Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite
This work presents the physical-thermal and mechanical characterization of a low-density polyethylene (LDPE)-Al matrix composite material that was obtained from reinforcing recycled (post-consumer) long-life Tetra Pak packages with fique natural fibers from southwestern Colombia. The fique was subje...
- Autores:
-
Muñoz-Vélez, Mario F.
Mina Hernández, José Herminsul
Hidalgo Salazar, Miguel Ángel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13444
- Acceso en línea:
- https://hdl.handle.net/10614/13444
- Palabra clave:
- Materiales compuestos
Composite materials
Composite
LDPE
Natural fibers
Physico-mechanical properties
Thermal properties
Surface modification
- Rights
- openAccess
- License
- Derechos Reservados Polymers
id |
REPOUAO2_2ab37bb08bebc1085e9a290315d3d38d |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13444 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite |
title |
Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite |
spellingShingle |
Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite Materiales compuestos Composite materials Composite LDPE Natural fibers Physico-mechanical properties Thermal properties Surface modification |
title_short |
Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite |
title_full |
Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite |
title_fullStr |
Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite |
title_full_unstemmed |
Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite |
title_sort |
Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite |
dc.creator.fl_str_mv |
Muñoz-Vélez, Mario F. Mina Hernández, José Herminsul Hidalgo Salazar, Miguel Ángel |
dc.contributor.author.spa.fl_str_mv |
Muñoz-Vélez, Mario F. Mina Hernández, José Herminsul |
dc.contributor.author.none.fl_str_mv |
Hidalgo Salazar, Miguel Ángel |
dc.contributor.corporatename.spa.fl_str_mv |
Polymers |
dc.subject.armarc.spa.fl_str_mv |
Materiales compuestos |
topic |
Materiales compuestos Composite materials Composite LDPE Natural fibers Physico-mechanical properties Thermal properties Surface modification |
dc.subject.armarc.eng.fl_str_mv |
Composite materials |
dc.subject.proposal.eng.fl_str_mv |
Composite LDPE Natural fibers Physico-mechanical properties Thermal properties Surface modification |
description |
This work presents the physical-thermal and mechanical characterization of a low-density polyethylene (LDPE)-Al matrix composite material that was obtained from reinforcing recycled (post-consumer) long-life Tetra Pak packages with fique natural fibers from southwestern Colombia. The fique was subjected to three chemical treatments to modify its surface (alkalinization, silanization and pre-impregnation with polyethylene) to increase the quality of its interfaces. Additionally, panels with 10%, 20%, and 30% v/v of fiber were manufactured by the hot compression molding. The mechanical properties of the different composite materials showed that the preimpregnation treatment promoted a significant increase in the tensile and flexural properties with respect to the fiber-reinforced composite without surface modification. Additionally, in materials with 30% fibers that were treated with pre-impregnation, there was a decrease in the water absorption capacity of 53.15% when compared to composites made with 30% native fibers. Finally, increases in the fiber content mainly caused better mechanical performances, which increased as a direct function of the amount of fique incorporated |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2021-11-16T21:22:10Z |
dc.date.available.none.fl_str_mv |
2021-11-16T21:22:10Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
20734360 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13444 |
identifier_str_mv |
20734360 |
url |
https://hdl.handle.net/10614/13444 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
14 |
dc.relation.citationissue.spa.fl_str_mv |
10 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
10 |
dc.relation.cites.eng.fl_str_mv |
Muñoz Vélez, M. F., Hidalgo Salazar, M. A., Mina Hernández J. H. (2018). Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite. Polymers. (Vol. 10 (10), pp. 1-14. https://doi.org/10.3390/polym10101050 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Polymers |
dc.relation.references.none.fl_str_mv |
1. Hidalgo, M.H.; Muñoz, M.F.; Quintana, K.J. Mechanical behavior of polyethylene aluminum composite reinforced with continuous agro fique fibers. Rev. Latinoam. Metal. Mater. 2011, 31, 187–194. 2. Hidalgo, M.H.; Muñoz, M.F.; Quintana, K.J. Mechanical analysis of polyethylene aluminum composite reinforced with short fique fibers available a in two-dimensional arrangement. Rev. Latinoam. Metal. Mater. 2012, 32, 89–95. 3. Valadez-González, A.; Cervantes-Uc, J.M.; Olayo, R.; Herrera-Franco, P.J. Chemical modification of henequén fibers with an organosilane coupling agent. Compos. Part B Eng. 1999, 30, 321–331. [CrossRef] 4. Monteiro, S.N.; Salgado de Assis, F.; Ferreira, C.L.; Simonassi, N.T.;Weber, R.P.; Oliveira, M.S.; Colorado, H.A.; Pereira, A.C. Fique fabric: A promising reinforcement for polymer composites. Polymers 2018, 10, 246. [CrossRef] 5. Neves, A. The recycling of Tetra Pak packages. O Papel 1999, 53, 24–31. 6. Mourad, A.L.; Garcia, E.C.; Von Zuben, F. Influence of recycling rate increase of aseptic carton for long-life milk on GWP reduction. Resour. Conserv. Recycl. 2008, 52, 678–689. [CrossRef] 7. Hidalgo, M.A.; Mina, J.H.; Herrera, P.H. The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials. Compos. Part B Eng. 2013, 55, 345–351. [CrossRef] 8. Hidalgo, M.H.; Muñoz, M.F.; Mina, J.H. Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. Int. J. Polym. Sci. 2015, 2015, 386325. [CrossRef] 9. Muñoz, M.F.; Hidalgo, M.A.; Mina, J.H. Fique fiber an alternative for reinforced plastics. Influence of surface modification. Biotecnol. Sect. Agropecu. Agroind. 2014, 12, 60–70. 10. Wang, F.; Zhou, S.; Yang, M.; Chen, Z.; Ran, S. Thermo-Mechanical Performance of Polylactide Composites Reinforced with Alkali-Treated Bamboo Fibers. Polymers 2018, 10, 401. [CrossRef] 11. Herrera, P.J.; Valadez, A. Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 339–345. [CrossRef] 12. Habibi, Y.; El-Zawawy, W.; Ibrahim, M.; Dufresne, A. Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Compos. Sci. Technol. 2008, 68, 1877–1885. [CrossRef] 13. Rigdahl, M.; Westerlind, B.; Hollmark, H.; De Ruvo, A. Introduction of polymers into fibrous structures by solution impregnation. J. Appl. Polym. Sci. 1983, 28, 1599–1611. [CrossRef] 14. Herrera-Franco, P.J.; Valadez-González, A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 2005, 36, 597–608. [CrossRef] 15. Lopes, C.; Felisberti, M.I. Composite of low-density polyethylene and aluminum obtained from the recycling of postconsumer aseptic packaging. J. Appl. Polym. Sci. 2006, 101, 3183–3191. [CrossRef] 16. Valadez, A. Effect of Surface Treatment of Henequen Fibers on the Fiber-Matrix Interfacial Resistance and on the Effective Properties of Thermoplastic Composite Materials. Ph.D. Thesis, Universidad Autónoma Metropolitana, Mexico City, Mexico, 1999. 17. Gañan, P.; Mondragon, I. Surface modification of fique fibers. Effects on their physico-mechanical properties. Polym. Compos. 2002, 23, 383–394. [CrossRef] 18. Saldarriaga, J.; Cruz, J.; Gañan, P. Behavior to hydrolysis of epoxy matrix composites and Colombian fibers. Rev. Investig. Apl. 2007, 1, 39–45. 19. Vallejos, M.E. Integral Use of Cannabis Sativa as Reinforcement/Load Material of Polypropylene. Ph.D. Thesis, Universitat de Girona, Girona, Spain, 2006. 20. Wang, W.; Saind, M.; Cooper, P.A. Study of moisture absorption in natural fiber plastics composites. Compos. Sci. Technol. 2006, 66, 379–386. [CrossRef] 21. Leal, S.; Fonseca, E.; Ferreira, C.; Bohrz, S. Studies on the properties of rice-husk-filled-PP composites: Effect of maleated PP. Mater. Res. 2009, 12, 333–338. [CrossRef] 22. Tajeddin, B.; Rahman, R.; Abdulah, L.; Ibrahim, N.; Yusof, Y. Thermal properties of low density polyethylene-filled kenaf cellulose composites. Eur. J. Sci. Res. 2009, 32, 223–230. [CrossRef] 23. Zhang, K.; Wang, F.; Liang, W.; Wang, Z.; Duan, Z.; Yang, B. Thermal and Mechanical Properties of Bamboo Fiber Reinforced Epoxy Composites. Polymers 2018, 10, 608. [CrossRef] 24. Stamboulis, A.; Baillie, C.; Schulz, E. Interfacial characterization of flax fibre-thermoplastic polymer composites by the pull-out test. Macromol. Mater. Eng. 1999, 272, 117–120. [CrossRef] 25. Gañán, P.; Mondragon, I. Thermal and degradation behavior of fique fiber reinforced thermoplastic matrix composites. J. Therm. Anal. Calorim. 2003, 73, 783–795. [CrossRef] 26. Mtshali, T.N.; Krupa, I.; Luyt, A.S. The effect of cross-linking on termal properties of LDPE/wax blends. Thermochim. Acta 2001, 380, 47–54. [CrossRef] 27. Fu, Q.; Men, Y.; Strobl, G. Understanding of the tensile deformation in HDPE/LDPE blends based on their crystal structure and phase morphology. Polymer 2003, 44, 1927–1933. [CrossRef] 28. Desiderá, C. Blends of Recycled Polyamide and Polyethylene from Multi-Layer Packages. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2007. 29. Aht-Ong, D.; Charoenkongthum, K. Thermal properties and moisture absorption of LDPE/banana starch biocomposite films. J. Met. Mater. Miner. 2002, 12, 1–10. 30. Amash, A.; Zugenmaier, P. Morphology and properties of isotropic and oriented samples of cellulose fibre-polypropylene composites. Polymer 2000, 41, 1589–1596. [CrossRef] |
dc.rights.spa.fl_str_mv |
Derechos Reservados Polymers Derechos reservados - MDPI, 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados Polymers Derechos reservados - MDPI, 2018 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
14 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
dc.publisher.place.spa.fl_str_mv |
Basel, Switzerland |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/cdeedffa-a5c3-4ee8-9982-15de9cfa8aec/download https://red.uao.edu.co/bitstreams/d8b3d256-a637-449e-aee2-94576a908a9c/download https://red.uao.edu.co/bitstreams/c99a682d-08c8-40b1-85e0-612c8ae137ec/download https://red.uao.edu.co/bitstreams/c6833cf4-6a9c-4746-a1e1-9fdbe31899b9/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 298c6e5aa1f431de06f7c832257f2956 dc69ee85f8e095d0e8bebb4634eb752f e7ec2325fdf5faadb8cd80bbc7448bfe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259997510467584 |
spelling |
Muñoz-Vélez, Mario F.5fc9d2c061f5942ee756a7ac917fc473Mina Hernández, José Herminsul0979fc3b30b6ce602bc72d24d90d7258Hidalgo Salazar, Miguel Ángelvirtual::2131-1Polymers2021-11-16T21:22:10Z2021-11-16T21:22:10Z201820734360https://hdl.handle.net/10614/13444This work presents the physical-thermal and mechanical characterization of a low-density polyethylene (LDPE)-Al matrix composite material that was obtained from reinforcing recycled (post-consumer) long-life Tetra Pak packages with fique natural fibers from southwestern Colombia. The fique was subjected to three chemical treatments to modify its surface (alkalinization, silanization and pre-impregnation with polyethylene) to increase the quality of its interfaces. Additionally, panels with 10%, 20%, and 30% v/v of fiber were manufactured by the hot compression molding. The mechanical properties of the different composite materials showed that the preimpregnation treatment promoted a significant increase in the tensile and flexural properties with respect to the fiber-reinforced composite without surface modification. Additionally, in materials with 30% fibers that were treated with pre-impregnation, there was a decrease in the water absorption capacity of 53.15% when compared to composites made with 30% native fibers. Finally, increases in the fiber content mainly caused better mechanical performances, which increased as a direct function of the amount of fique incorporated14 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos Reservados PolymersDerechos reservados - MDPI, 2018https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique compositeArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Materiales compuestosComposite materialsCompositeLDPENatural fibersPhysico-mechanical propertiesThermal propertiesSurface modification1410110Muñoz Vélez, M. F., Hidalgo Salazar, M. A., Mina Hernández J. H. (2018). Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite. Polymers. (Vol. 10 (10), pp. 1-14. https://doi.org/10.3390/polym10101050Polymers1. Hidalgo, M.H.; Muñoz, M.F.; Quintana, K.J. Mechanical behavior of polyethylene aluminum composite reinforced with continuous agro fique fibers. Rev. Latinoam. Metal. Mater. 2011, 31, 187–194.2. Hidalgo, M.H.; Muñoz, M.F.; Quintana, K.J. Mechanical analysis of polyethylene aluminum composite reinforced with short fique fibers available a in two-dimensional arrangement. Rev. Latinoam. Metal. Mater. 2012, 32, 89–95.3. Valadez-González, A.; Cervantes-Uc, J.M.; Olayo, R.; Herrera-Franco, P.J. Chemical modification of henequén fibers with an organosilane coupling agent. Compos. Part B Eng. 1999, 30, 321–331. [CrossRef]4. Monteiro, S.N.; Salgado de Assis, F.; Ferreira, C.L.; Simonassi, N.T.;Weber, R.P.; Oliveira, M.S.; Colorado, H.A.; Pereira, A.C. Fique fabric: A promising reinforcement for polymer composites. Polymers 2018, 10, 246. [CrossRef]5. Neves, A. The recycling of Tetra Pak packages. O Papel 1999, 53, 24–31.6. Mourad, A.L.; Garcia, E.C.; Von Zuben, F. Influence of recycling rate increase of aseptic carton for long-life milk on GWP reduction. Resour. Conserv. Recycl. 2008, 52, 678–689. [CrossRef]7. Hidalgo, M.A.; Mina, J.H.; Herrera, P.H. The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials. Compos. Part B Eng. 2013, 55, 345–351. [CrossRef]8. Hidalgo, M.H.; Muñoz, M.F.; Mina, J.H. Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. Int. J. Polym. Sci. 2015, 2015, 386325. [CrossRef]9. Muñoz, M.F.; Hidalgo, M.A.; Mina, J.H. Fique fiber an alternative for reinforced plastics. Influence of surface modification. Biotecnol. Sect. Agropecu. Agroind. 2014, 12, 60–70.10. Wang, F.; Zhou, S.; Yang, M.; Chen, Z.; Ran, S. Thermo-Mechanical Performance of Polylactide Composites Reinforced with Alkali-Treated Bamboo Fibers. Polymers 2018, 10, 401. [CrossRef]11. Herrera, P.J.; Valadez, A. Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 339–345. [CrossRef]12. Habibi, Y.; El-Zawawy, W.; Ibrahim, M.; Dufresne, A. Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Compos. Sci. Technol. 2008, 68, 1877–1885. [CrossRef]13. Rigdahl, M.; Westerlind, B.; Hollmark, H.; De Ruvo, A. Introduction of polymers into fibrous structures by solution impregnation. J. Appl. Polym. Sci. 1983, 28, 1599–1611. [CrossRef]14. Herrera-Franco, P.J.; Valadez-González, A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 2005, 36, 597–608. [CrossRef]15. Lopes, C.; Felisberti, M.I. Composite of low-density polyethylene and aluminum obtained from the recycling of postconsumer aseptic packaging. J. Appl. Polym. Sci. 2006, 101, 3183–3191. [CrossRef]16. Valadez, A. Effect of Surface Treatment of Henequen Fibers on the Fiber-Matrix Interfacial Resistance and on the Effective Properties of Thermoplastic Composite Materials. Ph.D. Thesis, Universidad Autónoma Metropolitana, Mexico City, Mexico, 1999.17. Gañan, P.; Mondragon, I. Surface modification of fique fibers. Effects on their physico-mechanical properties. Polym. Compos. 2002, 23, 383–394. [CrossRef]18. Saldarriaga, J.; Cruz, J.; Gañan, P. Behavior to hydrolysis of epoxy matrix composites and Colombian fibers. Rev. Investig. Apl. 2007, 1, 39–45.19. Vallejos, M.E. Integral Use of Cannabis Sativa as Reinforcement/Load Material of Polypropylene. Ph.D. Thesis, Universitat de Girona, Girona, Spain, 2006.20. Wang, W.; Saind, M.; Cooper, P.A. Study of moisture absorption in natural fiber plastics composites. Compos. Sci. Technol. 2006, 66, 379–386. [CrossRef]21. Leal, S.; Fonseca, E.; Ferreira, C.; Bohrz, S. Studies on the properties of rice-husk-filled-PP composites: Effect of maleated PP. Mater. Res. 2009, 12, 333–338. [CrossRef]22. Tajeddin, B.; Rahman, R.; Abdulah, L.; Ibrahim, N.; Yusof, Y. Thermal properties of low density polyethylene-filled kenaf cellulose composites. Eur. J. Sci. Res. 2009, 32, 223–230. [CrossRef]23. Zhang, K.; Wang, F.; Liang, W.; Wang, Z.; Duan, Z.; Yang, B. Thermal and Mechanical Properties of Bamboo Fiber Reinforced Epoxy Composites. Polymers 2018, 10, 608. [CrossRef]24. Stamboulis, A.; Baillie, C.; Schulz, E. Interfacial characterization of flax fibre-thermoplastic polymer composites by the pull-out test. Macromol. Mater. Eng. 1999, 272, 117–120. [CrossRef]25. Gañán, P.; Mondragon, I. Thermal and degradation behavior of fique fiber reinforced thermoplastic matrix composites. J. Therm. Anal. Calorim. 2003, 73, 783–795. [CrossRef]26. Mtshali, T.N.; Krupa, I.; Luyt, A.S. The effect of cross-linking on termal properties of LDPE/wax blends. Thermochim. Acta 2001, 380, 47–54. [CrossRef]27. Fu, Q.; Men, Y.; Strobl, G. Understanding of the tensile deformation in HDPE/LDPE blends based on their crystal structure and phase morphology. Polymer 2003, 44, 1927–1933. [CrossRef]28. Desiderá, C. Blends of Recycled Polyamide and Polyethylene from Multi-Layer Packages. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2007.29. Aht-Ong, D.; Charoenkongthum, K. Thermal properties and moisture absorption of LDPE/banana starch biocomposite films. J. Met. Mater. Miner. 2002, 12, 1–10.30. Amash, A.; Zugenmaier, P. Morphology and properties of isotropic and oriented samples of cellulose fibre-polypropylene composites. Polymer 2000, 41, 1589–1596. [CrossRef]GeneralPublication00f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2131-100f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2131-1https://scholar.google.es/citations?user=OTNvAeoAAAAJ&hl=esvirtual::2131-10000-0002-6907-2091virtual::2131-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143936virtual::2131-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/cdeedffa-a5c3-4ee8-9982-15de9cfa8aec/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALEffect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-alfique composite.pdfEffect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-alfique composite.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf605347https://red.uao.edu.co/bitstreams/d8b3d256-a637-449e-aee2-94576a908a9c/download298c6e5aa1f431de06f7c832257f2956MD53TEXTEffect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-alfique composite.pdf.txtEffect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-alfique composite.pdf.txtExtracted texttext/plain56815https://red.uao.edu.co/bitstreams/c99a682d-08c8-40b1-85e0-612c8ae137ec/downloaddc69ee85f8e095d0e8bebb4634eb752fMD54THUMBNAILEffect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-alfique composite.pdf.jpgEffect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-alfique composite.pdf.jpgGenerated Thumbnailimage/jpeg14974https://red.uao.edu.co/bitstreams/c6833cf4-6a9c-4746-a1e1-9fdbe31899b9/downloade7ec2325fdf5faadb8cd80bbc7448bfeMD5510614/13444oai:red.uao.edu.co:10614/134442024-03-06 09:43:26.273https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados Polymersopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |