval competition extends de-velopmental time and decreases adult size of wMelPop Wolbachia-infected Aedes ae-gypti. The American journal of tropical medicine and hygiene, 91(1):198–205, 2014. doi: 10.4269/ajtmh.13-0576.[28] T. Ruang-Areerate and P. Kittayapong. Wolbachia transinfection in Aedes aegypti : a potential gene driver of dengue vectors. Proceedings of the National Academy of Sciences, 103(33):12534–12539, 2006. doi: 10.1073/pnas.0508879103.[29] J. Schraiber, A. Kaczmarczyk, R. Kwok, M. Park, R. Silverstein, F. Rutaganira, T. Ag-garwal, M. Schwemmer, C. Hom, and R. Grosberg. Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. Journal of theoretical biology, 297:26–32, 2012. doi: 10.1016/j.jtbi.2011.12.006.[30] P. Sheppard,W. Macdonald, R. Tonn, and B. Grab. The dynamics of an adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok. Journal of AnimalEcology, 38(3):661–702, 1969.[31] S. Sinkins. Wolbachia and arbovirus inhibition in mosquitoes. Future microbiology, 8 (10):1249–1256, 2013. doi: 10.2217/fmb.13.95.[32] M. Trpis and W. Hausermann. Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. American Journal of Tropical Medicine and Hygiene, 35(6):1263–1279, 1986.[33] M. Trpis, W. Hausermann, and G. Craig. Estimates of population size, dispersal, and longevity of domestic Aedes aegypti (Diptera: Culicidae) by mark–release–recapture in the village of Shauri Moyo in Eastern Kenya. Journal of Medical Entomology, 32(1): 27–33, 1995. doi: s10.1093/jmedent/32.1.27.[34] M. Turelli. Cytoplasmic incompatibility in populations with overlapping generations. Evolution, 64(1):232–241, 2010. doi: 10.1111/j.1558-5646.2009.00822.x.[35] T. Walker, L. Johnson, P.and Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeni-man, Y. Leong, Y. Dong, J. Axford, P. Kriesner, A. Lloyd, S. Ritchie, S. O’Neill, and A. Hoffmann. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 476(7361):450–453, 2011. doi: 10.1038/nature10356.[36] Z. Xi, C. Khoo, and S. Dobson. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science, 310(5746):326–328, 2005. doi: 10.1126/science.1117607.[37] H. Yeap, P. Mee, T. Walker, A. Weeks, S. O’Neill, P. Johnson, S. Ritchie, K. Richardson, C. Doig, N. Endersby, and A. Hoffmann. Dynamics of the “popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics, 187 (2):583–595, 2011. doi: 10.1534/genetics.110.122390.Publication72f68479-5914-43da-8996-02353d27d5dcvirtual::1172-15d52813a-b7be-448d-bc24-492faea43f0fvirtual::1003-15d52813a-b7be-448d-bc24-492faea43f0fvirtual::1003-172f68479-5914-43da-8996-02353d27d5dcvirtual::1172-1https://scholar.google.com.co/citations?user=KcfKIyEAAAAJ&hl=esvirtual::1172-1https://scholar.google.com/citations?hl=es&user=wyuT448AAAAJvirtual::1003-10000-0003-4828-9360virtual::1172-10000-0001-6832-9265virtual::1003-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001474886virtual::1172-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001349182virtual::1003-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/307cc03d-732b-43f8-a57e-96c823398118/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/1f9f3a1b-bc15-4edf-a5dd-da86f237276a/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALOptimal control for enhancement of Wolbachia frequency among Aedes aegypti females.pdfOptimal control for enhancement of Wolbachia frequency among Aedes aegypti females.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf309885https://red.uao.edu.co/bitstreams/1bdf8217-ed68-4415-bf3f-c74a72be9ee2/download0ab46dc5496050a83f1f92166dc68997MD54TEXTOptimal control for enhancement of Wolbachia frequency among Aedes aegypti females.pdf.txtOptimal control for enhancement of Wolbachia frequency among Aedes aegypti females.pdf.txtExtracted texttext/plain42230https://red.uao.edu.co/bitstreams/f64c5854-dbeb-478b-b44b-4aabea4767bc/download2eeb10c032203c40f5c3cffde8fbacddMD55THUMBNAILOptimal control for enhancement of Wolbachia frequency among Aedes aegypti females.pdf.jpgOptimal control for enhancement of Wolbachia frequency among Aedes aegypti females.pdf.jpgGenerated Thumbnailimage/jpeg10196https://red.uao.edu.co/bitstreams/a1f4a2a0-e347-4f17-bcc5-8a35cbadb7f7/downloadd3c49fda0e5e544dbd6c5f211928e1e7MD5610614/11215oai:red.uao.edu.co:10614/112152024-03-01 14:59:31.022https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |