Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite

This work presents the physical-thermal and mechanical characterization of a low-density polyethylene (LDPE)-Al matrix composite material that was obtained from reinforcing recycled (post-consumer) long-life Tetra Pak packages with fique natural fibers from southwestern Colombia. The fique was subje...

Full description

Autores:
Muñoz-Vélez, Mario F.
Mina Hernández, José Herminsul
Hidalgo Salazar, Miguel Ángel
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13444
Acceso en línea:
https://hdl.handle.net/10614/13444
Palabra clave:
Materiales compuestos
Composite materials
Composite
LDPE
Natural fibers
Physico-mechanical properties
Thermal properties
Surface modification
Rights
openAccess
License
Derechos Reservados Polymers
id REPOUAO2_2ab37bb08bebc1085e9a290315d3d38d
oai_identifier_str oai:red.uao.edu.co:10614/13444
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite
title Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite
spellingShingle Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite
Materiales compuestos
Composite materials
Composite
LDPE
Natural fibers
Physico-mechanical properties
Thermal properties
Surface modification
title_short Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite
title_full Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite
title_fullStr Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite
title_full_unstemmed Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite
title_sort Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite
dc.creator.fl_str_mv Muñoz-Vélez, Mario F.
Mina Hernández, José Herminsul
Hidalgo Salazar, Miguel Ángel
dc.contributor.author.spa.fl_str_mv Muñoz-Vélez, Mario F.
Mina Hernández, José Herminsul
dc.contributor.author.none.fl_str_mv Hidalgo Salazar, Miguel Ángel
dc.contributor.corporatename.spa.fl_str_mv Polymers
dc.subject.armarc.spa.fl_str_mv Materiales compuestos
topic Materiales compuestos
Composite materials
Composite
LDPE
Natural fibers
Physico-mechanical properties
Thermal properties
Surface modification
dc.subject.armarc.eng.fl_str_mv Composite materials
dc.subject.proposal.eng.fl_str_mv Composite
LDPE
Natural fibers
Physico-mechanical properties
Thermal properties
Surface modification
description This work presents the physical-thermal and mechanical characterization of a low-density polyethylene (LDPE)-Al matrix composite material that was obtained from reinforcing recycled (post-consumer) long-life Tetra Pak packages with fique natural fibers from southwestern Colombia. The fique was subjected to three chemical treatments to modify its surface (alkalinization, silanization and pre-impregnation with polyethylene) to increase the quality of its interfaces. Additionally, panels with 10%, 20%, and 30% v/v of fiber were manufactured by the hot compression molding. The mechanical properties of the different composite materials showed that the preimpregnation treatment promoted a significant increase in the tensile and flexural properties with respect to the fiber-reinforced composite without surface modification. Additionally, in materials with 30% fibers that were treated with pre-impregnation, there was a decrease in the water absorption capacity of 53.15% when compared to composites made with 30% native fibers. Finally, increases in the fiber content mainly caused better mechanical performances, which increased as a direct function of the amount of fique incorporated
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2021-11-16T21:22:10Z
dc.date.available.none.fl_str_mv 2021-11-16T21:22:10Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 20734360
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13444
identifier_str_mv 20734360
url https://hdl.handle.net/10614/13444
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 14
dc.relation.citationissue.spa.fl_str_mv 10
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 10
dc.relation.cites.eng.fl_str_mv Muñoz Vélez, M. F., Hidalgo Salazar, M. A., Mina Hernández J. H. (2018). Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite. Polymers. (Vol. 10 (10), pp. 1-14. https://doi.org/10.3390/polym10101050
dc.relation.ispartofjournal.eng.fl_str_mv Polymers
dc.relation.references.none.fl_str_mv 1. Hidalgo, M.H.; Muñoz, M.F.; Quintana, K.J. Mechanical behavior of polyethylene aluminum composite reinforced with continuous agro fique fibers. Rev. Latinoam. Metal. Mater. 2011, 31, 187–194.
2. Hidalgo, M.H.; Muñoz, M.F.; Quintana, K.J. Mechanical analysis of polyethylene aluminum composite reinforced with short fique fibers available a in two-dimensional arrangement. Rev. Latinoam. Metal. Mater. 2012, 32, 89–95.
3. Valadez-González, A.; Cervantes-Uc, J.M.; Olayo, R.; Herrera-Franco, P.J. Chemical modification of henequén fibers with an organosilane coupling agent. Compos. Part B Eng. 1999, 30, 321–331. [CrossRef]
4. Monteiro, S.N.; Salgado de Assis, F.; Ferreira, C.L.; Simonassi, N.T.;Weber, R.P.; Oliveira, M.S.; Colorado, H.A.; Pereira, A.C. Fique fabric: A promising reinforcement for polymer composites. Polymers 2018, 10, 246. [CrossRef]
5. Neves, A. The recycling of Tetra Pak packages. O Papel 1999, 53, 24–31.
6. Mourad, A.L.; Garcia, E.C.; Von Zuben, F. Influence of recycling rate increase of aseptic carton for long-life milk on GWP reduction. Resour. Conserv. Recycl. 2008, 52, 678–689. [CrossRef]
7. Hidalgo, M.A.; Mina, J.H.; Herrera, P.H. The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials. Compos. Part B Eng. 2013, 55, 345–351. [CrossRef]
8. Hidalgo, M.H.; Muñoz, M.F.; Mina, J.H. Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. Int. J. Polym. Sci. 2015, 2015, 386325. [CrossRef]
9. Muñoz, M.F.; Hidalgo, M.A.; Mina, J.H. Fique fiber an alternative for reinforced plastics. Influence of surface modification. Biotecnol. Sect. Agropecu. Agroind. 2014, 12, 60–70.
10. Wang, F.; Zhou, S.; Yang, M.; Chen, Z.; Ran, S. Thermo-Mechanical Performance of Polylactide Composites Reinforced with Alkali-Treated Bamboo Fibers. Polymers 2018, 10, 401. [CrossRef]
11. Herrera, P.J.; Valadez, A. Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 339–345. [CrossRef]
12. Habibi, Y.; El-Zawawy, W.; Ibrahim, M.; Dufresne, A. Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Compos. Sci. Technol. 2008, 68, 1877–1885. [CrossRef]
13. Rigdahl, M.; Westerlind, B.; Hollmark, H.; De Ruvo, A. Introduction of polymers into fibrous structures by solution impregnation. J. Appl. Polym. Sci. 1983, 28, 1599–1611. [CrossRef]
14. Herrera-Franco, P.J.; Valadez-González, A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 2005, 36, 597–608. [CrossRef]
15. Lopes, C.; Felisberti, M.I. Composite of low-density polyethylene and aluminum obtained from the recycling of postconsumer aseptic packaging. J. Appl. Polym. Sci. 2006, 101, 3183–3191. [CrossRef]
16. Valadez, A. Effect of Surface Treatment of Henequen Fibers on the Fiber-Matrix Interfacial Resistance and on the Effective Properties of Thermoplastic Composite Materials. Ph.D. Thesis, Universidad Autónoma Metropolitana, Mexico City, Mexico, 1999.
17. Gañan, P.; Mondragon, I. Surface modification of fique fibers. Effects on their physico-mechanical properties. Polym. Compos. 2002, 23, 383–394. [CrossRef]
18. Saldarriaga, J.; Cruz, J.; Gañan, P. Behavior to hydrolysis of epoxy matrix composites and Colombian fibers. Rev. Investig. Apl. 2007, 1, 39–45.
19. Vallejos, M.E. Integral Use of Cannabis Sativa as Reinforcement/Load Material of Polypropylene. Ph.D. Thesis, Universitat de Girona, Girona, Spain, 2006.
20. Wang, W.; Saind, M.; Cooper, P.A. Study of moisture absorption in natural fiber plastics composites. Compos. Sci. Technol. 2006, 66, 379–386. [CrossRef]
21. Leal, S.; Fonseca, E.; Ferreira, C.; Bohrz, S. Studies on the properties of rice-husk-filled-PP composites: Effect of maleated PP. Mater. Res. 2009, 12, 333–338. [CrossRef]
22. Tajeddin, B.; Rahman, R.; Abdulah, L.; Ibrahim, N.; Yusof, Y. Thermal properties of low density polyethylene-filled kenaf cellulose composites. Eur. J. Sci. Res. 2009, 32, 223–230. [CrossRef]
23. Zhang, K.; Wang, F.; Liang, W.; Wang, Z.; Duan, Z.; Yang, B. Thermal and Mechanical Properties of Bamboo Fiber Reinforced Epoxy Composites. Polymers 2018, 10, 608. [CrossRef]
24. Stamboulis, A.; Baillie, C.; Schulz, E. Interfacial characterization of flax fibre-thermoplastic polymer composites by the pull-out test. Macromol. Mater. Eng. 1999, 272, 117–120. [CrossRef]
25. Gañán, P.; Mondragon, I. Thermal and degradation behavior of fique fiber reinforced thermoplastic matrix composites. J. Therm. Anal. Calorim. 2003, 73, 783–795. [CrossRef]
26. Mtshali, T.N.; Krupa, I.; Luyt, A.S. The effect of cross-linking on termal properties of LDPE/wax blends. Thermochim. Acta 2001, 380, 47–54. [CrossRef]
27. Fu, Q.; Men, Y.; Strobl, G. Understanding of the tensile deformation in HDPE/LDPE blends based on their crystal structure and phase morphology. Polymer 2003, 44, 1927–1933. [CrossRef]
28. Desiderá, C. Blends of Recycled Polyamide and Polyethylene from Multi-Layer Packages. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2007.
29. Aht-Ong, D.; Charoenkongthum, K. Thermal properties and moisture absorption of LDPE/banana starch biocomposite films. J. Met. Mater. Miner. 2002, 12, 1–10.
30. Amash, A.; Zugenmaier, P. Morphology and properties of isotropic and oriented samples of cellulose fibre-polypropylene composites. Polymer 2000, 41, 1589–1596. [CrossRef]
dc.rights.spa.fl_str_mv Derechos Reservados Polymers
Derechos reservados - MDPI, 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados Polymers
Derechos reservados - MDPI, 2018
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.publisher.place.spa.fl_str_mv Basel, Switzerland
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/cdeedffa-a5c3-4ee8-9982-15de9cfa8aec/download
https://red.uao.edu.co/bitstreams/d8b3d256-a637-449e-aee2-94576a908a9c/download
https://red.uao.edu.co/bitstreams/c99a682d-08c8-40b1-85e0-612c8ae137ec/download
https://red.uao.edu.co/bitstreams/c6833cf4-6a9c-4746-a1e1-9fdbe31899b9/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
298c6e5aa1f431de06f7c832257f2956
dc69ee85f8e095d0e8bebb4634eb752f
e7ec2325fdf5faadb8cd80bbc7448bfe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259997510467584
spelling Muñoz-Vélez, Mario F.5fc9d2c061f5942ee756a7ac917fc473Mina Hernández, José Herminsul0979fc3b30b6ce602bc72d24d90d7258Hidalgo Salazar, Miguel Ángelvirtual::2131-1Polymers2021-11-16T21:22:10Z2021-11-16T21:22:10Z201820734360https://hdl.handle.net/10614/13444This work presents the physical-thermal and mechanical characterization of a low-density polyethylene (LDPE)-Al matrix composite material that was obtained from reinforcing recycled (post-consumer) long-life Tetra Pak packages with fique natural fibers from southwestern Colombia. The fique was subjected to three chemical treatments to modify its surface (alkalinization, silanization and pre-impregnation with polyethylene) to increase the quality of its interfaces. Additionally, panels with 10%, 20%, and 30% v/v of fiber were manufactured by the hot compression molding. The mechanical properties of the different composite materials showed that the preimpregnation treatment promoted a significant increase in the tensile and flexural properties with respect to the fiber-reinforced composite without surface modification. Additionally, in materials with 30% fibers that were treated with pre-impregnation, there was a decrease in the water absorption capacity of 53.15% when compared to composites made with 30% native fibers. Finally, increases in the fiber content mainly caused better mechanical performances, which increased as a direct function of the amount of fique incorporated14 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos Reservados PolymersDerechos reservados - MDPI, 2018https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique compositeArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Materiales compuestosComposite materialsCompositeLDPENatural fibersPhysico-mechanical propertiesThermal propertiesSurface modification1410110Muñoz Vélez, M. F., Hidalgo Salazar, M. A., Mina Hernández J. H. (2018). Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-al/fique composite. Polymers. (Vol. 10 (10), pp. 1-14. https://doi.org/10.3390/polym10101050Polymers1. Hidalgo, M.H.; Muñoz, M.F.; Quintana, K.J. Mechanical behavior of polyethylene aluminum composite reinforced with continuous agro fique fibers. Rev. Latinoam. Metal. Mater. 2011, 31, 187–194.2. Hidalgo, M.H.; Muñoz, M.F.; Quintana, K.J. Mechanical analysis of polyethylene aluminum composite reinforced with short fique fibers available a in two-dimensional arrangement. Rev. Latinoam. Metal. Mater. 2012, 32, 89–95.3. Valadez-González, A.; Cervantes-Uc, J.M.; Olayo, R.; Herrera-Franco, P.J. Chemical modification of henequén fibers with an organosilane coupling agent. Compos. Part B Eng. 1999, 30, 321–331. [CrossRef]4. Monteiro, S.N.; Salgado de Assis, F.; Ferreira, C.L.; Simonassi, N.T.;Weber, R.P.; Oliveira, M.S.; Colorado, H.A.; Pereira, A.C. Fique fabric: A promising reinforcement for polymer composites. Polymers 2018, 10, 246. [CrossRef]5. Neves, A. The recycling of Tetra Pak packages. O Papel 1999, 53, 24–31.6. Mourad, A.L.; Garcia, E.C.; Von Zuben, F. Influence of recycling rate increase of aseptic carton for long-life milk on GWP reduction. Resour. Conserv. Recycl. 2008, 52, 678–689. [CrossRef]7. Hidalgo, M.A.; Mina, J.H.; Herrera, P.H. The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials. Compos. Part B Eng. 2013, 55, 345–351. [CrossRef]8. Hidalgo, M.H.; Muñoz, M.F.; Mina, J.H. Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. Int. J. Polym. Sci. 2015, 2015, 386325. [CrossRef]9. Muñoz, M.F.; Hidalgo, M.A.; Mina, J.H. Fique fiber an alternative for reinforced plastics. Influence of surface modification. Biotecnol. Sect. Agropecu. Agroind. 2014, 12, 60–70.10. Wang, F.; Zhou, S.; Yang, M.; Chen, Z.; Ran, S. Thermo-Mechanical Performance of Polylactide Composites Reinforced with Alkali-Treated Bamboo Fibers. Polymers 2018, 10, 401. [CrossRef]11. Herrera, P.J.; Valadez, A. Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 339–345. [CrossRef]12. Habibi, Y.; El-Zawawy, W.; Ibrahim, M.; Dufresne, A. Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Compos. Sci. Technol. 2008, 68, 1877–1885. [CrossRef]13. Rigdahl, M.; Westerlind, B.; Hollmark, H.; De Ruvo, A. Introduction of polymers into fibrous structures by solution impregnation. J. Appl. Polym. Sci. 1983, 28, 1599–1611. [CrossRef]14. Herrera-Franco, P.J.; Valadez-González, A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 2005, 36, 597–608. [CrossRef]15. Lopes, C.; Felisberti, M.I. Composite of low-density polyethylene and aluminum obtained from the recycling of postconsumer aseptic packaging. J. Appl. Polym. Sci. 2006, 101, 3183–3191. [CrossRef]16. Valadez, A. Effect of Surface Treatment of Henequen Fibers on the Fiber-Matrix Interfacial Resistance and on the Effective Properties of Thermoplastic Composite Materials. Ph.D. Thesis, Universidad Autónoma Metropolitana, Mexico City, Mexico, 1999.17. Gañan, P.; Mondragon, I. Surface modification of fique fibers. Effects on their physico-mechanical properties. Polym. Compos. 2002, 23, 383–394. [CrossRef]18. Saldarriaga, J.; Cruz, J.; Gañan, P. Behavior to hydrolysis of epoxy matrix composites and Colombian fibers. Rev. Investig. Apl. 2007, 1, 39–45.19. Vallejos, M.E. Integral Use of Cannabis Sativa as Reinforcement/Load Material of Polypropylene. Ph.D. Thesis, Universitat de Girona, Girona, Spain, 2006.20. Wang, W.; Saind, M.; Cooper, P.A. Study of moisture absorption in natural fiber plastics composites. Compos. Sci. Technol. 2006, 66, 379–386. [CrossRef]21. Leal, S.; Fonseca, E.; Ferreira, C.; Bohrz, S. Studies on the properties of rice-husk-filled-PP composites: Effect of maleated PP. Mater. Res. 2009, 12, 333–338. [CrossRef]22. Tajeddin, B.; Rahman, R.; Abdulah, L.; Ibrahim, N.; Yusof, Y. Thermal properties of low density polyethylene-filled kenaf cellulose composites. Eur. J. Sci. Res. 2009, 32, 223–230. [CrossRef]23. Zhang, K.; Wang, F.; Liang, W.; Wang, Z.; Duan, Z.; Yang, B. Thermal and Mechanical Properties of Bamboo Fiber Reinforced Epoxy Composites. Polymers 2018, 10, 608. [CrossRef]24. Stamboulis, A.; Baillie, C.; Schulz, E. Interfacial characterization of flax fibre-thermoplastic polymer composites by the pull-out test. Macromol. Mater. Eng. 1999, 272, 117–120. [CrossRef]25. Gañán, P.; Mondragon, I. Thermal and degradation behavior of fique fiber reinforced thermoplastic matrix composites. J. Therm. Anal. Calorim. 2003, 73, 783–795. [CrossRef]26. Mtshali, T.N.; Krupa, I.; Luyt, A.S. The effect of cross-linking on termal properties of LDPE/wax blends. Thermochim. Acta 2001, 380, 47–54. [CrossRef]27. Fu, Q.; Men, Y.; Strobl, G. Understanding of the tensile deformation in HDPE/LDPE blends based on their crystal structure and phase morphology. Polymer 2003, 44, 1927–1933. [CrossRef]28. Desiderá, C. Blends of Recycled Polyamide and Polyethylene from Multi-Layer Packages. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2007.29. Aht-Ong, D.; Charoenkongthum, K. Thermal properties and moisture absorption of LDPE/banana starch biocomposite films. J. Met. Mater. Miner. 2002, 12, 1–10.30. Amash, A.; Zugenmaier, P. Morphology and properties of isotropic and oriented samples of cellulose fibre-polypropylene composites. Polymer 2000, 41, 1589–1596. [CrossRef]GeneralPublication00f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2131-100f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2131-1https://scholar.google.es/citations?user=OTNvAeoAAAAJ&hl=esvirtual::2131-10000-0002-6907-2091virtual::2131-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143936virtual::2131-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/cdeedffa-a5c3-4ee8-9982-15de9cfa8aec/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALEffect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-alfique composite.pdfEffect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-alfique composite.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf605347https://red.uao.edu.co/bitstreams/d8b3d256-a637-449e-aee2-94576a908a9c/download298c6e5aa1f431de06f7c832257f2956MD53TEXTEffect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-alfique composite.pdf.txtEffect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-alfique composite.pdf.txtExtracted texttext/plain56815https://red.uao.edu.co/bitstreams/c99a682d-08c8-40b1-85e0-612c8ae137ec/downloaddc69ee85f8e095d0e8bebb4634eb752fMD54THUMBNAILEffect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-alfique composite.pdf.jpgEffect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-alfique composite.pdf.jpgGenerated Thumbnailimage/jpeg14974https://red.uao.edu.co/bitstreams/c6833cf4-6a9c-4746-a1e1-9fdbe31899b9/downloade7ec2325fdf5faadb8cd80bbc7448bfeMD5510614/13444oai:red.uao.edu.co:10614/134442024-03-06 09:43:26.273https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados Polymersopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K