Evaluación de la pirólisis como un método para la obtención de combustibles líquidos a partir de los plásticos generados en la Universidad Autónoma de Occidente

Actualmente la generación de residuos sólidos es uno de los grandes problemas ambientales que afecta significativamente los diferentes ecosistemas del planeta. El componente polimérico en el flujo de residuos urbanos sin una gestión adecuada trae consigo consecuencias severas no solo afectando la vi...

Full description

Autores:
Díaz Caleño, Fardy
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/12340
Acceso en línea:
http://red.uao.edu.co//handle/10614/12340
Palabra clave:
Ingeniería Ambiental
Pirólisis
Polietileno de alta densidad
Análisis térmico
Aspectos ambientales
Pyrolysis
High density polyethylene
Thermal analysis
Environmental aspects
Polímeros
Combustibles
Basuras como combustible
Fuel
Refuse as fuel
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_2bc67f7ba4109f3a1d71d14d4a1e0e01
oai_identifier_str oai:red.uao.edu.co:10614/12340
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la pirólisis como un método para la obtención de combustibles líquidos a partir de los plásticos generados en la Universidad Autónoma de Occidente
title Evaluación de la pirólisis como un método para la obtención de combustibles líquidos a partir de los plásticos generados en la Universidad Autónoma de Occidente
spellingShingle Evaluación de la pirólisis como un método para la obtención de combustibles líquidos a partir de los plásticos generados en la Universidad Autónoma de Occidente
Ingeniería Ambiental
Pirólisis
Polietileno de alta densidad
Análisis térmico
Aspectos ambientales
Pyrolysis
High density polyethylene
Thermal analysis
Environmental aspects
Polímeros
Combustibles
Basuras como combustible
Fuel
Refuse as fuel
title_short Evaluación de la pirólisis como un método para la obtención de combustibles líquidos a partir de los plásticos generados en la Universidad Autónoma de Occidente
title_full Evaluación de la pirólisis como un método para la obtención de combustibles líquidos a partir de los plásticos generados en la Universidad Autónoma de Occidente
title_fullStr Evaluación de la pirólisis como un método para la obtención de combustibles líquidos a partir de los plásticos generados en la Universidad Autónoma de Occidente
title_full_unstemmed Evaluación de la pirólisis como un método para la obtención de combustibles líquidos a partir de los plásticos generados en la Universidad Autónoma de Occidente
title_sort Evaluación de la pirólisis como un método para la obtención de combustibles líquidos a partir de los plásticos generados en la Universidad Autónoma de Occidente
dc.creator.fl_str_mv Díaz Caleño, Fardy
dc.contributor.advisor.spa.fl_str_mv Rojas, Gustavo Adolfo
dc.contributor.author.spa.fl_str_mv Díaz Caleño, Fardy
dc.subject.spa.fl_str_mv Ingeniería Ambiental
Pirólisis
Polietileno de alta densidad
Análisis térmico
Aspectos ambientales
topic Ingeniería Ambiental
Pirólisis
Polietileno de alta densidad
Análisis térmico
Aspectos ambientales
Pyrolysis
High density polyethylene
Thermal analysis
Environmental aspects
Polímeros
Combustibles
Basuras como combustible
Fuel
Refuse as fuel
dc.subject.eng.fl_str_mv Pyrolysis
High density polyethylene
Thermal analysis
Environmental aspects
dc.subject.armarc.spa.fl_str_mv Polímeros
Combustibles
Basuras como combustible
dc.subject.armarc.eng.fl_str_mv Fuel
Refuse as fuel
description Actualmente la generación de residuos sólidos es uno de los grandes problemas ambientales que afecta significativamente los diferentes ecosistemas del planeta. El componente polimérico en el flujo de residuos urbanos sin una gestión adecuada trae consigo consecuencias severas no solo afectando la vida silvestre sino la salud humana. Este problema se ha agravado por los sistemas de reciclaje y gestión de residuos que no pueden hacer frente a la creciente producción de poliméricos. Por lo anterior se debe pensar en métodos innovadores, efectivos y viables que permitan dar solución aprovechando energéticamente este tipo de materiales y que tengan un bajo impacto ambiental. Desde este punto de vista se plantea la formulación del reciclaje químico usando la pirolisis a escala laboratorio para obtener líquidos que puedan ser convertidos en posibles combustibles como fuente de energía para maquinas e industrias como una forma viable de contribuir a aumentar el porcentaje de reciclaje. La investigación se desarrolló en función de tres fases importantes. La primera fase consistió en la identificación del residuo polímero de mayor generación dentro del Campus Universitario, del cual se tomó una muestra significativa del residuo. Una vez tomada la muestra plástica se procedió al desarrollo de la segunda fase encaminada a encontrar los parámetros idóneos del proceso de pirólisis mediante técnicas analíticas como TGA y DSC para posteriormente ser reemplazadas en el proceso experimental. Finalmente, la tercera fase fue hacer una revisión de los aspectos ambientales generados en la anterior etapa para llevar a cabo una valoración ambiental respectiva. Se encontró que el polímero de mayor generación fue el polietileno de alta densidad HDPE. Revisando las técnicas analíticas se encontró que los parámetros óptimos para el ensayo de pirolisis sean: velocidad de calentamiento de 10°C/min y temperatura de degradación de 470°C. La bibliografía respalda que los productos líquidos obtenidos mediante pirólisis pueden ser transformados en combustibles con características similares a los combustibles tradicionales mediante técnicas de postratamiento. La valoración ambiental permitió conocer que en los ensayos es muy bajo el nivel de impacto. Se pudo, en definitiva, demostrar que un método sencillo de pirólisis como el llevado a cabo puede convertir el PEAD en productos de hidrocarburos líquidos con un rendimiento significativo de 68%. Este proceso depende grandemente de la temperatura, haciendo de esta, la variable más representativa en la transformación del polímero
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-05-14T12:27:59Z
dc.date.available.spa.fl_str_mv 2020-05-14T12:27:59Z
dc.date.issued.spa.fl_str_mv 2020-04-28
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv http://red.uao.edu.co//handle/10614/12340
url http://red.uao.edu.co//handle/10614/12340
dc.language.iso.eng.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] “Manejo de residuos sólidos.” [Online]. Available: https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-wastemanagement. [Accessed: 11-Oct-2019]. [2] R. K. Singh and B. Ruj, “Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste,” Fuel, vol. 174, pp. 164– 171, 2016. [3] “Los desechos globales crecerán en un 70 por ciento para 2050 a menos que se tomen medidas urgentes: Informe del Banco Mundial.” [Online]. Available: https://www.worldbank.org/en/news/press-release/2018/09/20/global-wasteto-grow-by-70-percent-by-2050-unless-urgent-action-is-taken-world-bankreport#targetText=In 2016%2C the world generated,waste%2C according to the report. [Accessed: 11-Oct-2019]. [4] R. Geyer, J. R. Jambeck, and K. L. Law, “Production, use, and fate of all plastics ever made,” Sci. Adv., vol. 3, no. 7, Jul. 2017. [5] “Plastic Pollution - Our World in Data.” [Online]. Available: https://ourworldindata.org/plastic-pollution. [Accessed: 09-Jan-2020]. [6] SEO BirdLife and Ecoembes, “Impacto del abandono del plástico en la naturaleza,” p. 24, 2019. [7] A. Satsangi, “Plastic Pollution and Its Remedies,” no. December 2018, pp. 142–159, 2019. [8] T. R. Walker and D. Xanthos, “A call for Canada to move toward zero plastic waste by reducing and recycling single-use plastics,” Resour. Conserv. Recycl., vol. 133, no. February, pp. 99–100, 2018. [9] I. Tessnow-von Wysocki and P. Le Billon, “Plastics at sea: Treaty design for a global solution to marine plastic pollution,” Environ. Sci. Policy, vol. 100, no. June, pp. 94–104, 2019. 85 [10] L. G. A. Barboza, A. Dick Vethaak, B. R. B. O. Lavorante, A. K. Lundebye, and L. Guilhermino, “Marine microplastic debris: An emerging issue for food security, food safety and human health,” Mar. Pollut. Bull., vol. 133, no. June, pp. 336–348, 2018. [11] S. M. Al-Salem, A. Antelava, A. Constantinou, G. Manos, and A. Dutta, “A review on thermal and catalytic pyrolysis of plastic solid waste (PSW),” Journal of Environmental Management, vol. 197. Academic Press, pp. 177–198, 15- Jul-2017. [12] M. Eriksen et al., “Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea,” PLoS One, vol. 9, no. 12, p. e111913, Dec. 2014. [13] greenpeace, “Datos sobre la producción de plásticos - ES | Greenpeace España,” 2017. [Online]. Available: https://es.greenpeace.org/es/trabajamosen/consumismo/plasticos/datos-sobre-la-produccion-de-plasticos/. [Accessed: 11-May-2019]. [14] R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, I. M. I. Ismail, and A. S. Nizami, “Effect of plastic waste types on pyrolysis liquid oil,” Int. Biodeterior. Biodegrad., vol. 119, pp. 239–252, 2017. [15] S. D. Anuar Sharuddin, F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua, “A review on pyrolysis of plastic wastes,” Energy Convers. Manag., vol. 115, pp. 308–326, May 2016. [16] M. Fernanda et al., “Estudio dinámico del reciclaje de envases pet en el Valle del Cauca 1,” 2018. [17] D. Adamcová and M. Vaverková, “Degradation of biodegradable/degradable plastics in municipal solid-waste landfill,” Polish J. Environ. Stud., vol. 23, no. 4, pp. 1071–1078, 2014. [18] G. T. & invest GTAI, “Plastics industry in Germany,” Nature, vol. 165, no. 4203, p. 795, 2013. [19] “Así ha sido la lucha por el medio ambiente en 2018 - ES | Greenpeace 86 España.” [Online]. Available: https://es.greenpeace.org/es/noticias/asi-hasido-la-lucha-por-el-medio-ambiente-en-2018/. [Accessed: 17-Jan-2020]. [20] D. Lazarevic, E. Aoustin, N. Buclet, and N. Brandt, “Resources , Conservation and Recycling Plastic waste management in the context of a European recycling society : Comparing results and uncertainties in a life cycle perspective,” "Resources, Conserv. Recycl., vol. 55, no. 2, pp. 246–259, 2010. [21] “Mechanical and chemical recycling of solid plastic waste,” Waste Manag., vol. 69, pp. 24–58, Nov. 2017. [22] F. Gu, J. Guo, W. Zhang, P. A. Summers, and P. Hall, “From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study,” Sci. Total Environ., vol. 601–602, pp. 1192–1207, 2017. [23] K. Kaiser, M. Schmid, and M. Schlummer, “Recycling of polymer-based multilayer packaging: A review,” Recycling, vol. 3, no. 1, 2018. [24] J. Diani and K. Gall, “Finite Strain 3D Thermoviscoelastic Constitutive Model,” Society, 2006. [25] J. M. Soto, G. Blázquez, M. Calero, L. Quesada, V. Godoy, and M. Á. MartínLara, “A real case study of mechanical recycling as an alternative for managing of polyethylene plastic film presented in mixed municipal solid waste,” J. Clean. Prod., vol. 203, pp. 777–787, 2018. [26] S. D. Anuar Sharuddin, F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua, “A review on pyrolysis of plastic wastes,” Energy Convers. Manag., vol. 115, pp. 308–326, 2016. [27] S. M. Al-Salem, P. Lettieri, and J. Baeyens, “The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals,” Progress in Energy and Combustion Science, vol. 36, no. 1. pp. 103–129, Feb-2010. [28] “trabajo_FINAL_pirolisis.” . 87 [29] “Introducción a la pirólisis de biomasa - ScienceDirect.” [Online]. Available: https://www.sciencedirect.com/science/article/pii/016523708280017X. [Accessed: 10-Jan-2020]. [30] J. P. Diebold, “A Review of the Chemical and Physical Mechanisms of the Storage Stability of Fast Pyrolysis Bio-Oils,” Nrel/Sr-570-27613, no. January, p. 59, 2000. [31] N. Borsodi, N. Miskolczi, A. Angyal, and L. Bartha, “Hydrocarbons obtained by pyrolysis of contaminated waste plastics,” 45th Int. Pet. Conf. Bratislava, Sovak Repub., no. 1, pp. 1–9, 2011. [32] M. Syamsiro et al., “Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors,” Energy Procedia, vol. 47, pp. 180–188, 2014. [33] L. C. Lerici, M. S. Renzini, and L. B. Pierella, “Chemical Catalyzed Recycling of Polymers: Catalytic Conversion of PE, PP and PS into Fuels and Chemicals over H-Y,” Procedia Mater. Sci., vol. 8, pp. 297–303, 2015. [34] A. Undri et al., “A simple procedure for chromatographic analysis of bio-oils from pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 114, pp. 208–221, 2015. [35] M. Bartoli, L. Rosi, A. Giovannelli, P. Frediani, and M. Frediani, “Bio-oil from residues of short rotation coppice of poplar using a microwave assisted pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 119, pp. 224–232, 2016. [36] R. Miandad et al., “Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil,” Waste Manag., vol. 58, pp. 250–259, 2016. [37] R. K. Singh, B. Ruj, A. K. Sadhukhan, and P. Gupta, “Impact of fast and slow pyrolysis on the degradation of mixed plastic waste: Product yield analysis and their characterization,” J. Energy Inst., vol. 92, no. 6, pp. 1647–1657, 2019. [38] D. S. Achilias, C. Roupakias, P. Megalokonomos, A. A. Lappas, and V. Antonakou, “Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP),” J. Hazard. Mater., vol. 149, no. 88 3, pp. 536–542, 2007. [39] A. Aboulkas, K. El harfi, and A. El Bouadili, “Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms,” Energy Convers. Manag., vol. 51, no. 7, pp. 1363–1369, 2010. [40] S. H. Shah et al., “Low temperature conversion of plastic waste into light hydrocarbons,” J. Hazard. Mater., vol. 179, no. 1–3, pp. 15–20, 2010. [41] S. H. Jung, M. H. Cho, B. S. Kang, and J. S. Kim, “Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor,” Fuel Process. Technol., vol. 91, no. 3, pp. 277–284, Mar. 2010. [42] P. T. Williams and E. Slaney, “Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures,” Resour. Conserv. Recycl., vol. 51, no. 4, pp. 754–769, 2007. [43] W. C. Huang, M. S. Huang, C. F. Huang, C. C. Chen, and K. L. Ou, “Thermochemical conversion of polymer wastes into hydrocarbon fuels over various fluidizing cracking catalysts,” Fuel, vol. 89, no. 9, pp. 2305–2316, 2010. [44] J. M. Saad, M. A. Nahil, and P. T. Williams, “Influence of process conditions on syngas production from the thermal processing of waste high density polyethylene,” J. Anal. Appl. Pyrolysis, vol. 113, pp. 35–40, 2015. [45] M. S. Abbas-Abadi, M. N. Haghighi, and H. Yeganeh, “Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor,” Fuel Process. Technol., vol. 109, pp. 90–95, 2013. [46] R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, and A. S. Nizami, “Catalytic pyrolysis of plastic waste: A review,” Process Saf. Environ. Prot., vol. 102, pp. 822–838, 2016. [47] I. Barbarias, G. Lopez, M. Artetxe, A. Arregi, J. Bilbao, and M. Olazar, “Valorisation of different waste plastics by pyrolysis and in-line catalytic steam 89 reforming for hydrogen production,” Energy Convers. Manag., vol. 156, no. November 2017, pp. 575–584, 2018. [48] A. K. Panda, R. K. Singh, and D. K. Mishra, “Thermolysis of waste plastics to liquid fuel. A suitable method for plastic waste management and manufacture of value added products-A world prospective,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1. pp. 233–248, Jan-2010. [49] C. Kassargy, S. Awad, G. Burnens, K. Kahine, and M. Tazerout, “Gasoline and diesel-like fuel production by continuous catalytic pyrolysis of waste polyethylene and polypropylene mixtures over USY zeolite,” Fuel, vol. 224, no. November 2017, pp. 764–773, 2018. [50] M. Batool, A. T. Shah, M. Imran Din, and B. Li, “Catalytic Pyrolysis of Low Density Polyethylene Using Cetyltrimethyl Ammonium Encapsulated Monovacant Keggin Units C 19 H 42 N 4 H 3 (PW 11 O 39) and ZSM-5,” J. Chem., vol. 2016, 2016. [51] I. M. Gandidi, M. D. Susila, A. Mustofa, and N. A. Pambudi, “Thermal – Catalytic cracking of real MSW into Bio-Crude Oil,” J. Energy Inst., vol. 91, no. 2, pp. 304–310, 2018. [52] DNP, “Rellenos sanitarios de 321 municipios colapsarán en cinco años, advierte el DNP,” 2016. [Online]. Available: https://www.dnp.gov.co/Paginas/Rellenos-sanitarios-de-321-municipioscolapsarán-en-cinco-años,-advierte-el-DNP--.aspx. [Accessed: 22-Apr-2019]. [53] J. Hopewell, R. Dvorak, and E. Kosior, “Plastics recycling: Challenges and opportunities,” Philos. Trans. R. Soc. B Biol. Sci., vol. 364, no. 1526, pp. 2115– 2126, 2009. [54] F. J. Passamonti and U. Sedran, “Recycling of waste plastics into fuels. LDPE conversion in FCC,” Appl. Catal. B Environ., vol. 125, pp. 499–506, 2012. [55] P. J. Donaj, W. Kaminsky, F. Buzeto, and W. Yang, “Pyrolysis of polyolefins for increasing the yield of monomers’ recovery,” Waste Manag., vol. 32, no. 5, pp. 840–846, May 2012. 90 [56] E. L. Hacinamiento and E. N. El, “Formulación de un plan de acción de mejoras para optimizar la gestión actual de residuos en el marco del sistema de gestión ambiental de la universidad autónoma de occidente,” 2014. [57] TASA, “Reporte De Sostenibilidad 2018 Ecoeficiencia, Innovación Y Sostenibilidad,” p. 110, 2018. [58] O. Proaño and S. Crespo, “Obtención de combustibles a partir de residuos plásticos,” Rev. Politécnica, 2009. [59] “¿Qué son los plásticos? :: PlasticsEurope.” [Online]. Available: https://www.plasticseurope.org/es/about-plastics/what-are-plastics. [Accessed: 12-Dec-2019]. [60] C. Washam, “Plastics Go Green,” ChemMatters, no. April, p. 3, 2010. [61] C. Giacovelli, Single-Use Plastic: A Roadmap for Sustainability. 2018. [62] D. P. Navia P, A. A. Ayala A, and H. S. Villada C, “Revista Ingenierías Universidad de Medellin.,” Rev. Ing. Univ. Medellín, vol. 13, no. 25, pp. 99– 113, 2014. [63] “Polímeros: una visión general.” [Online]. Available: https://www.essentialchemicalindustry.org/polymers/polymers-anoverview.html. [Accessed: 27-Dec-2019]. [64] “Introducción a los polímeros: 1.2.2 Termoplásticos y termoestables - OpenLearn - Open University - T838_1.” [Online]. Available: https://www.open.edu/openlearn/science-mathstechnology/science/chemistry/introduction-polymers/content-section-1.2.2. [Accessed: 12-Dec-2019]. [65] H. Bockhorn, Feedstock recycling of plastics . Selected papers presented at the third International Symposium on Feedstock Recycling of ... Feedstock Recycling of Plastics Selected Papers presented at the Third International Symposium on Feedstock Recycling of Plastic, no. January 2005. 2016. 91 [66] “Estructura polimérica.” [Online]. Available: https://www.ndeed.org/EducationResources/CommunityCollege/Materials/Structure/polymer. htm. [Accessed: 27-Dec-2019]. [67] Y. Marcela, “Beneficios para la industria que emplea ‘ Botellas plásticas posconsumo’.Colombia: Universidad Militar Nueva Granada,” p. 18, 2018. [68] J. Bañuelos, “Acerca del plástico PET,” p. 4, 2015. [69] T. P. Chang et al., “ESTUDIO DE LAS PROPIEDADES Y APLICACIONES INDUSTRIALES DEL POLIETILENO DE ALTA DENSIDAD (PEAD),” Cem. Concr. Res., vol. 19, no. 4, pp. 645–655, 2005. [70] K. Mulder and M. Knot, “PVC plastic: A history of systems development and entrenchment,” Technol. Soc., vol. 23, no. 2, pp. 265–286, 2001. [71] J. Spaniol, “Polypropylene.” [72] “Una breve historia del poliestireno | EPS moldeado de forma | Grupo Isowall | SA.” [Online]. Available: https://www.isowall.co.za/a-brief-history-ofpolystyrene/. [Accessed: 11-Jan-2020]. [73] Ministerio de Ambiente Vivienda y Desarrollo Territorial, “Decreto 0838 de 2005,” 45862, no. 0838, p. 17, 2005. [74] C. H. Castañeda and M. C. Miranda, “MODELOS MÁS UTILIZADOS DE RECICLAJE Y REUTILIZACIÓN DE PRODUCTOS PLÁSTICOS, Y ESTRATEGIAS DE RECUPERACIÓN MAS UTILIZADAS EN COLOMBIA,” Univ. Nac. Abierta y a Distancia – UNAD Esc., no. 1, p. 43, 2018. [75] J. H. Song, R. J. Murphy, R. Narayan, and G. B. H. Davies, “Biodegradable and compostable alternatives to conventional plastics,” Philos. Trans. R. Soc. B Biol. Sci., vol. 364, no. 1526, pp. 2127–2139, Jul. 2009. [76] S. M. Al-Salem, P. Lettieri, and J. Baeyens, “Recycling and recovery routes of plastic solid waste (PSW): A review,” Waste Manag., vol. 29, no. 10, pp. 2625– 2643, Oct. 2009. 92 [77] K. Ragaert, “an Introductory Review Mechanical Recycling of Polymers for,” no. May, 2019. [78] F. Paradela, F. Pinto, I. Gulyurtlu, I. Cabrita, and N. Lapa, “Study of the copyrolysis of biomass and plastic wastes,” Clean Technol. Environ. Policy, vol. 11, no. 1, pp. 115–122, 2009. [79] Agrowaste, “Pirólisis,” 2013. [80] H. Kong et al., “Pyrolysis Defined Pyrolysis in History Research & Commercialization of Pyrolysis,” Phys. Procedia, vol. 66, no. 12, pp. 4952– 5001, 2011. [81] M. Sarker, A. Kabir, M. M. Rashid, M. Molla, and A. S. M. Din Mohammad, “Waste Polyethylene Terephthalate (PETE-1) Conversion into Liquid Fuel,” J. Fundam. Renew. Energy Appl., vol. 1, pp. 1–5, 2011. [82] A. Marcilla, J. C. García-Quesada, S. Sánchez, and R. Ruiz, “Study of the catalytic pyrolysis behaviour of polyethylene-polypropylene mixtures,” J. Anal. Appl. Pyrolysis, vol. 74, no. 1–2, pp. 387–392, 2005. [83] P. Das and P. Tiwari, “The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel,” Waste Manag., vol. 79, pp. 615–624, 2018. [84] S. Kumar, A. K. Panda, and R. K. Singh, “A review on tertiary recycling of highdensity polyethylene to fuel,” Resour. Conserv. Recycl., vol. 55, no. 11, pp. 893–910, 2011. [85] J. E. Espinoza and T. M. Cabrera, “ESTUDIO DE VIABILIDAD TÉCNICA PRELIMINAR PARA LA OBTENCION DE COMBUSTIBLE MEDIANTE LA PIROLISIS DE RESIDUOS PLÁSTICOS GENERADOS EN LA UNIVERSIDAD POLIÉCNICA SALESIANA.,” 2014. [86] J. Aguado, D. P. Serrano, G. S. Miguel, J. M. Escola, and J. M. Rodríguez, “Catalytic activity of zeolitic and mesostructured catalysts in the cracking of pure and waste polyolefins,” J. Anal. Appl. Pyrolysis, vol. 78, no. 1, pp. 153– 161, 2007. 93 [87] M. P. Mesa and C. I. Ortiz, “EVALUACIÓN DEL PROCESO DE PIROLISIS PARA LA PRODUCCIÓN DE DIESEL A NIVEL LABORATORIO A PARTIR DE RESIDUOS PLÁSTICOS DE INDUSTRIAS DE ALIMENTOS,” Univ. América., vol. 2002, no. 1, pp. 35–40, 2016. [88] J. A. Conesa, “Estudio de la pirolisis de residuos plasticos de polietileno y neumaticos usados.,” p. 366, 1996. [89] T. Hatakeyama and H. Hatakeyama, Hot Topics in Thermal Analysis and Calorimetry, vol. 4. 2005. [90] C. K. Schoff, “Differential scanning calorimetry,” CoatingsTech, vol. 5, no. 7, p. 60, 2008. [91] L. D. E. Cluster and U. N. C. D. E. Estratificaci, “Consultoría de Calidad y Laboratorio S.L .” [92] Y. Li, J. Chen, and Y. H. Geng, Expressions of p57KIP2 protein in oral leukoplakia and oral squamous cell carcinoma and its clinical significance, vol. 25, no. 6. 2010. [93] S. Loganathan, R. B. Valapa, R. Mishra, and G. Pugazhenthi, Copyright, no. May. 2017. [94] P. Ayres, “A beginner’s guide to Twitter,” ALISS Q., vol. v. 4, no.4, pp. 6–9, 2009. [95] H. Xia and K. Wei, “Equivalent characteristic spectrum analysis in TG-MS system,” Thermochim. Acta, vol. 602, pp. 15–21, 2015. [96] Humboldt University of Berlin, “Investigation of Polymers with Differential Scanning Calorimetry,” Adv. Lab DSC Investig. Polym., pp. 1–17, 2009. [97] S. Ma and J. Y. Yu, “Effect of Reward Function Choices in MDPs with Valueat-Risk,” pp. 1–10, 2016. 94 [98] “Differential Scanning Calorimetry (DSC) - Physical Methods in Chemistry and Nano Science - OpenStax CNX.” [Online]. Available: https://cnx.org/contents/uieDnVBC@24.6:9EMWnRbD@2/DifferentialScanning-Calorimetry-DSC. [Accessed: 26-Dec-2019]. [99] X. Q. Xie, J. Moring, and A. Makriyannis, “Differential scanning calorimetry and small angle X-ray diffraction study of the interaction of (R)-PAF, (R)-ET-18- OMe and (R)-Lyso-PAF with model membranes,” Life Sci., vol. 61, no. 9, pp. 909–923, 1997. [100] D. S. Calorimetry, “First and Second Order Transitions in Polymers.,” pp. 1–8. [101] U. P. de Madrid, “Métodos de análisis térmico 1. Introducción,” pp. 1–32, 2010. [102] MERCOSUR, “Espectrometría infrarrojo,” Farm. MERCOSUR espectrofotometría infrarrojo, pp. 1–8, 1392. [103] UCLA Education, “and wavelength ( λ ). Frequency is the number of wave troughs that pass a given point in a second and wavelength is the distance from one crest of a wave to an adjacent crest. Frequency and wavelength are inversely related, according to the equation E =.” [104] R. Silverstein, F. Webster, and D. Kiemle, “Silverstein - Spectrometric Identification of Organic Compounds 7th ed.pdf.” 2005. [105] “Tablas de Bandas de Absorción - Carcterización Estructural de Materiales Cristalinos.” [Online]. Available: http://www.ehu.eus/imacris/PIE06/web/tablasIR.htm. [Accessed: 06-Mar2020]. [106] Á. R. V. B. CHICAIZA., VICTORIA REGINA GUTIERREZ, A. M. Universidad De Cuenca, and L. Enrique, “Universidad De Cuenca 2,” pp. 23–53, 2016. [107] “Leyes desde 1992 - Vigencia expresa y control de constitucionalidad [LEY_0142_1994].” [Online]. Available: http://www.secretariasenado.gov.co/senado/basedoc/ley_0142_1994.html. [Accessed: 10-Dec-2019]. 95 [108] Secretaría-Distrital-de-Ambiente, “Diligenciamiento de la Matriz de Identificación de aspectos y valoración de impactos ambientales,” Subdirección Políticas y Planes Ambient., pp. 1–28, 2013. [109] DEPARTAMENTO NACIONAL DE PLANEACIÓN (DPN), “Bases Plan de Desarrollo Nacional 2014-2018 CONPES,” Doc. CONPES, p. 69, 2014. [110] C. Y. T. MINISTERIO DE VIVIENDA, “decreto 1077 de 2015,” 2015. [111] L. G. . Urratia Murillo, “RES 1407 DE 2018.pdf,” 05/12/2014. pp. 1–20, 2018. [112] Ministerio de hacienda y crédito público, “Decreto 2198 del 26 de Diciembre de 2017,” pp. 1–7, 2017. [113] ICONTEC, “Gtc 53-2 - Gestión Ambiental. Residuos Sólidos. Guía Para El Aprovechamiento De Los Residuos Plásticos.,” Icontec, p. 22, 2004. [114] M. P. Mesa and C. I. Ortiz, “Evaluación del proceso de pirolisis para la producción de diesel a nivel laboratorio a partir de residuos plásticos de industrias de alimentos,” Univ. América., vol. 2002, no. 1, pp. 35–40, 2016. [115] I. Ambientales, “Guía Técnica para la Identificación de Aspectos e Impactos Ambientales,” pp. 1–15, 2012. [116] Progecol, “Progecol - Manejo Integral de Residuos Sólidos, Compra y Venta de Material para Reciclaje, Excedentes Industriales.,” 2013. [Online]. Available: http://progecol.com/. [Accessed: 13-Mar-2019]. [117] A. Vijayakumar and J. Sebastian, “Pyrolysis process to produce fuel from different types of plastic - A review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 396, no. 1, 2018. [118] M. N. Almustapha and J. M. Andrésen, “Recovery of Valuable Chemicals from High Density Polyethylene (HDPE) Polymer: a Catalytic Approachfor Plastic Waste Recycling,” Int. J. Environ. Sci. Dev., vol. 3, no. 3, pp. 263–267, 2012. 96 [119] B. V. Babu and A. S. Chaurasia, “Modeling for pyrolysis of solid particle: Kinetics and heat transfer effects,” Energy Convers. Manag., vol. 44, no. 14, pp. 2251–2275, 2003. [120] B. Niang et al., “Study of the Thermal, Rheological, Morphological and Mechanical Properties of Biocomposites Based on Rod-Of Typha/HDPE Made up of Typha Stem and HDPE,” Adv. Mater. Phys. Chem., vol. 08, no. 09, pp. 340–357, 2018. [121] S. Kumar and R. K. Singh, “Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis,” Brazilian J. Chem. Eng., vol. 28, no. 4, pp. 659–667, 2011. [122] A. Aboulkas, K. El Harfi, A. El Bouadili, M. Benchanaa, A. Mokhlisse, and A. Outzourit, “Kinetics of co-pyrolysis of tarfaya (Morocco) oil shale with highdensity polyethylene,” Oil Shale, vol. 24, no. 1, pp. 15–33, 2007. [123] M. Bartoli, L. Rosi, M. Frediani, A. Undri, and P. Frediani, “Depolymerization of polystyrene at reduced pressure through a microwave assisted pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 113, pp. 281–287, 2015. [124] D. Almeida, M. de F. Marques, D. Almeida, and M. de F. Marques, “Thermal and catalytic pyrolysis of plastic waste,” Polímeros, vol. 26, no. 1, pp. 44–51, Mar. 2016. [125] J. A. Onwudili, N. Insura, and P. T. Williams, “Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time,” J. Anal. Appl. Pyrolysis, vol. 86, no. 2, pp. 293–303, Nov. 2009. [126] H. D. Magurudeniya, P. Huang, S. S. Gunathilake, E. A. Rainbolt, M. C. Biewer, and M. C. Stefan, Semiconducting Polymers: Poly(thiophenes), no. December. 2014. [127] S. K. Tulashie, E. K. Boadu, and S. Dapaah, “Plastic waste to fuel via pyrolysis: A key way to solving the severe plastic waste problem in Ghana,” Therm. Sci. Eng. Prog., vol. 11, pp. 417–424, Jun. 2019. 97 [128] L. F. Tolendino and M. O. Vahle, “Decreto Ley 2811 de 1974,” IEEE J. Sel. Areas Commun., vol. 2, no. 1, pp. 258–263, 1984. [129] Ö. Äüôú, “Ley 99 de 1993,” vol. 1993, no. 41, pp. 6–8, 2003. [130] M. de A. y desarrollo Sostenible., “Decreto 1076 de 2015.” p. 653, 2015. [131] C. C. Posada, “P olítica de P revención y C ontrol de la C ontaminación del A ire,” 2010. [132] MADS, “96-Res 2254 De 2017.Pdf.” 2017. [133] Congreso de la República de Colombia, “Ley 689 de 2001,” D. Of., no. 44, 2001. [134] Ministerio de Vivienda Ciudad y Territorio, “Resolución 596 de 2016,” p. 22, 2016. [135] Ministerio de la protección social, “Resolución 2115/2007,” Gac. Of., p. 23, 2007. [136] Ministerio de ambiente vivienda y desarrollo territorial, “Decreto 3930 del 2010,” Minist. Ambient. vivienda y Desarro. Territ., p. 29, 2010. [137] Ministros de la proteccion social y de ambiente vivienda y desarrollo territorrial, “Resolución 0075 de 2011.” p. 6, 2011. [138] Ministerio de Ambiente y Desarrollo Sostenible, “D1- Res_631_Marz_2015.Pdf.” p. 62, 2015. [139] “Tabla15_3.jpg (620×584).” [Online]. Available: https://www.upv.es/materiales/Fcm/Fcm15/Imagenes/Tabla15_3.jpg. [Accessed: 26-Dec-2019]. [140] B. M and M. A, “Estructura Y Propiedades De Los Polimeros,” pp. 1–54.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 101 páginas
dc.coverage.spatial.spa.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.spa.fl_str_mv Universidad Autónoma de Occidente
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.department.spa.fl_str_mv Departamento de Energética y Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.source.spa.fl_str_mv instname:Universidad Autónoma de Occidente
reponame:Repositorio Institucional UAO
instname_str Universidad Autónoma de Occidente
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/7995089c-5559-4f81-94e8-f548ab1e3869/download
https://dspace7-uao.metacatalogo.com/bitstreams/75233e53-31ae-4ce0-a538-bef78c47f6ff/download
https://dspace7-uao.metacatalogo.com/bitstreams/2a8647af-8601-4601-a479-5b1cef1515bf/download
https://dspace7-uao.metacatalogo.com/bitstreams/e64a2978-fc8e-4aaf-9646-f6b831d9b306/download
https://dspace7-uao.metacatalogo.com/bitstreams/bb989150-b845-4331-ba78-34eee77822e1/download
https://dspace7-uao.metacatalogo.com/bitstreams/e81b09ad-fc60-4c5d-82fc-4c667cf80337/download
https://dspace7-uao.metacatalogo.com/bitstreams/da1f8ad6-1034-4d06-82e0-5335032ca21d/download
https://dspace7-uao.metacatalogo.com/bitstreams/4e3e1d3a-39d9-41ba-b2e1-061669967714/download
bitstream.checksum.fl_str_mv e3805075b57edaaaf9df10c5a526844b
e1c06d85ae7b8b032bef47e42e4c08f9
5556a0ce0fab6b6512a8e0da5f83f1e3
8dc941632cec6d22b4d45f4d191f52ca
0175ea4a2d4caec4bbcc37e300941108
20b5ba22b1117f71589c7318baa2c560
f6eda57de6e0b773a76ae8b4c77f90be
7e8661e4228dbb5d929239a7e6d1fba0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1808478731331698688
spelling Rojas, Gustavo Adolfo6aef9417255cefbb39b3689e8421206eDíaz Caleño, Fardye64d147603caa468bbe97283cc01f7f3Ingeniero AmbientalUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2020-05-14T12:27:59Z2020-05-14T12:27:59Z2020-04-28http://red.uao.edu.co//handle/10614/12340Actualmente la generación de residuos sólidos es uno de los grandes problemas ambientales que afecta significativamente los diferentes ecosistemas del planeta. El componente polimérico en el flujo de residuos urbanos sin una gestión adecuada trae consigo consecuencias severas no solo afectando la vida silvestre sino la salud humana. Este problema se ha agravado por los sistemas de reciclaje y gestión de residuos que no pueden hacer frente a la creciente producción de poliméricos. Por lo anterior se debe pensar en métodos innovadores, efectivos y viables que permitan dar solución aprovechando energéticamente este tipo de materiales y que tengan un bajo impacto ambiental. Desde este punto de vista se plantea la formulación del reciclaje químico usando la pirolisis a escala laboratorio para obtener líquidos que puedan ser convertidos en posibles combustibles como fuente de energía para maquinas e industrias como una forma viable de contribuir a aumentar el porcentaje de reciclaje. La investigación se desarrolló en función de tres fases importantes. La primera fase consistió en la identificación del residuo polímero de mayor generación dentro del Campus Universitario, del cual se tomó una muestra significativa del residuo. Una vez tomada la muestra plástica se procedió al desarrollo de la segunda fase encaminada a encontrar los parámetros idóneos del proceso de pirólisis mediante técnicas analíticas como TGA y DSC para posteriormente ser reemplazadas en el proceso experimental. Finalmente, la tercera fase fue hacer una revisión de los aspectos ambientales generados en la anterior etapa para llevar a cabo una valoración ambiental respectiva. Se encontró que el polímero de mayor generación fue el polietileno de alta densidad HDPE. Revisando las técnicas analíticas se encontró que los parámetros óptimos para el ensayo de pirolisis sean: velocidad de calentamiento de 10°C/min y temperatura de degradación de 470°C. La bibliografía respalda que los productos líquidos obtenidos mediante pirólisis pueden ser transformados en combustibles con características similares a los combustibles tradicionales mediante técnicas de postratamiento. La valoración ambiental permitió conocer que en los ensayos es muy bajo el nivel de impacto. Se pudo, en definitiva, demostrar que un método sencillo de pirólisis como el llevado a cabo puede convertir el PEAD en productos de hidrocarburos líquidos con un rendimiento significativo de 68%. Este proceso depende grandemente de la temperatura, haciendo de esta, la variable más representativa en la transformación del polímeroNowadays generation of solid waste is one of the great environmental problems that significantly affects the different ecosystems. The plastic component in the flow of urban waste without proper management brings severe consequences not only affecting wildlife but human health. This problem has been exacerbated by recycling and waste management systems that cannot cope with the growing production of plastic. Therefore, it is necessary to think of innovative methods that allow solutions to be taken advantage of using this type of materials and have a low environmental impact. From this point of view, the formulation of chemical recycling is proposed using laboratory-scale pyrolysis to obtain liquids that can be converted into potential fuels as a source of energy for machines and industries as a viable way to contribute to increasing the percentage of recycling. The research was developed based on three important phases. The first phase consisted of the identification of the plastic waste of greater generation within the University Campus. Once the plastic sample was taken, the second phase was developed to find the ideal parameters of the pyrolysis process by means of analytical techniques such as TGA and DSC to later be replaced in the experimental process. Finally, the third phase was to review the environmental aspects generated in the previous stage. The highest generation plastic was found to be high density polyethylene. Analytical techniques determined that the optimal parameters were a heating rate of 10 ° C / min and a degradation temperature of 460 ° C. Through an analysis of the pyrolysis products obtained based on literature, it was concluded that the resulting liquids can be transformed into fuels with similar characteristics to traditional fuels by post-treatment techniques such as distillation. The environmental assessment revealed that the level of impact is very low in the trials. It was ultimately possible to demonstrate that a simple pyrolysis method such as that carried out can convert HDPE into liquid hydrocarbon products with significant performance, which varies basically with temperatureProyecto de grado (ingeniero Ambiental)-- Universidad Autónoma de Occidente, 2020PregradoIngeniero(a) Ambientalapplication/pdf101 páginasspaUniversidad Autónoma de OccidenteIngeniería AmbientalDepartamento de Energética y MecánicaFacultad de IngenieríaDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAOIngeniería AmbientalPirólisisPolietileno de alta densidadAnálisis térmicoAspectos ambientalesPyrolysisHigh density polyethyleneThermal analysisEnvironmental aspectsPolímerosCombustiblesBasuras como combustibleFuelRefuse as fuelEvaluación de la pirólisis como un método para la obtención de combustibles líquidos a partir de los plásticos generados en la Universidad Autónoma de OccidenteTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85[1] “Manejo de residuos sólidos.” [Online]. Available: https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-wastemanagement. [Accessed: 11-Oct-2019]. [2] R. K. Singh and B. Ruj, “Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste,” Fuel, vol. 174, pp. 164– 171, 2016. [3] “Los desechos globales crecerán en un 70 por ciento para 2050 a menos que se tomen medidas urgentes: Informe del Banco Mundial.” [Online]. Available: https://www.worldbank.org/en/news/press-release/2018/09/20/global-wasteto-grow-by-70-percent-by-2050-unless-urgent-action-is-taken-world-bankreport#targetText=In 2016%2C the world generated,waste%2C according to the report. [Accessed: 11-Oct-2019]. [4] R. Geyer, J. R. Jambeck, and K. L. Law, “Production, use, and fate of all plastics ever made,” Sci. Adv., vol. 3, no. 7, Jul. 2017. [5] “Plastic Pollution - Our World in Data.” [Online]. Available: https://ourworldindata.org/plastic-pollution. [Accessed: 09-Jan-2020]. [6] SEO BirdLife and Ecoembes, “Impacto del abandono del plástico en la naturaleza,” p. 24, 2019. [7] A. Satsangi, “Plastic Pollution and Its Remedies,” no. December 2018, pp. 142–159, 2019. [8] T. R. Walker and D. Xanthos, “A call for Canada to move toward zero plastic waste by reducing and recycling single-use plastics,” Resour. Conserv. Recycl., vol. 133, no. February, pp. 99–100, 2018. [9] I. Tessnow-von Wysocki and P. Le Billon, “Plastics at sea: Treaty design for a global solution to marine plastic pollution,” Environ. Sci. Policy, vol. 100, no. June, pp. 94–104, 2019. 85 [10] L. G. A. Barboza, A. Dick Vethaak, B. R. B. O. Lavorante, A. K. Lundebye, and L. Guilhermino, “Marine microplastic debris: An emerging issue for food security, food safety and human health,” Mar. Pollut. Bull., vol. 133, no. June, pp. 336–348, 2018. [11] S. M. Al-Salem, A. Antelava, A. Constantinou, G. Manos, and A. Dutta, “A review on thermal and catalytic pyrolysis of plastic solid waste (PSW),” Journal of Environmental Management, vol. 197. Academic Press, pp. 177–198, 15- Jul-2017. [12] M. Eriksen et al., “Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea,” PLoS One, vol. 9, no. 12, p. e111913, Dec. 2014. [13] greenpeace, “Datos sobre la producción de plásticos - ES | Greenpeace España,” 2017. [Online]. Available: https://es.greenpeace.org/es/trabajamosen/consumismo/plasticos/datos-sobre-la-produccion-de-plasticos/. [Accessed: 11-May-2019]. [14] R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, I. M. I. Ismail, and A. S. Nizami, “Effect of plastic waste types on pyrolysis liquid oil,” Int. Biodeterior. Biodegrad., vol. 119, pp. 239–252, 2017. [15] S. D. Anuar Sharuddin, F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua, “A review on pyrolysis of plastic wastes,” Energy Convers. Manag., vol. 115, pp. 308–326, May 2016. [16] M. Fernanda et al., “Estudio dinámico del reciclaje de envases pet en el Valle del Cauca 1,” 2018. [17] D. Adamcová and M. Vaverková, “Degradation of biodegradable/degradable plastics in municipal solid-waste landfill,” Polish J. Environ. Stud., vol. 23, no. 4, pp. 1071–1078, 2014. [18] G. T. & invest GTAI, “Plastics industry in Germany,” Nature, vol. 165, no. 4203, p. 795, 2013. [19] “Así ha sido la lucha por el medio ambiente en 2018 - ES | Greenpeace 86 España.” [Online]. Available: https://es.greenpeace.org/es/noticias/asi-hasido-la-lucha-por-el-medio-ambiente-en-2018/. [Accessed: 17-Jan-2020]. [20] D. Lazarevic, E. Aoustin, N. Buclet, and N. Brandt, “Resources , Conservation and Recycling Plastic waste management in the context of a European recycling society : Comparing results and uncertainties in a life cycle perspective,” "Resources, Conserv. Recycl., vol. 55, no. 2, pp. 246–259, 2010. [21] “Mechanical and chemical recycling of solid plastic waste,” Waste Manag., vol. 69, pp. 24–58, Nov. 2017. [22] F. Gu, J. Guo, W. Zhang, P. A. Summers, and P. Hall, “From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study,” Sci. Total Environ., vol. 601–602, pp. 1192–1207, 2017. [23] K. Kaiser, M. Schmid, and M. Schlummer, “Recycling of polymer-based multilayer packaging: A review,” Recycling, vol. 3, no. 1, 2018. [24] J. Diani and K. Gall, “Finite Strain 3D Thermoviscoelastic Constitutive Model,” Society, 2006. [25] J. M. Soto, G. Blázquez, M. Calero, L. Quesada, V. Godoy, and M. Á. MartínLara, “A real case study of mechanical recycling as an alternative for managing of polyethylene plastic film presented in mixed municipal solid waste,” J. Clean. Prod., vol. 203, pp. 777–787, 2018. [26] S. D. Anuar Sharuddin, F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua, “A review on pyrolysis of plastic wastes,” Energy Convers. Manag., vol. 115, pp. 308–326, 2016. [27] S. M. Al-Salem, P. Lettieri, and J. Baeyens, “The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals,” Progress in Energy and Combustion Science, vol. 36, no. 1. pp. 103–129, Feb-2010. [28] “trabajo_FINAL_pirolisis.” . 87 [29] “Introducción a la pirólisis de biomasa - ScienceDirect.” [Online]. Available: https://www.sciencedirect.com/science/article/pii/016523708280017X. [Accessed: 10-Jan-2020]. [30] J. P. Diebold, “A Review of the Chemical and Physical Mechanisms of the Storage Stability of Fast Pyrolysis Bio-Oils,” Nrel/Sr-570-27613, no. January, p. 59, 2000. [31] N. Borsodi, N. Miskolczi, A. Angyal, and L. Bartha, “Hydrocarbons obtained by pyrolysis of contaminated waste plastics,” 45th Int. Pet. Conf. Bratislava, Sovak Repub., no. 1, pp. 1–9, 2011. [32] M. Syamsiro et al., “Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors,” Energy Procedia, vol. 47, pp. 180–188, 2014. [33] L. C. Lerici, M. S. Renzini, and L. B. Pierella, “Chemical Catalyzed Recycling of Polymers: Catalytic Conversion of PE, PP and PS into Fuels and Chemicals over H-Y,” Procedia Mater. Sci., vol. 8, pp. 297–303, 2015. [34] A. Undri et al., “A simple procedure for chromatographic analysis of bio-oils from pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 114, pp. 208–221, 2015. [35] M. Bartoli, L. Rosi, A. Giovannelli, P. Frediani, and M. Frediani, “Bio-oil from residues of short rotation coppice of poplar using a microwave assisted pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 119, pp. 224–232, 2016. [36] R. Miandad et al., “Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil,” Waste Manag., vol. 58, pp. 250–259, 2016. [37] R. K. Singh, B. Ruj, A. K. Sadhukhan, and P. Gupta, “Impact of fast and slow pyrolysis on the degradation of mixed plastic waste: Product yield analysis and their characterization,” J. Energy Inst., vol. 92, no. 6, pp. 1647–1657, 2019. [38] D. S. Achilias, C. Roupakias, P. Megalokonomos, A. A. Lappas, and V. Antonakou, “Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP),” J. Hazard. Mater., vol. 149, no. 88 3, pp. 536–542, 2007. [39] A. Aboulkas, K. El harfi, and A. El Bouadili, “Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms,” Energy Convers. Manag., vol. 51, no. 7, pp. 1363–1369, 2010. [40] S. H. Shah et al., “Low temperature conversion of plastic waste into light hydrocarbons,” J. Hazard. Mater., vol. 179, no. 1–3, pp. 15–20, 2010. [41] S. H. Jung, M. H. Cho, B. S. Kang, and J. S. Kim, “Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor,” Fuel Process. Technol., vol. 91, no. 3, pp. 277–284, Mar. 2010. [42] P. T. Williams and E. Slaney, “Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures,” Resour. Conserv. Recycl., vol. 51, no. 4, pp. 754–769, 2007. [43] W. C. Huang, M. S. Huang, C. F. Huang, C. C. Chen, and K. L. Ou, “Thermochemical conversion of polymer wastes into hydrocarbon fuels over various fluidizing cracking catalysts,” Fuel, vol. 89, no. 9, pp. 2305–2316, 2010. [44] J. M. Saad, M. A. Nahil, and P. T. Williams, “Influence of process conditions on syngas production from the thermal processing of waste high density polyethylene,” J. Anal. Appl. Pyrolysis, vol. 113, pp. 35–40, 2015. [45] M. S. Abbas-Abadi, M. N. Haghighi, and H. Yeganeh, “Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor,” Fuel Process. Technol., vol. 109, pp. 90–95, 2013. [46] R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, and A. S. Nizami, “Catalytic pyrolysis of plastic waste: A review,” Process Saf. Environ. Prot., vol. 102, pp. 822–838, 2016. [47] I. Barbarias, G. Lopez, M. Artetxe, A. Arregi, J. Bilbao, and M. Olazar, “Valorisation of different waste plastics by pyrolysis and in-line catalytic steam 89 reforming for hydrogen production,” Energy Convers. Manag., vol. 156, no. November 2017, pp. 575–584, 2018. [48] A. K. Panda, R. K. Singh, and D. K. Mishra, “Thermolysis of waste plastics to liquid fuel. A suitable method for plastic waste management and manufacture of value added products-A world prospective,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1. pp. 233–248, Jan-2010. [49] C. Kassargy, S. Awad, G. Burnens, K. Kahine, and M. Tazerout, “Gasoline and diesel-like fuel production by continuous catalytic pyrolysis of waste polyethylene and polypropylene mixtures over USY zeolite,” Fuel, vol. 224, no. November 2017, pp. 764–773, 2018. [50] M. Batool, A. T. Shah, M. Imran Din, and B. Li, “Catalytic Pyrolysis of Low Density Polyethylene Using Cetyltrimethyl Ammonium Encapsulated Monovacant Keggin Units C 19 H 42 N 4 H 3 (PW 11 O 39) and ZSM-5,” J. Chem., vol. 2016, 2016. [51] I. M. Gandidi, M. D. Susila, A. Mustofa, and N. A. Pambudi, “Thermal – Catalytic cracking of real MSW into Bio-Crude Oil,” J. Energy Inst., vol. 91, no. 2, pp. 304–310, 2018. [52] DNP, “Rellenos sanitarios de 321 municipios colapsarán en cinco años, advierte el DNP,” 2016. [Online]. Available: https://www.dnp.gov.co/Paginas/Rellenos-sanitarios-de-321-municipioscolapsarán-en-cinco-años,-advierte-el-DNP--.aspx. [Accessed: 22-Apr-2019]. [53] J. Hopewell, R. Dvorak, and E. Kosior, “Plastics recycling: Challenges and opportunities,” Philos. Trans. R. Soc. B Biol. Sci., vol. 364, no. 1526, pp. 2115– 2126, 2009. [54] F. J. Passamonti and U. Sedran, “Recycling of waste plastics into fuels. LDPE conversion in FCC,” Appl. Catal. B Environ., vol. 125, pp. 499–506, 2012. [55] P. J. Donaj, W. Kaminsky, F. Buzeto, and W. Yang, “Pyrolysis of polyolefins for increasing the yield of monomers’ recovery,” Waste Manag., vol. 32, no. 5, pp. 840–846, May 2012. 90 [56] E. L. Hacinamiento and E. N. El, “Formulación de un plan de acción de mejoras para optimizar la gestión actual de residuos en el marco del sistema de gestión ambiental de la universidad autónoma de occidente,” 2014. [57] TASA, “Reporte De Sostenibilidad 2018 Ecoeficiencia, Innovación Y Sostenibilidad,” p. 110, 2018. [58] O. Proaño and S. Crespo, “Obtención de combustibles a partir de residuos plásticos,” Rev. Politécnica, 2009. [59] “¿Qué son los plásticos? :: PlasticsEurope.” [Online]. Available: https://www.plasticseurope.org/es/about-plastics/what-are-plastics. [Accessed: 12-Dec-2019]. [60] C. Washam, “Plastics Go Green,” ChemMatters, no. April, p. 3, 2010. [61] C. Giacovelli, Single-Use Plastic: A Roadmap for Sustainability. 2018. [62] D. P. Navia P, A. A. Ayala A, and H. S. Villada C, “Revista Ingenierías Universidad de Medellin.,” Rev. Ing. Univ. Medellín, vol. 13, no. 25, pp. 99– 113, 2014. [63] “Polímeros: una visión general.” [Online]. Available: https://www.essentialchemicalindustry.org/polymers/polymers-anoverview.html. [Accessed: 27-Dec-2019]. [64] “Introducción a los polímeros: 1.2.2 Termoplásticos y termoestables - OpenLearn - Open University - T838_1.” [Online]. Available: https://www.open.edu/openlearn/science-mathstechnology/science/chemistry/introduction-polymers/content-section-1.2.2. [Accessed: 12-Dec-2019]. [65] H. Bockhorn, Feedstock recycling of plastics . Selected papers presented at the third International Symposium on Feedstock Recycling of ... Feedstock Recycling of Plastics Selected Papers presented at the Third International Symposium on Feedstock Recycling of Plastic, no. January 2005. 2016. 91 [66] “Estructura polimérica.” [Online]. Available: https://www.ndeed.org/EducationResources/CommunityCollege/Materials/Structure/polymer. htm. [Accessed: 27-Dec-2019]. [67] Y. Marcela, “Beneficios para la industria que emplea ‘ Botellas plásticas posconsumo’.Colombia: Universidad Militar Nueva Granada,” p. 18, 2018. [68] J. Bañuelos, “Acerca del plástico PET,” p. 4, 2015. [69] T. P. Chang et al., “ESTUDIO DE LAS PROPIEDADES Y APLICACIONES INDUSTRIALES DEL POLIETILENO DE ALTA DENSIDAD (PEAD),” Cem. Concr. Res., vol. 19, no. 4, pp. 645–655, 2005. [70] K. Mulder and M. Knot, “PVC plastic: A history of systems development and entrenchment,” Technol. Soc., vol. 23, no. 2, pp. 265–286, 2001. [71] J. Spaniol, “Polypropylene.” [72] “Una breve historia del poliestireno | EPS moldeado de forma | Grupo Isowall | SA.” [Online]. Available: https://www.isowall.co.za/a-brief-history-ofpolystyrene/. [Accessed: 11-Jan-2020]. [73] Ministerio de Ambiente Vivienda y Desarrollo Territorial, “Decreto 0838 de 2005,” 45862, no. 0838, p. 17, 2005. [74] C. H. Castañeda and M. C. Miranda, “MODELOS MÁS UTILIZADOS DE RECICLAJE Y REUTILIZACIÓN DE PRODUCTOS PLÁSTICOS, Y ESTRATEGIAS DE RECUPERACIÓN MAS UTILIZADAS EN COLOMBIA,” Univ. Nac. Abierta y a Distancia – UNAD Esc., no. 1, p. 43, 2018. [75] J. H. Song, R. J. Murphy, R. Narayan, and G. B. H. Davies, “Biodegradable and compostable alternatives to conventional plastics,” Philos. Trans. R. Soc. B Biol. Sci., vol. 364, no. 1526, pp. 2127–2139, Jul. 2009. [76] S. M. Al-Salem, P. Lettieri, and J. Baeyens, “Recycling and recovery routes of plastic solid waste (PSW): A review,” Waste Manag., vol. 29, no. 10, pp. 2625– 2643, Oct. 2009. 92 [77] K. Ragaert, “an Introductory Review Mechanical Recycling of Polymers for,” no. May, 2019. [78] F. Paradela, F. Pinto, I. Gulyurtlu, I. Cabrita, and N. Lapa, “Study of the copyrolysis of biomass and plastic wastes,” Clean Technol. Environ. Policy, vol. 11, no. 1, pp. 115–122, 2009. [79] Agrowaste, “Pirólisis,” 2013. [80] H. Kong et al., “Pyrolysis Defined Pyrolysis in History Research & Commercialization of Pyrolysis,” Phys. Procedia, vol. 66, no. 12, pp. 4952– 5001, 2011. [81] M. Sarker, A. Kabir, M. M. Rashid, M. Molla, and A. S. M. Din Mohammad, “Waste Polyethylene Terephthalate (PETE-1) Conversion into Liquid Fuel,” J. Fundam. Renew. Energy Appl., vol. 1, pp. 1–5, 2011. [82] A. Marcilla, J. C. García-Quesada, S. Sánchez, and R. Ruiz, “Study of the catalytic pyrolysis behaviour of polyethylene-polypropylene mixtures,” J. Anal. Appl. Pyrolysis, vol. 74, no. 1–2, pp. 387–392, 2005. [83] P. Das and P. Tiwari, “The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel,” Waste Manag., vol. 79, pp. 615–624, 2018. [84] S. Kumar, A. K. Panda, and R. K. Singh, “A review on tertiary recycling of highdensity polyethylene to fuel,” Resour. Conserv. Recycl., vol. 55, no. 11, pp. 893–910, 2011. [85] J. E. Espinoza and T. M. Cabrera, “ESTUDIO DE VIABILIDAD TÉCNICA PRELIMINAR PARA LA OBTENCION DE COMBUSTIBLE MEDIANTE LA PIROLISIS DE RESIDUOS PLÁSTICOS GENERADOS EN LA UNIVERSIDAD POLIÉCNICA SALESIANA.,” 2014. [86] J. Aguado, D. P. Serrano, G. S. Miguel, J. M. Escola, and J. M. Rodríguez, “Catalytic activity of zeolitic and mesostructured catalysts in the cracking of pure and waste polyolefins,” J. Anal. Appl. Pyrolysis, vol. 78, no. 1, pp. 153– 161, 2007. 93 [87] M. P. Mesa and C. I. Ortiz, “EVALUACIÓN DEL PROCESO DE PIROLISIS PARA LA PRODUCCIÓN DE DIESEL A NIVEL LABORATORIO A PARTIR DE RESIDUOS PLÁSTICOS DE INDUSTRIAS DE ALIMENTOS,” Univ. América., vol. 2002, no. 1, pp. 35–40, 2016. [88] J. A. Conesa, “Estudio de la pirolisis de residuos plasticos de polietileno y neumaticos usados.,” p. 366, 1996. [89] T. Hatakeyama and H. Hatakeyama, Hot Topics in Thermal Analysis and Calorimetry, vol. 4. 2005. [90] C. K. Schoff, “Differential scanning calorimetry,” CoatingsTech, vol. 5, no. 7, p. 60, 2008. [91] L. D. E. Cluster and U. N. C. D. E. Estratificaci, “Consultoría de Calidad y Laboratorio S.L .” [92] Y. Li, J. Chen, and Y. H. Geng, Expressions of p57KIP2 protein in oral leukoplakia and oral squamous cell carcinoma and its clinical significance, vol. 25, no. 6. 2010. [93] S. Loganathan, R. B. Valapa, R. Mishra, and G. Pugazhenthi, Copyright, no. May. 2017. [94] P. Ayres, “A beginner’s guide to Twitter,” ALISS Q., vol. v. 4, no.4, pp. 6–9, 2009. [95] H. Xia and K. Wei, “Equivalent characteristic spectrum analysis in TG-MS system,” Thermochim. Acta, vol. 602, pp. 15–21, 2015. [96] Humboldt University of Berlin, “Investigation of Polymers with Differential Scanning Calorimetry,” Adv. Lab DSC Investig. Polym., pp. 1–17, 2009. [97] S. Ma and J. Y. Yu, “Effect of Reward Function Choices in MDPs with Valueat-Risk,” pp. 1–10, 2016. 94 [98] “Differential Scanning Calorimetry (DSC) - Physical Methods in Chemistry and Nano Science - OpenStax CNX.” [Online]. Available: https://cnx.org/contents/uieDnVBC@24.6:9EMWnRbD@2/DifferentialScanning-Calorimetry-DSC. [Accessed: 26-Dec-2019]. [99] X. Q. Xie, J. Moring, and A. Makriyannis, “Differential scanning calorimetry and small angle X-ray diffraction study of the interaction of (R)-PAF, (R)-ET-18- OMe and (R)-Lyso-PAF with model membranes,” Life Sci., vol. 61, no. 9, pp. 909–923, 1997. [100] D. S. Calorimetry, “First and Second Order Transitions in Polymers.,” pp. 1–8. [101] U. P. de Madrid, “Métodos de análisis térmico 1. Introducción,” pp. 1–32, 2010. [102] MERCOSUR, “Espectrometría infrarrojo,” Farm. MERCOSUR espectrofotometría infrarrojo, pp. 1–8, 1392. [103] UCLA Education, “and wavelength ( λ ). Frequency is the number of wave troughs that pass a given point in a second and wavelength is the distance from one crest of a wave to an adjacent crest. Frequency and wavelength are inversely related, according to the equation E =.” [104] R. Silverstein, F. Webster, and D. Kiemle, “Silverstein - Spectrometric Identification of Organic Compounds 7th ed.pdf.” 2005. [105] “Tablas de Bandas de Absorción - Carcterización Estructural de Materiales Cristalinos.” [Online]. Available: http://www.ehu.eus/imacris/PIE06/web/tablasIR.htm. [Accessed: 06-Mar2020]. [106] Á. R. V. B. CHICAIZA., VICTORIA REGINA GUTIERREZ, A. M. Universidad De Cuenca, and L. Enrique, “Universidad De Cuenca 2,” pp. 23–53, 2016. [107] “Leyes desde 1992 - Vigencia expresa y control de constitucionalidad [LEY_0142_1994].” [Online]. Available: http://www.secretariasenado.gov.co/senado/basedoc/ley_0142_1994.html. [Accessed: 10-Dec-2019]. 95 [108] Secretaría-Distrital-de-Ambiente, “Diligenciamiento de la Matriz de Identificación de aspectos y valoración de impactos ambientales,” Subdirección Políticas y Planes Ambient., pp. 1–28, 2013. [109] DEPARTAMENTO NACIONAL DE PLANEACIÓN (DPN), “Bases Plan de Desarrollo Nacional 2014-2018 CONPES,” Doc. CONPES, p. 69, 2014. [110] C. Y. T. MINISTERIO DE VIVIENDA, “decreto 1077 de 2015,” 2015. [111] L. G. . Urratia Murillo, “RES 1407 DE 2018.pdf,” 05/12/2014. pp. 1–20, 2018. [112] Ministerio de hacienda y crédito público, “Decreto 2198 del 26 de Diciembre de 2017,” pp. 1–7, 2017. [113] ICONTEC, “Gtc 53-2 - Gestión Ambiental. Residuos Sólidos. Guía Para El Aprovechamiento De Los Residuos Plásticos.,” Icontec, p. 22, 2004. [114] M. P. Mesa and C. I. Ortiz, “Evaluación del proceso de pirolisis para la producción de diesel a nivel laboratorio a partir de residuos plásticos de industrias de alimentos,” Univ. América., vol. 2002, no. 1, pp. 35–40, 2016. [115] I. Ambientales, “Guía Técnica para la Identificación de Aspectos e Impactos Ambientales,” pp. 1–15, 2012. [116] Progecol, “Progecol - Manejo Integral de Residuos Sólidos, Compra y Venta de Material para Reciclaje, Excedentes Industriales.,” 2013. [Online]. Available: http://progecol.com/. [Accessed: 13-Mar-2019]. [117] A. Vijayakumar and J. Sebastian, “Pyrolysis process to produce fuel from different types of plastic - A review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 396, no. 1, 2018. [118] M. N. Almustapha and J. M. Andrésen, “Recovery of Valuable Chemicals from High Density Polyethylene (HDPE) Polymer: a Catalytic Approachfor Plastic Waste Recycling,” Int. J. Environ. Sci. Dev., vol. 3, no. 3, pp. 263–267, 2012. 96 [119] B. V. Babu and A. S. Chaurasia, “Modeling for pyrolysis of solid particle: Kinetics and heat transfer effects,” Energy Convers. Manag., vol. 44, no. 14, pp. 2251–2275, 2003. [120] B. Niang et al., “Study of the Thermal, Rheological, Morphological and Mechanical Properties of Biocomposites Based on Rod-Of Typha/HDPE Made up of Typha Stem and HDPE,” Adv. Mater. Phys. Chem., vol. 08, no. 09, pp. 340–357, 2018. [121] S. Kumar and R. K. Singh, “Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis,” Brazilian J. Chem. Eng., vol. 28, no. 4, pp. 659–667, 2011. [122] A. Aboulkas, K. El Harfi, A. El Bouadili, M. Benchanaa, A. Mokhlisse, and A. Outzourit, “Kinetics of co-pyrolysis of tarfaya (Morocco) oil shale with highdensity polyethylene,” Oil Shale, vol. 24, no. 1, pp. 15–33, 2007. [123] M. Bartoli, L. Rosi, M. Frediani, A. Undri, and P. Frediani, “Depolymerization of polystyrene at reduced pressure through a microwave assisted pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 113, pp. 281–287, 2015. [124] D. Almeida, M. de F. Marques, D. Almeida, and M. de F. Marques, “Thermal and catalytic pyrolysis of plastic waste,” Polímeros, vol. 26, no. 1, pp. 44–51, Mar. 2016. [125] J. A. Onwudili, N. Insura, and P. T. Williams, “Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time,” J. Anal. Appl. Pyrolysis, vol. 86, no. 2, pp. 293–303, Nov. 2009. [126] H. D. Magurudeniya, P. Huang, S. S. Gunathilake, E. A. Rainbolt, M. C. Biewer, and M. C. Stefan, Semiconducting Polymers: Poly(thiophenes), no. December. 2014. [127] S. K. Tulashie, E. K. Boadu, and S. Dapaah, “Plastic waste to fuel via pyrolysis: A key way to solving the severe plastic waste problem in Ghana,” Therm. Sci. Eng. Prog., vol. 11, pp. 417–424, Jun. 2019. 97 [128] L. F. Tolendino and M. O. Vahle, “Decreto Ley 2811 de 1974,” IEEE J. Sel. Areas Commun., vol. 2, no. 1, pp. 258–263, 1984. [129] Ö. Äüôú, “Ley 99 de 1993,” vol. 1993, no. 41, pp. 6–8, 2003. [130] M. de A. y desarrollo Sostenible., “Decreto 1076 de 2015.” p. 653, 2015. [131] C. C. Posada, “P olítica de P revención y C ontrol de la C ontaminación del A ire,” 2010. [132] MADS, “96-Res 2254 De 2017.Pdf.” 2017. [133] Congreso de la República de Colombia, “Ley 689 de 2001,” D. Of., no. 44, 2001. [134] Ministerio de Vivienda Ciudad y Territorio, “Resolución 596 de 2016,” p. 22, 2016. [135] Ministerio de la protección social, “Resolución 2115/2007,” Gac. Of., p. 23, 2007. [136] Ministerio de ambiente vivienda y desarrollo territorial, “Decreto 3930 del 2010,” Minist. Ambient. vivienda y Desarro. Territ., p. 29, 2010. [137] Ministros de la proteccion social y de ambiente vivienda y desarrollo territorrial, “Resolución 0075 de 2011.” p. 6, 2011. [138] Ministerio de Ambiente y Desarrollo Sostenible, “D1- Res_631_Marz_2015.Pdf.” p. 62, 2015. [139] “Tabla15_3.jpg (620×584).” [Online]. Available: https://www.upv.es/materiales/Fcm/Fcm15/Imagenes/Tabla15_3.jpg. [Accessed: 26-Dec-2019]. [140] B. M and M. A, “Estructura Y Propiedades De Los Polimeros,” pp. 1–54.PublicationTEXTT09200.pdf.txtT09200.pdf.txtExtracted texttext/plain149615https://dspace7-uao.metacatalogo.com/bitstreams/7995089c-5559-4f81-94e8-f548ab1e3869/downloade3805075b57edaaaf9df10c5a526844bMD57TA9200.pdf.txtTA9200.pdf.txtExtracted texttext/plain2https://dspace7-uao.metacatalogo.com/bitstreams/75233e53-31ae-4ce0-a538-bef78c47f6ff/downloade1c06d85ae7b8b032bef47e42e4c08f9MD59THUMBNAILT09200.pdf.jpgT09200.pdf.jpgGenerated Thumbnailimage/jpeg6172https://dspace7-uao.metacatalogo.com/bitstreams/2a8647af-8601-4601-a479-5b1cef1515bf/download5556a0ce0fab6b6512a8e0da5f83f1e3MD58TA9200.pdf.jpgTA9200.pdf.jpgGenerated Thumbnailimage/jpeg14269https://dspace7-uao.metacatalogo.com/bitstreams/e64a2978-fc8e-4aaf-9646-f6b831d9b306/download8dc941632cec6d22b4d45f4d191f52caMD510CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://dspace7-uao.metacatalogo.com/bitstreams/bb989150-b845-4331-ba78-34eee77822e1/download0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/e81b09ad-fc60-4c5d-82fc-4c667cf80337/download20b5ba22b1117f71589c7318baa2c560MD54ORIGINALT09200.pdfT09200.pdfapplication/pdf2342787https://dspace7-uao.metacatalogo.com/bitstreams/da1f8ad6-1034-4d06-82e0-5335032ca21d/downloadf6eda57de6e0b773a76ae8b4c77f90beMD55TA9200.pdfTA9200.pdfapplication/pdf1752284https://dspace7-uao.metacatalogo.com/bitstreams/4e3e1d3a-39d9-41ba-b2e1-061669967714/download7e8661e4228dbb5d929239a7e6d1fba0MD5610614/12340oai:dspace7-uao.metacatalogo.com:10614/123402024-01-19 15:54:54.511https://creativecommons.org/licenses/by/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K