Correlation-boosted quantum engine: A proof-of principle demonstration

Employing currently available quantum technology, we design and implement a nonclassically correlated SWAP heat engine that allows to achieve an efficiency above the standard Carnot limit. Such an engine also boosts the amount of extractable work, in a wider parameter window, with respect to engine’...

Full description

Autores:
Herrera Trujillo, Alba Marcela
Reina, John H.
D'Amico, Irene
Serra, Roberto M.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/15866
Acceso en línea:
https://hdl.handle.net/10614/15866
https://red.uao.edu.co/
Palabra clave:
Rights
openAccess
License
Derechos reservados - American Physical Society, 2023
id REPOUAO2_27accfee7a9fbd56ddd51d6a29ef0aec
oai_identifier_str oai:red.uao.edu.co:10614/15866
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Correlation-boosted quantum engine: A proof-of principle demonstration
title Correlation-boosted quantum engine: A proof-of principle demonstration
spellingShingle Correlation-boosted quantum engine: A proof-of principle demonstration
title_short Correlation-boosted quantum engine: A proof-of principle demonstration
title_full Correlation-boosted quantum engine: A proof-of principle demonstration
title_fullStr Correlation-boosted quantum engine: A proof-of principle demonstration
title_full_unstemmed Correlation-boosted quantum engine: A proof-of principle demonstration
title_sort Correlation-boosted quantum engine: A proof-of principle demonstration
dc.creator.fl_str_mv Herrera Trujillo, Alba Marcela
Reina, John H.
D'Amico, Irene
Serra, Roberto M.
dc.contributor.author.none.fl_str_mv Herrera Trujillo, Alba Marcela
Reina, John H.
D'Amico, Irene
Serra, Roberto M.
description Employing currently available quantum technology, we design and implement a nonclassically correlated SWAP heat engine that allows to achieve an efficiency above the standard Carnot limit. Such an engine also boosts the amount of extractable work, in a wider parameter window, with respect to engine’s cycle in the absence of initial quantum correlations in the working substance. The boosted efficiency arises from a trade-off between the entropy production and the consumption of quantum correlations during the full thermodynamic cycle. We derive a generalized second-law limit for the correlated cycle and implement a proof-of-principle demonstration of the engine efficiency enhancement by effectively tailoring the thermal engine on a cloud quantum processors
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-10-15T20:15:36Z
dc.date.available.none.fl_str_mv 2024-10-15T20:15:36Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Herrera Trujillo, A. M.; Reina, J. H.; D'Amico, I. y Serra, R. M. (2023). Correlation-boosted quantum engine: A proof-of principle demonstration. Physical review research. volumen 5. 11 p. DOI:https://doi.org/10.1103/PhysRevResearch.5.043104
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15866
dc.identifier.doi.spa.fl_str_mv DOI:https://doi.org/10.1103/PhysRevResearch.5.043104
dc.identifier.eissn.spa.fl_str_mv 26431564
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Herrera Trujillo, A. M.; Reina, J. H.; D'Amico, I. y Serra, R. M. (2023). Correlation-boosted quantum engine: A proof-of principle demonstration. Physical review research. volumen 5. 11 p. DOI:https://doi.org/10.1103/PhysRevResearch.5.043104
DOI:https://doi.org/10.1103/PhysRevResearch.5.043104
26431564
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/15866
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 5
dc.relation.ispartofjournal.eng.fl_str_mv Physical review research
dc.relation.references.none.fl_str_mv [1] Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (Springer International, Cham, Swtizerland, 2018).
[2] S. Deffner and S. Campbell, Quantum Thermodynamics - An Introduction to the Thermodynamics of Quantum Information (Morgan & Claypool, San Rafael, CA, 2019).
[3] R. Kosloff, Quantum thermodynamics: A dynamical viewpoint, Entropy 15, 2100 (2013).
[4] J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk, The role of quantum information in thermodynamics - a topical review, J. Phys. A: Math. Theor. 49, 143001 (2016).
[5] S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemp. Phys. 57, 545 (2016).
[6] F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, The second laws of quantum thermodynamics, Proc. Natl. Acad. Sci. USA 112, 3275 (2015).
[7] G. E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E 60, 2721 (1999).
[8] C. Jarzynski, Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 78, 2690 (1997).
[9] M. Esposito, U. Harbola and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys. 81, 1665 (2009).
[10] M. Campisi, P. Hänggi, and P. Talkner, Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83, 771 (2011).
[11] M. Herrera, J. P. S. Peterson, R. M. Serra, and I. D’Amico, Easy access to energy fluctuations in nonequilibrium quantum manybody systems, Phys. Rev. Lett. 127, 030602 (2021).
[12] A. Auffèves, Quantum technologies need a quantum energy initiative, Phys. Rev. X Quantum 3, 020101 (2022).
[13] T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz, and H. E. Gaub, Single-molecule optomechanical cycle, Science 296, 1103 (2002).
[14] P. G. Steeneken, K. Le Phan, M. J. Goossens, G. E. J. Koops, G. J. A. M. Brom, C. van der Avoort, and J. T. M. van Beek, Piezoresistive heat engine and refrigerator, Nat. Phys. 7, 354 (2011).
[15] V. Blickle and C. Bechinger, Realization of a micrometresized stochastic heat engine, Nat. Phys. 8, 143 (2012).
[16] J.-P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner, C. Kollath, T. Esslinger, and A. Georges, A thermoelectric heat engine with ultracold atoms, Science 342, 713 (2013).
[17] J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, and E. Lutz, Nanoscale heat engine beyond the carnot limit, Phys. Rev. Lett. 112, 030602 (2014).
[18] H. Thierschmann, R. Sánchez, B. Sothmann, F. Arnold, C. Heyn, W. Hansen, H. Buhmann, and L. W. Molenkamp, Threeterminal energy harvester with coupled quantum dots, Nat. Nanotechnol. 10, 854 (2015).
[19] J. Roßsnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, and K. Singer, A single-atom heat engine, Science 352, 325 (2016).
[20] F. Schmidt, A. Magazzú, A. Callegari, L. Biancofiore, F. Cichos, and G. Volpe, Microscopic engine powered by critical demixing, Phys. Rev. Lett. 120, 068004 (2018).
[21] Y. Zou, Y. Jiang, Y. Mei, X. Guo, and S. Du, Quantum heat engine using electromagnetically induced transparency, Phys. Rev. Lett. 119, 050602 (2017).
[22] R. J. de Assis, T. M. de Mendonça, C. J. Villas-Boas, A. M. de Souza, R. S. Sarthour, I. S. Oliveira and N. G. de Almeida, Efficiency of a quantum otto heat engine operating under a reservoir at effective negative temperatures, Phys. Rev. Lett. 122, 240602 (2019).
[23] J. Klatzow, J. Becker, P. Ledingham, C. Weinzetl, K. Kaczmarek, D. Saunders, J. Nunn, I. Walmsley, R. Uzdin, E. Poem, Experimental demonstration of quantum effects in the operation of microscopic heat engines, Phys. Rev. Lett. 122, 110601 (2019).
[24] J. P. S. Peterson, T. B. Batalhão, M. Herrera, A. M. Souza, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Experimental characterization of a spin quantum heat engine, Phys. Rev. Lett. 123, 240601 (2019).
[25] T. Denzler, J. F. G. Santos, E. Lutz, and R. M. Serra, Nonequilibrium fluctuations of a quantum heat engine, arXiv:2104.13427 v1.
[26] A. Solfanelli, A. Santini, and M. Campisi, Experimental verification of fluctuation relations with a quantum computer, PRX Quantum 2, 030353 (2021).
[27] N. M. Myers, O. Abah, and S. Deffner, Quantum thermodynamic devices: From theoretical proposals to experimental reality, AVS Quantum Sci. 4, 027101 (2022).
[28] G. Lebon, D. Jou, and J. Casas-Vázques, Understanding Non-Equilibrium Thermodynamics: Foundations, Applications, Frontiers (Springer-Verlag, Berlin, 2008).
[29] T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S. Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, and R. M. Serra, Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system, Phys. Rev. Lett. 113, 140601 (2014).
[30] T. B. Batalhão, A. M. Souza, R. S. Sarthour, I. S. Oliveira, M. Paternostro, E. Lutz, and R. M. Serra, Irreversibility and the arrow of time in a quenched quantum system, Phys. Rev. Lett. 115, 190601 (2015).
[31] P. A. Camati, J. P. S. Peterson, T. B. Batalhão, K. Micadei, A. M. Souza, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Experimental rectification of entropy production by Maxwell’s demon in a quantum system, Phys. Rev. Lett. 117, 240502 (2016).
[32] G. T. Landi andM. Paternostro, Irreversible entropy production: From classical to quantum, Rev. Mod. Phys. 93, 035008 (2021).
[33] U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).
[34] I. A. Martínez, E. Roldan, L. Dinis, D. Petrov, J. M. R. Parrondo, and R. A. Rica, Brownian Carnot engine, Nat. Phys. 12, 67 (2016).
[35] M. N. Bera, A. Riera, M. Lewenstein, and A. Winter, Generalized laws of thermodynamics in the presence of correlations, Nat. Commun. 8, 2180 (2017).
[36] A. F. Ducuara, C. E. Susa, and J. H. Reina, Emergence of maximal hidden quantum correlations and its trade-off with the filtering probability in dissipative two-qubit systems, Phys. A: Stat. Mech. App. 594, 127035 (2022).
[37] F. Sapienza, F. Cerisola, and A. J. Roncaglia, Correlations as a resource in quantum thermodynamics, Nat. Commun. 10, 2492 (2019).
[38] C. A. Melo-Luna, C. E. Susa, A. F. Ducuara, A. Barreiro, and J. H. Reina, Quantum locality in game strategy, Sci. Rep. 7, 44730 (2017).
[39] K. Zawadzki, R. M. Serra, and I. D’Amico, Work-distribution quantumness and irreversibility when crossing a quantum phase transition in finite time, Phys. Rev. Res. 2, 033167 (2020).
[40] C. I. Henao and R. M. Serra, Role of quantum coherence in the thermodynamics of energy transfer, Phys. Rev. E 97, 062105 (2018).
[41] K. Micadei, J. P. S. Peterson, A. M. Souza, R. S. Sarthour, I. S. Oliveira, G. T. Landi, T. B. Batalhão, R. M. Serra, and E. Lutz, Reversing the direction of heat flow using quantum correlations, Nat. Commun. 10, 2456 (2019).
[42] B. S. Revathy, V. Mukherjee, U. Divakaran, and A. del Campo, Universal finite-time thermodynamics of many-body quantum machines from Kibble-Zurek scaling, Phys. Rev. Res. 2, 043247 (2020).
[43] B. P. Venkatesh, P. Talkner, M.-J. Hwang, and A. del Campo, Quantum statistical enhancement of the collective performance of multiple bosonic engines, Phys. Rev. Lett. 124, 210603 (2020).
[44] V. Mukherjee and U. Divakaran, Many-body quantum thermal machines, J. Phys.: Condens. Matter 33, 454001 (2021).
[45] M. Asadian, S. Ahadpour, and F. Mirmasoudi, Quantum correlated heat engine in XY chain with Dzyaloshinskii-Moriya interactions, Sci. Rep. 12, 7081 (2022).
[46] A. de Oliveira Junior and M. C. de Oliveira, Unravelling the non-classicality role in Gaussian heat engines, Sci. Rep. 12, 10412 (2022).
[47] P. A. Camati, J. F. G. Santos, and R. M. Serra, Coherence effects in the performance of the quantum Otto heat engine, Phys. Rev. A 99, 062103 (2019).
[48] G. Francica, J. Goold, and F. Plastina, The role of coherence in the non-equilibrium thermodynamics of quantum systems, Phys. Rev. E 99, 042105 (2019).
[49] J. P. Santos, L. C. Céleri, G. T. Landi, and M. Paternostro, The role of quantum coherence in non-equilibrium entropy production, npj Quantum Inf. 5, 23 (2019).
[50] J. J. Alonso, E. Lutz, and A. Romito, Thermodynamics of weakly measured quantum systems, Phys. Rev. Lett. 116, 080403 (2016).
[51] X. Ding, J. Yi, Y. W. Kim, and P. Talkner, Measurement driven single temperature engine, Phys. Rev. E 98, 042122 (2018).
[52] L. Bresque, P. A. Camati, S. Rogers, K. Murch, A. N. Jordan, and A. Auff’eves, Two-qubit engine fueled by entanglement and local measurements, Phys. Rev. Lett. 126, 120605 (2021).
[53] L. Buffoni, A. Solfanelli, P. Verrucchi, A. Cuccoli, and M. Campisi, Quantum measurement cooling, Phys. Rev. Lett. 122, 070603 (2019).
[54] C. Elouard and A. N. Jordan, Efficient quantum measurement engines, Phys. Rev. Lett. 120, 260601 (2018).
[55] M. F. Anka, T. R. de Oliveira, and D. Jonathan, Measurementbased quantum heat engine in a multilevel system, Phys. Rev. E 104, 054128 (2021).
[56] V. F. Lisboa, P. R. Dieguez, J. R. Guimarães, J. F. G. Santos, and R. M. Serra, Experimental investigation of a quantum heat engine powered by generalized measurements, Phys. Rev. A 106, 022436 (2022).
[57] G. Rubino, G. Manzano, and C. Brukner, Quantum superposition of thermodynamic evolutions with opposing time’s arrows, Commun. Phys. 4, 251 (2021).
[58] D. Felce and V. Vedral, Quantum refrigeration with indefinite causal order, Phys. Rev. Lett. 125, 070603 (2020).
[59] H. Cao, N.-n. Wang, Z.-A. Jia, C. Zhang, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, Quantum simulation of indefinite causal order induced quantum refrigeration, Phys. Rev. Res. 4, L032029 (2022).
[60] D. Felce, V. Vedral, and F. Tennie, Refrigeration with indefinite causal orders on a cloud quantum computer, arXiv:2107.12413.
[61] K. Simonov, G. Francica, G. Guarnieri, and M. Paternostro, Work extraction from coherently activated maps via quantum switch, Phys. Rev. A 105, 032217 (2022).
[62] P. R. Dieguez, V. F. Lisboa, and R. M. Serra, Thermal devices powered by generalized measurements with indefinite causal order, Phys. Rev. A 107, 012423 (2023).
[63] IBM Quantum. https://quantum-computing.ibm.com/ (2022).
[64] M. Campisi, J. Pekola and R. Fazio, Nonequilibrium fluctuations in quantum heat engines: Theory, example, and possible solid state experiments, New J. Phys. 17, 035012 (2015).
[65] A. M. Timpanaro, G. Guarnieri, J. Goold, and G. T. Landi, Thermodynamic uncertainty relations from exchange fluctuation theorems, Phys. Rev. Lett. 123, 090604 (2019).
[66] At this point, we note note that non-classical correlations could be provided in various ways, e.g., by cooling an interacting many-body fluid to its ground/low-energy state with related creation of (thermal) entanglement. This kind of non-classical correlations which are present in many-body thermal states could be used in further applications to obtain some quantum advantage in thermal protocols.
[67] H. Ollivier and W. H. Zurek, Quantum discord: A measure of the quantumness of correlations, Phys. Rev. Lett. 88, 017901 (2001).
[68] QISKIT tomography. https://ignis.verification.tomography.
[69] B. Daki´c, V. Vedral, and ˇc. Brukner, Necessary and sufficient condition for nonzero quantum discord, Phys. Rev. Lett. 105, 190502 (2010).
[70] D. Girolami, and G. Adesso, Observable measure of bipartite quantum correlations, Phys. Rev. Lett. 108, 150403 (2012).
dc.rights.eng.fl_str_mv Derechos reservados - American Physical Society, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - American Physical Society, 2023
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv American Physical Society
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/fb9c79b1-1355-43f5-84ee-e92ffe15e12b/download
https://red.uao.edu.co/bitstreams/01acaee9-0a26-46c6-a723-612e49c21bbb/download
https://red.uao.edu.co/bitstreams/5a178c2c-bff0-4a9f-b930-9f4250138a37/download
https://red.uao.edu.co/bitstreams/486924c5-7992-4f23-81de-f4fb07db4913/download
bitstream.checksum.fl_str_mv a6a940b3dacd5a4499335570331ba18a
6987b791264a2b5525252450f99b10d1
a428eb9407d3dcc5b2b2433831a933e6
d04a25ca6f50fb0acc552c58518d3fab
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259837964386304
spelling Herrera Trujillo, Alba Marcelavirtual::5734-1Reina, John H.D'Amico, IreneSerra, Roberto M.2024-10-15T20:15:36Z2024-10-15T20:15:36Z2023Herrera Trujillo, A. M.; Reina, J. H.; D'Amico, I. y Serra, R. M. (2023). Correlation-boosted quantum engine: A proof-of principle demonstration. Physical review research. volumen 5. 11 p. DOI:https://doi.org/10.1103/PhysRevResearch.5.043104https://hdl.handle.net/10614/15866DOI:https://doi.org/10.1103/PhysRevResearch.5.04310426431564Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Employing currently available quantum technology, we design and implement a nonclassically correlated SWAP heat engine that allows to achieve an efficiency above the standard Carnot limit. Such an engine also boosts the amount of extractable work, in a wider parameter window, with respect to engine’s cycle in the absence of initial quantum correlations in the working substance. The boosted efficiency arises from a trade-off between the entropy production and the consumption of quantum correlations during the full thermodynamic cycle. We derive a generalized second-law limit for the correlated cycle and implement a proof-of-principle demonstration of the engine efficiency enhancement by effectively tailoring the thermal engine on a cloud quantum processors11 páginasapplication/pdfengAmerican Physical SocietyDerechos reservados - American Physical Society, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Correlation-boosted quantum engine: A proof-of principle demonstrationArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a851115Physical review research[1] Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (Springer International, Cham, Swtizerland, 2018).[2] S. Deffner and S. Campbell, Quantum Thermodynamics - An Introduction to the Thermodynamics of Quantum Information (Morgan & Claypool, San Rafael, CA, 2019).[3] R. Kosloff, Quantum thermodynamics: A dynamical viewpoint, Entropy 15, 2100 (2013).[4] J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk, The role of quantum information in thermodynamics - a topical review, J. Phys. A: Math. Theor. 49, 143001 (2016).[5] S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemp. Phys. 57, 545 (2016).[6] F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, The second laws of quantum thermodynamics, Proc. Natl. Acad. Sci. USA 112, 3275 (2015).[7] G. E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E 60, 2721 (1999).[8] C. Jarzynski, Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 78, 2690 (1997).[9] M. Esposito, U. Harbola and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys. 81, 1665 (2009).[10] M. Campisi, P. Hänggi, and P. Talkner, Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83, 771 (2011).[11] M. Herrera, J. P. S. Peterson, R. M. Serra, and I. D’Amico, Easy access to energy fluctuations in nonequilibrium quantum manybody systems, Phys. Rev. Lett. 127, 030602 (2021).[12] A. Auffèves, Quantum technologies need a quantum energy initiative, Phys. Rev. X Quantum 3, 020101 (2022).[13] T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz, and H. E. Gaub, Single-molecule optomechanical cycle, Science 296, 1103 (2002).[14] P. G. Steeneken, K. Le Phan, M. J. Goossens, G. E. J. Koops, G. J. A. M. Brom, C. van der Avoort, and J. T. M. van Beek, Piezoresistive heat engine and refrigerator, Nat. Phys. 7, 354 (2011).[15] V. Blickle and C. Bechinger, Realization of a micrometresized stochastic heat engine, Nat. Phys. 8, 143 (2012).[16] J.-P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner, C. Kollath, T. Esslinger, and A. Georges, A thermoelectric heat engine with ultracold atoms, Science 342, 713 (2013).[17] J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, and E. Lutz, Nanoscale heat engine beyond the carnot limit, Phys. Rev. Lett. 112, 030602 (2014).[18] H. Thierschmann, R. Sánchez, B. Sothmann, F. Arnold, C. Heyn, W. Hansen, H. Buhmann, and L. W. Molenkamp, Threeterminal energy harvester with coupled quantum dots, Nat. Nanotechnol. 10, 854 (2015).[19] J. Roßsnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, and K. Singer, A single-atom heat engine, Science 352, 325 (2016).[20] F. Schmidt, A. Magazzú, A. Callegari, L. Biancofiore, F. Cichos, and G. Volpe, Microscopic engine powered by critical demixing, Phys. Rev. Lett. 120, 068004 (2018).[21] Y. Zou, Y. Jiang, Y. Mei, X. Guo, and S. Du, Quantum heat engine using electromagnetically induced transparency, Phys. Rev. Lett. 119, 050602 (2017).[22] R. J. de Assis, T. M. de Mendonça, C. J. Villas-Boas, A. M. de Souza, R. S. Sarthour, I. S. Oliveira and N. G. de Almeida, Efficiency of a quantum otto heat engine operating under a reservoir at effective negative temperatures, Phys. Rev. Lett. 122, 240602 (2019).[23] J. Klatzow, J. Becker, P. Ledingham, C. Weinzetl, K. Kaczmarek, D. Saunders, J. Nunn, I. Walmsley, R. Uzdin, E. Poem, Experimental demonstration of quantum effects in the operation of microscopic heat engines, Phys. Rev. Lett. 122, 110601 (2019).[24] J. P. S. Peterson, T. B. Batalhão, M. Herrera, A. M. Souza, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Experimental characterization of a spin quantum heat engine, Phys. Rev. Lett. 123, 240601 (2019).[25] T. Denzler, J. F. G. Santos, E. Lutz, and R. M. Serra, Nonequilibrium fluctuations of a quantum heat engine, arXiv:2104.13427 v1.[26] A. Solfanelli, A. Santini, and M. Campisi, Experimental verification of fluctuation relations with a quantum computer, PRX Quantum 2, 030353 (2021).[27] N. M. Myers, O. Abah, and S. Deffner, Quantum thermodynamic devices: From theoretical proposals to experimental reality, AVS Quantum Sci. 4, 027101 (2022).[28] G. Lebon, D. Jou, and J. Casas-Vázques, Understanding Non-Equilibrium Thermodynamics: Foundations, Applications, Frontiers (Springer-Verlag, Berlin, 2008).[29] T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S. Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, and R. M. Serra, Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system, Phys. Rev. Lett. 113, 140601 (2014).[30] T. B. Batalhão, A. M. Souza, R. S. Sarthour, I. S. Oliveira, M. Paternostro, E. Lutz, and R. M. Serra, Irreversibility and the arrow of time in a quenched quantum system, Phys. Rev. Lett. 115, 190601 (2015).[31] P. A. Camati, J. P. S. Peterson, T. B. Batalhão, K. Micadei, A. M. Souza, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Experimental rectification of entropy production by Maxwell’s demon in a quantum system, Phys. Rev. Lett. 117, 240502 (2016).[32] G. T. Landi andM. Paternostro, Irreversible entropy production: From classical to quantum, Rev. Mod. Phys. 93, 035008 (2021).[33] U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).[34] I. A. Martínez, E. Roldan, L. Dinis, D. Petrov, J. M. R. Parrondo, and R. A. Rica, Brownian Carnot engine, Nat. Phys. 12, 67 (2016).[35] M. N. Bera, A. Riera, M. Lewenstein, and A. Winter, Generalized laws of thermodynamics in the presence of correlations, Nat. Commun. 8, 2180 (2017).[36] A. F. Ducuara, C. E. Susa, and J. H. Reina, Emergence of maximal hidden quantum correlations and its trade-off with the filtering probability in dissipative two-qubit systems, Phys. A: Stat. Mech. App. 594, 127035 (2022).[37] F. Sapienza, F. Cerisola, and A. J. Roncaglia, Correlations as a resource in quantum thermodynamics, Nat. Commun. 10, 2492 (2019).[38] C. A. Melo-Luna, C. E. Susa, A. F. Ducuara, A. Barreiro, and J. H. Reina, Quantum locality in game strategy, Sci. Rep. 7, 44730 (2017).[39] K. Zawadzki, R. M. Serra, and I. D’Amico, Work-distribution quantumness and irreversibility when crossing a quantum phase transition in finite time, Phys. Rev. Res. 2, 033167 (2020).[40] C. I. Henao and R. M. Serra, Role of quantum coherence in the thermodynamics of energy transfer, Phys. Rev. E 97, 062105 (2018).[41] K. Micadei, J. P. S. Peterson, A. M. Souza, R. S. Sarthour, I. S. Oliveira, G. T. Landi, T. B. Batalhão, R. M. Serra, and E. Lutz, Reversing the direction of heat flow using quantum correlations, Nat. Commun. 10, 2456 (2019).[42] B. S. Revathy, V. Mukherjee, U. Divakaran, and A. del Campo, Universal finite-time thermodynamics of many-body quantum machines from Kibble-Zurek scaling, Phys. Rev. Res. 2, 043247 (2020).[43] B. P. Venkatesh, P. Talkner, M.-J. Hwang, and A. del Campo, Quantum statistical enhancement of the collective performance of multiple bosonic engines, Phys. Rev. Lett. 124, 210603 (2020).[44] V. Mukherjee and U. Divakaran, Many-body quantum thermal machines, J. Phys.: Condens. Matter 33, 454001 (2021).[45] M. Asadian, S. Ahadpour, and F. Mirmasoudi, Quantum correlated heat engine in XY chain with Dzyaloshinskii-Moriya interactions, Sci. Rep. 12, 7081 (2022).[46] A. de Oliveira Junior and M. C. de Oliveira, Unravelling the non-classicality role in Gaussian heat engines, Sci. Rep. 12, 10412 (2022).[47] P. A. Camati, J. F. G. Santos, and R. M. Serra, Coherence effects in the performance of the quantum Otto heat engine, Phys. Rev. A 99, 062103 (2019).[48] G. Francica, J. Goold, and F. Plastina, The role of coherence in the non-equilibrium thermodynamics of quantum systems, Phys. Rev. E 99, 042105 (2019).[49] J. P. Santos, L. C. Céleri, G. T. Landi, and M. Paternostro, The role of quantum coherence in non-equilibrium entropy production, npj Quantum Inf. 5, 23 (2019).[50] J. J. Alonso, E. Lutz, and A. Romito, Thermodynamics of weakly measured quantum systems, Phys. Rev. Lett. 116, 080403 (2016).[51] X. Ding, J. Yi, Y. W. Kim, and P. Talkner, Measurement driven single temperature engine, Phys. Rev. E 98, 042122 (2018).[52] L. Bresque, P. A. Camati, S. Rogers, K. Murch, A. N. Jordan, and A. Auff’eves, Two-qubit engine fueled by entanglement and local measurements, Phys. Rev. Lett. 126, 120605 (2021).[53] L. Buffoni, A. Solfanelli, P. Verrucchi, A. Cuccoli, and M. Campisi, Quantum measurement cooling, Phys. Rev. Lett. 122, 070603 (2019).[54] C. Elouard and A. N. Jordan, Efficient quantum measurement engines, Phys. Rev. Lett. 120, 260601 (2018).[55] M. F. Anka, T. R. de Oliveira, and D. Jonathan, Measurementbased quantum heat engine in a multilevel system, Phys. Rev. E 104, 054128 (2021).[56] V. F. Lisboa, P. R. Dieguez, J. R. Guimarães, J. F. G. Santos, and R. M. Serra, Experimental investigation of a quantum heat engine powered by generalized measurements, Phys. Rev. A 106, 022436 (2022).[57] G. Rubino, G. Manzano, and C. Brukner, Quantum superposition of thermodynamic evolutions with opposing time’s arrows, Commun. Phys. 4, 251 (2021).[58] D. Felce and V. Vedral, Quantum refrigeration with indefinite causal order, Phys. Rev. Lett. 125, 070603 (2020).[59] H. Cao, N.-n. Wang, Z.-A. Jia, C. Zhang, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, Quantum simulation of indefinite causal order induced quantum refrigeration, Phys. Rev. Res. 4, L032029 (2022).[60] D. Felce, V. Vedral, and F. Tennie, Refrigeration with indefinite causal orders on a cloud quantum computer, arXiv:2107.12413.[61] K. Simonov, G. Francica, G. Guarnieri, and M. Paternostro, Work extraction from coherently activated maps via quantum switch, Phys. Rev. A 105, 032217 (2022).[62] P. R. Dieguez, V. F. Lisboa, and R. M. Serra, Thermal devices powered by generalized measurements with indefinite causal order, Phys. Rev. A 107, 012423 (2023).[63] IBM Quantum. https://quantum-computing.ibm.com/ (2022).[64] M. Campisi, J. Pekola and R. Fazio, Nonequilibrium fluctuations in quantum heat engines: Theory, example, and possible solid state experiments, New J. Phys. 17, 035012 (2015).[65] A. M. Timpanaro, G. Guarnieri, J. Goold, and G. T. Landi, Thermodynamic uncertainty relations from exchange fluctuation theorems, Phys. Rev. Lett. 123, 090604 (2019).[66] At this point, we note note that non-classical correlations could be provided in various ways, e.g., by cooling an interacting many-body fluid to its ground/low-energy state with related creation of (thermal) entanglement. This kind of non-classical correlations which are present in many-body thermal states could be used in further applications to obtain some quantum advantage in thermal protocols.[67] H. Ollivier and W. H. Zurek, Quantum discord: A measure of the quantumness of correlations, Phys. Rev. Lett. 88, 017901 (2001).[68] QISKIT tomography. https://ignis.verification.tomography.[69] B. Daki´c, V. Vedral, and ˇc. Brukner, Necessary and sufficient condition for nonzero quantum discord, Phys. Rev. Lett. 105, 190502 (2010).[70] D. Girolami, and G. Adesso, Observable measure of bipartite quantum correlations, Phys. Rev. Lett. 108, 150403 (2012).Comunidad generalPublication540aafb8-df1e-4c14-9f67-021b1acf2310virtual::5734-1540aafb8-df1e-4c14-9f67-021b1acf2310virtual::5734-10000-0001-7894-9206virtual::5734-1https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001355996virtual::5734-1ORIGINALCorrelation-boosted_quantum_engine_A_proof-of_principle_demonstration.pdfCorrelation-boosted_quantum_engine_A_proof-of_principle_demonstration.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf2234939https://red.uao.edu.co/bitstreams/fb9c79b1-1355-43f5-84ee-e92ffe15e12b/downloada6a940b3dacd5a4499335570331ba18aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/01acaee9-0a26-46c6-a723-612e49c21bbb/download6987b791264a2b5525252450f99b10d1MD52TEXTCorrelation-boosted_quantum_engine_A_proof-of_principle_demonstration.pdf.txtCorrelation-boosted_quantum_engine_A_proof-of_principle_demonstration.pdf.txtExtracted texttext/plain53586https://red.uao.edu.co/bitstreams/5a178c2c-bff0-4a9f-b930-9f4250138a37/downloada428eb9407d3dcc5b2b2433831a933e6MD53THUMBNAILCorrelation-boosted_quantum_engine_A_proof-of_principle_demonstration.pdf.jpgCorrelation-boosted_quantum_engine_A_proof-of_principle_demonstration.pdf.jpgGenerated Thumbnailimage/jpeg15930https://red.uao.edu.co/bitstreams/486924c5-7992-4f23-81de-f4fb07db4913/downloadd04a25ca6f50fb0acc552c58518d3fabMD5410614/15866oai:red.uao.edu.co:10614/158662024-10-16 03:00:46.79https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - American Physical Society, 2023open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==