Effect of natural additives on concrete mechanical properties
The construction industry commonly uses steel-reinforced concrete despite the high levels of pollution in its production process. In this research, it was studied the dossing effect of nopal mucilage and Ixtle fiber as additives for the enhancement of concrete’s mechanical properties: compression st...
- Autores:
-
Gallegos Villela, Rocío Rafaela
Larrea Zambrano, Fabián D.
Goyez López, Clara Eugenia
Pérez Sánchez, Josué Francisco
Suarez Domínguez, Edgardo Jonathan
Palacio Pérez, Arturo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13770
- Acceso en línea:
- https://hdl.handle.net/10614/13770
- Palabra clave:
- Concrete with organic compounds
Nopal mucilage and Ixtle fiber
Thermal analysis
Flexural and compressive strengths
- Rights
- openAccess
- License
- Derechos Reservados Cogent Engineering
id |
REPOUAO2_269bd4ff6e4a1e5cfc8eab4cbf6b79ca |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13770 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Effect of natural additives on concrete mechanical properties |
title |
Effect of natural additives on concrete mechanical properties |
spellingShingle |
Effect of natural additives on concrete mechanical properties Concrete with organic compounds Nopal mucilage and Ixtle fiber Thermal analysis Flexural and compressive strengths |
title_short |
Effect of natural additives on concrete mechanical properties |
title_full |
Effect of natural additives on concrete mechanical properties |
title_fullStr |
Effect of natural additives on concrete mechanical properties |
title_full_unstemmed |
Effect of natural additives on concrete mechanical properties |
title_sort |
Effect of natural additives on concrete mechanical properties |
dc.creator.fl_str_mv |
Gallegos Villela, Rocío Rafaela Larrea Zambrano, Fabián D. Goyez López, Clara Eugenia Pérez Sánchez, Josué Francisco Suarez Domínguez, Edgardo Jonathan Palacio Pérez, Arturo |
dc.contributor.author.none.fl_str_mv |
Gallegos Villela, Rocío Rafaela Larrea Zambrano, Fabián D. Goyez López, Clara Eugenia Pérez Sánchez, Josué Francisco Suarez Domínguez, Edgardo Jonathan Palacio Pérez, Arturo |
dc.contributor.corporatename.spa.fl_str_mv |
Cogent Engineering |
dc.subject.proposal.eng.fl_str_mv |
Concrete with organic compounds Nopal mucilage and Ixtle fiber Thermal analysis Flexural and compressive strengths |
topic |
Concrete with organic compounds Nopal mucilage and Ixtle fiber Thermal analysis Flexural and compressive strengths |
description |
The construction industry commonly uses steel-reinforced concrete despite the high levels of pollution in its production process. In this research, it was studied the dossing effect of nopal mucilage and Ixtle fiber as additives for the enhancement of concrete’s mechanical properties: compression strength, flexural strength, heat transfer coefficient, ultrasonic pulse rate, ED-XRF, and roughness by fractal dimension analysis. It was found a remarkable improvement in mechanical properties when both natural additives are used. It was observed an increase of potassium and calcium ions concentration after additive dosing. This behavior determines the suitability of the blend for its application in the engineering and construction industry to reduce cement or steel use |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-01 |
dc.date.accessioned.none.fl_str_mv |
2022-04-19T19:23:35Z |
dc.date.available.none.fl_str_mv |
2022-04-19T19:23:35Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
23311916 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13770 |
identifier_str_mv |
23311916 |
url |
https://hdl.handle.net/10614/13770 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
8 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
8 |
dc.relation.cites.none.fl_str_mv |
Gallegos Villela, R. R., Larrea Zambrano, F. D., Goyez López, C. E., Pérez Sánchez, J. F., Suarez Domínguez, E. J., Palacio Pérez, A. (2021). Effect of natural additives on concrete mechanical properties. Cogent Engineering. Vol. 8 (1), pp. 1-8. https://www.researchgate.net/publication/348390796_Effect_of_natural_additives_on_concrete_mechanical_properties |
dc.relation.ispartofjournal.spa.fl_str_mv |
Cogent Engineering |
dc.relation.references.spa.fl_str_mv |
Alpizar-Reyes, E., Carrillo-Navas, H., Romero-Romero, R., Varela-Guerrero, V., Alvarez-Ramírez, J., & PérezAlonso, C. (2017). Thermodynamic sorption properties and glass transition temperature of tamarind seed mucilage (Tamarindus indica L.). Food and Bioproducts Processing, 101, 166–176. https://doi.org/ 10.1016/j.fbp.2016.11.006 Arreola-Nava, H. J., Cuevas-Guzmán, R., Guzmán-Hernández, L., & González-Durán, A. (2017). Opuntia setocarpa, una especie nueva de nopal del occidente de México. Revista mexicana de biodiversidad, 88(4), 792–797. https://doi.org/10.1016/j.rmb. 2017.10.028 ASTM C177-19. Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus.American Society for Testing and Materials, Subcommittee C16.30 on Thermal Measurement Binici, H., & Aksogan, O. (2018). Durability of concrete made with natural granular granite, silica sand and powders of waste marble and basalt as fine aggregate. Journal of Building Engineering, 19, 109–121. https://doi.org/10.1016/j.jobe.2018.04.022 Carrillo, C. H., Gómez-Cuaspud, J. A., & Suarez, C. M. (2017). Compositional, thermal and microstructural characterization of the Nopal (opuntia ficus indica), for addition in commercial cement mixtures. In Journal of Physics: Conference Series (Vol. 935, No. 1, p. 012045). Santa Marta, Colombia: IOP Publishing. Giada, G., Caponetto, R., & Nocera, F. (2019). Hygrothermal properties of raw earth materials: A literature review. Sustainability, 11(19), 5342. https://doi.org/10.3390/su11195342 Gunasekar, S., Ramesh, N., & Shivani, G. (2019). Effective utilisation of construction and demolition waste (Cdw) as recycled aggregate in concrete construction–a critical review. International Research Journal of Multidisciplinary Technovation, 1(6), 465–469. https://www.mapletreejournals.com/index.php/irjmt/ article/view/319 León-Martínez, F. M., Cano-Barrita, P. D. J., LagunezRivera, L., & Medina-Torres, L. (2014). Study of nopal mucilage and marine brown algae extract as viscosity-enhancing admixtures for cement-based materials. Construction and Building Materials, 53, 190–202. https://doi.org/10.1016/j.conbuildmat.2013. 11.068 Madera-Santana, T. J., Vargas-Rodríguez, L., Núñez-Colín, C. A., González-García, G., Peña-Caballero, V., NúñezGastélum, J. A., Gallegos-Vázquez, C., & RodríguezNúñez, J. R. (2018). Mucilage from cladodes of Opuntia spinulifera Salm-Dyck: Chemical, morphological, structural and thermal characterization. CyTAJournal of Food, 16(1), 650–657. https://doi.org/10. 1080/19476337.2018.1454988 McNeil, K., & Kang, T. H. K. (2013). Recycled concrete aggregates: A review. International Journal of Concrete Structures and Materials, 7(1), 61–69. https://doi.org/10.1007/s40069-013-0032-5 Mohammed, T. U., & Mahmood, A. H. (2016). Effects of maximum aggregate size on UPV of brick aggregate concrete. Ultrasonics, 69, 129–136. https://doi.org/10. 1016/j.ultras.2016.04.006 Ortega-Lerma, M., Aranda-Jiménez, Y. G., Zúñiga-Leal, C., Sánchez-Medrano, M. T., & Gallegos-Villela, R. R. (2016). Mechanical Analysis of an Ixtle Based Cable for Its Use in Architecture. IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE), 14(1), 36–38. https://doi.org/10.9790/1684-1401053638 Suárez-Domínguez, E. J., Aranda-Jiménez, Y. G., FuentesPérez, C., & Zúñiga-Leal, C. (2017a). Behavior of the heat capacity and ultrasonic characterization for poured earth. Journal of Mechanical and Civil Engineering, 14(6), 18–22. Tosun, Y., & Şahin, R. (2015). Compressive strength and capillary water absorption of concrete containing recycled aggregate. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 9(8), 987–991. Verdolotti, L., Iucolano, F., Capasso, I., Lavorgna, M., Iannace, S., & Liguori, B. (2014). Recycling and recovery of PE-PP-PET-based fiber polymeric wastes as aggregate replacement in lightweight mortar: Evaluation of environmental friendly application. Environmental Progress & Sustainable Energy, 33(4), 1445–1451. https://doi.org/10.1002/ ep.11921 Zhang, L. W., Sojobi, A. O., Kodur, V. K. R., & Liew, K. M. (2019). Effective utilization and recycling of mixed recycled aggregates for a greener environment. Journal of Cleaner Production, 236, 117600. https:// doi.org/10.1016/j.jclepro.2019.07.075 |
dc.rights.spa.fl_str_mv |
Derechos Reservados Cogent Engineering |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados Cogent Engineering https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Revista Cogent Engineering |
dc.source.spa.fl_str_mv |
https://www.researchgate.net/publication/348390796_Effect_of_natural_additives_on_concrete_mechanical_properties |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/2ab9e52a-7b26-4da4-a70d-6efa14ada646/download https://dspace7-uao.metacatalogo.com/bitstreams/095e5b24-6851-4265-b66a-27e468ba7e77/download https://dspace7-uao.metacatalogo.com/bitstreams/a696e2ac-3cf2-4d1e-ba13-b8df531471d1/download https://dspace7-uao.metacatalogo.com/bitstreams/1813def4-9605-4df2-beb2-c05f49ae3c56/download |
bitstream.checksum.fl_str_mv |
7b829e5fc779da039dc4674288474f7a 20b5ba22b1117f71589c7318baa2c560 43758580cea87ce9a1a5f9249cfe6ffd e8a8339add6607555c6506de56ada8d5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259971049652224 |
spelling |
Gallegos Villela, Rocío Rafaelac34e24a9067118e8895c35ea84f21e89Larrea Zambrano, Fabián D.e6ad3939a396129ce6fb7b1d375a9400Goyez López, Clara Eugeniad8b38300de02ec09e0f5e70680070ebbPérez Sánchez, Josué Francisco0fb0767e2ed8a8cea83dbbffc24a74f4Suarez Domínguez, Edgardo Jonathane7129cae671746a0efd7d8c94f04f3abPalacio Pérez, Arturo73e0bfeb86095d9d6651ab80a4884fa9Cogent Engineering2022-04-19T19:23:35Z2022-04-19T19:23:35Z2021-0123311916https://hdl.handle.net/10614/13770The construction industry commonly uses steel-reinforced concrete despite the high levels of pollution in its production process. In this research, it was studied the dossing effect of nopal mucilage and Ixtle fiber as additives for the enhancement of concrete’s mechanical properties: compression strength, flexural strength, heat transfer coefficient, ultrasonic pulse rate, ED-XRF, and roughness by fractal dimension analysis. It was found a remarkable improvement in mechanical properties when both natural additives are used. It was observed an increase of potassium and calcium ions concentration after additive dosing. This behavior determines the suitability of the blend for its application in the engineering and construction industry to reduce cement or steel use9 páginasapplication/pdfengRevista Cogent EngineeringDerechos Reservados Cogent Engineeringhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.researchgate.net/publication/348390796_Effect_of_natural_additives_on_concrete_mechanical_propertiesEffect of natural additives on concrete mechanical propertiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a858118Gallegos Villela, R. R., Larrea Zambrano, F. D., Goyez López, C. E., Pérez Sánchez, J. F., Suarez Domínguez, E. J., Palacio Pérez, A. (2021). Effect of natural additives on concrete mechanical properties. Cogent Engineering. Vol. 8 (1), pp. 1-8. https://www.researchgate.net/publication/348390796_Effect_of_natural_additives_on_concrete_mechanical_propertiesCogent EngineeringAlpizar-Reyes, E., Carrillo-Navas, H., Romero-Romero, R., Varela-Guerrero, V., Alvarez-Ramírez, J., & PérezAlonso, C. (2017). Thermodynamic sorption properties and glass transition temperature of tamarind seed mucilage (Tamarindus indica L.). Food and Bioproducts Processing, 101, 166–176. https://doi.org/ 10.1016/j.fbp.2016.11.006Arreola-Nava, H. J., Cuevas-Guzmán, R., Guzmán-Hernández, L., & González-Durán, A. (2017). Opuntia setocarpa, una especie nueva de nopal del occidente de México. Revista mexicana de biodiversidad, 88(4), 792–797. https://doi.org/10.1016/j.rmb. 2017.10.028ASTM C177-19. Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus.American Society for Testing and Materials, Subcommittee C16.30 on Thermal MeasurementBinici, H., & Aksogan, O. (2018). Durability of concrete made with natural granular granite, silica sand and powders of waste marble and basalt as fine aggregate. Journal of Building Engineering, 19, 109–121. https://doi.org/10.1016/j.jobe.2018.04.022Carrillo, C. H., Gómez-Cuaspud, J. A., & Suarez, C. M. (2017). Compositional, thermal and microstructural characterization of the Nopal (opuntia ficus indica), for addition in commercial cement mixtures. In Journal of Physics: Conference Series (Vol. 935, No. 1, p. 012045). Santa Marta, Colombia: IOP Publishing.Giada, G., Caponetto, R., & Nocera, F. (2019). Hygrothermal properties of raw earth materials: A literature review. Sustainability, 11(19), 5342. https://doi.org/10.3390/su11195342Gunasekar, S., Ramesh, N., & Shivani, G. (2019). Effective utilisation of construction and demolition waste (Cdw) as recycled aggregate in concrete construction–a critical review. International Research Journal of Multidisciplinary Technovation, 1(6), 465–469. https://www.mapletreejournals.com/index.php/irjmt/ article/view/319León-Martínez, F. M., Cano-Barrita, P. D. J., LagunezRivera, L., & Medina-Torres, L. (2014). Study of nopal mucilage and marine brown algae extract as viscosity-enhancing admixtures for cement-based materials. Construction and Building Materials, 53, 190–202. https://doi.org/10.1016/j.conbuildmat.2013. 11.068Madera-Santana, T. J., Vargas-Rodríguez, L., Núñez-Colín, C. A., González-García, G., Peña-Caballero, V., NúñezGastélum, J. A., Gallegos-Vázquez, C., & RodríguezNúñez, J. R. (2018). Mucilage from cladodes of Opuntia spinulifera Salm-Dyck: Chemical, morphological, structural and thermal characterization. CyTAJournal of Food, 16(1), 650–657. https://doi.org/10. 1080/19476337.2018.1454988McNeil, K., & Kang, T. H. K. (2013). Recycled concrete aggregates: A review. International Journal of Concrete Structures and Materials, 7(1), 61–69. https://doi.org/10.1007/s40069-013-0032-5Mohammed, T. U., & Mahmood, A. H. (2016). Effects of maximum aggregate size on UPV of brick aggregate concrete. Ultrasonics, 69, 129–136. https://doi.org/10. 1016/j.ultras.2016.04.006Ortega-Lerma, M., Aranda-Jiménez, Y. G., Zúñiga-Leal, C., Sánchez-Medrano, M. T., & Gallegos-Villela, R. R. (2016). Mechanical Analysis of an Ixtle Based Cable for Its Use in Architecture. IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE), 14(1), 36–38. https://doi.org/10.9790/1684-1401053638Suárez-Domínguez, E. J., Aranda-Jiménez, Y. G., FuentesPérez, C., & Zúñiga-Leal, C. (2017a). Behavior of the heat capacity and ultrasonic characterization for poured earth. Journal of Mechanical and Civil Engineering, 14(6), 18–22.Tosun, Y., & Şahin, R. (2015). Compressive strength and capillary water absorption of concrete containing recycled aggregate. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 9(8), 987–991.Verdolotti, L., Iucolano, F., Capasso, I., Lavorgna, M., Iannace, S., & Liguori, B. (2014). Recycling and recovery of PE-PP-PET-based fiber polymeric wastes as aggregate replacement in lightweight mortar: Evaluation of environmental friendly application. Environmental Progress & Sustainable Energy, 33(4), 1445–1451. https://doi.org/10.1002/ ep.11921Zhang, L. W., Sojobi, A. O., Kodur, V. K. R., & Liew, K. M. (2019). Effective utilization and recycling of mixed recycled aggregates for a greener environment. Journal of Cleaner Production, 236, 117600. https:// doi.org/10.1016/j.jclepro.2019.07.075Concrete with organic compoundsNopal mucilage and Ixtle fiberThermal analysisFlexural and compressive strengthsComunidad universitaria en generalPublicationORIGINALEffect_of_natural_additives_on_concrete_mechanical.pdfEffect_of_natural_additives_on_concrete_mechanical.pdfapplication/pdf3436402https://dspace7-uao.metacatalogo.com/bitstreams/2ab9e52a-7b26-4da4-a70d-6efa14ada646/download7b829e5fc779da039dc4674288474f7aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/095e5b24-6851-4265-b66a-27e468ba7e77/download20b5ba22b1117f71589c7318baa2c560MD52TEXTEffect_of_natural_additives_on_concrete_mechanical.pdf.txtEffect_of_natural_additives_on_concrete_mechanical.pdf.txtExtracted texttext/plain32522https://dspace7-uao.metacatalogo.com/bitstreams/a696e2ac-3cf2-4d1e-ba13-b8df531471d1/download43758580cea87ce9a1a5f9249cfe6ffdMD53THUMBNAILEffect_of_natural_additives_on_concrete_mechanical.pdf.jpgEffect_of_natural_additives_on_concrete_mechanical.pdf.jpgGenerated Thumbnailimage/jpeg9656https://dspace7-uao.metacatalogo.com/bitstreams/1813def4-9605-4df2-beb2-c05f49ae3c56/downloade8a8339add6607555c6506de56ada8d5MD5410614/13770oai:dspace7-uao.metacatalogo.com:10614/137702024-01-19 16:27:01.463https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados Cogent Engineeringopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |