Titanium carbide (TiC) production by mechanical alloying
This chapter presents the process for obtaining titanium carbides (TiC) from elemental powders of titanium dioxide, aluminum, and graphite by means of the mechanical alloying technique, using a semi-industrial attritor mill. Three grindings were performing: a wet, a dry, and a vacuum grinding. The m...
- Autores:
-
Jaramillo Suárez, Héctor Enrique
Ávila Díaz, Julián Arnaldo
Alba de Sánchez, Nelly Cecilia
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2018
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13447
- Acceso en línea:
- https://hdl.handle.net/10614/13447
- Palabra clave:
- Carburo de titanio
Aleación mecánica
Titanium carbide
Mechanical alloy
Mechanosynthesis
Milling
Sintering process
- Rights
- openAccess
- License
- Derechos reservados - IntechOpen, 2018
id |
REPOUAO2_2613056ec02d2a2751804d8bb2c0c5fc |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13447 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Titanium carbide (TiC) production by mechanical alloying |
title |
Titanium carbide (TiC) production by mechanical alloying |
spellingShingle |
Titanium carbide (TiC) production by mechanical alloying Carburo de titanio Aleación mecánica Titanium carbide Mechanical alloy Mechanosynthesis Milling Sintering process |
title_short |
Titanium carbide (TiC) production by mechanical alloying |
title_full |
Titanium carbide (TiC) production by mechanical alloying |
title_fullStr |
Titanium carbide (TiC) production by mechanical alloying |
title_full_unstemmed |
Titanium carbide (TiC) production by mechanical alloying |
title_sort |
Titanium carbide (TiC) production by mechanical alloying |
dc.creator.fl_str_mv |
Jaramillo Suárez, Héctor Enrique Ávila Díaz, Julián Arnaldo Alba de Sánchez, Nelly Cecilia |
dc.contributor.author.none.fl_str_mv |
Jaramillo Suárez, Héctor Enrique |
dc.contributor.author.spa.fl_str_mv |
Ávila Díaz, Julián Arnaldo Alba de Sánchez, Nelly Cecilia |
dc.subject.lemb.spa.fl_str_mv |
Carburo de titanio |
topic |
Carburo de titanio Aleación mecánica Titanium carbide Mechanical alloy Mechanosynthesis Milling Sintering process |
dc.subject.armarc.spa.fl_str_mv |
Aleación mecánica |
dc.subject.proposal.eng.fl_str_mv |
Titanium carbide Mechanical alloy Mechanosynthesis Milling Sintering process |
description |
This chapter presents the process for obtaining titanium carbides (TiC) from elemental powders of titanium dioxide, aluminum, and graphite by means of the mechanical alloying technique, using a semi-industrial attritor mill. Three grindings were performing: a wet, a dry, and a vacuum grinding. The mass relations between grinding elements and powders used were 20:1 to wet grinding and 40:1 to dry and vacuum grinding. Each grinding took 36 h with a control stop at 18 h. The samples were analyzed using X-ray diffraction analysis and the characteristics peak were detected on 2θ = 41, 60, 72, and 76°. Targets of TiC were produced using compaction and sintering processes. The particle size (between 200 nm and 1 μm) was measure using a scanning electron microscopy (SEM). After the milling process, the particle size showed a huge distribution. However, after the sintered process, the particle size (lower than 5 μm) distribution had a low dispersion and their shape trends to be spherical. It is necessary to highlight that the precursors used were low cost compared to the high cost and purity powders used for this purpose; so this method is an excellent alternative to implement as a low-cost industrial process |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018-09-26 |
dc.date.accessioned.none.fl_str_mv |
2021-11-17T17:24:57Z |
dc.date.available.none.fl_str_mv |
2021-11-17T17:24:57Z |
dc.type.spa.fl_str_mv |
Capítulo - Parte de Libro |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.redcol.eng.fl_str_mv |
https://purl.org/redcol/resource_type/CAP_LIB |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_3248 |
status_str |
publishedVersion |
dc.identifier.isbn.none.fl_str_mv |
9781789236613 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13447 |
identifier_str_mv |
9781789236613 |
url |
https://hdl.handle.net/10614/13447 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
131 |
dc.relation.citationstartpage.spa.fl_str_mv |
115 |
dc.relation.cites.eng.fl_str_mv |
Jaramillo Suárez, H. E., Alba de Sánchez, N., Ávila Díaz, J. A. (2018). Titanium carbide (TiC) production by mechanical alloying. Editorial IntechOpen. Powder Technology. (Capítulo 7), pp. 115-136. https://www.researchgate.net/publication/327895253_Titanium_Carbide_TiC_Production_by_Mechanical_Alloying |
dc.relation.ispartofbook.eng.fl_str_mv |
Powder technology |
dc.relation.references.none.fl_str_mv |
[1] Koch CC. The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review. Nanostructured Materials. 1993;2(2):109-129 [2] Murty BS, Ranganathan S. Novel materials synthesis by mechanical alloying/milling. International Materials Reviews. 1998;43(3):101-141 [3] DCNM by MA Techniques. New Materials by Mechanical Alloying Techniques. Oberursel: Ir Pubns Ltd; 1989 [4] Cahn RW. Materials Science and Technology, Processing of Metals and Alloys. Vol. 15. Weinheim: Wiley-VCH; 1996 [5] Zhang L, Shen H-F, Rong Y, Huang T-Y. Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods. Materials Science and Engineering: A. 2007;466(1):71-78 [6] Ye LL, Quan MX. Synthesis of nanocrystalline TiC powders by mechanical alloying. Nanostructured Materials. 1995;5(1):25-31 [7] Hack GAJ. Dispersion strengthened alloys for aerospace. Metals and Materials. 1987;3(457): 457-462 [8] Dossett JL, Luetje RE. Heat Treating: Proceedings of the 16th Conference. ASM International. OH, USA: ASM Press; 1996 [9] Froes FH, DeBarbadillo JJ. Structural Applications of Mechanical Alloying: Proceedings of an ASM International Conference; Myrtle Beach, South Carolina; 27-29 March 1990. ASM International; 1990 [10] Botero F, Torres JG, Jaramillo HE, de Sanchez NA, Sanchez SH. Diseño de un molino de bolas tipo atritor. Latin American Journal of Metallurgy and Materials. 2009;S1(4): 1423-1431 [11] El-Eskandarany MS. Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy. NY, USA: Elsevier Ltd; 2015 [12] Lü L, Lai MO. Mechanical Alloying. NY, USA: Springer Science & Business Media; 2013 [13] Angelo PC, Subramanian R. Powder Metallurgy: Science, Technology and Applications. New Delhi, India: PHI Learning Private Limited; 2008 |
dc.rights.spa.fl_str_mv |
Derechos reservados - IntechOpen, 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - IntechOpen, 2018 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
17 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
IntechOpen |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/2e1181db-f2cd-43ad-baed-e73dd5069463/download https://red.uao.edu.co/bitstreams/e85e2387-04b1-4549-8735-1372fb0d825e/download https://red.uao.edu.co/bitstreams/88ef713b-31bb-4acf-9862-5eea50bba8fc/download https://red.uao.edu.co/bitstreams/30113a42-b8ce-4d40-982e-7a66f233f61d/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 c60fd6062eb49221dc97b8ac40268a0e 33477ccf2b50565ff222b071f3abc2aa 86bfe2ede34d356e7244294f43edbd62 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260146478514176 |
spelling |
Jaramillo Suárez, Héctor Enriquevirtual::2728-1Ávila Díaz, Julián Arnaldo89855b7e087e725282e1d8cfed2c2d46Alba de Sánchez, Nelly Cecilia2793e3a51a82a454e83e94b5b61af1132021-11-17T17:24:57Z2021-11-17T17:24:57Z2018-09-269781789236613https://hdl.handle.net/10614/13447This chapter presents the process for obtaining titanium carbides (TiC) from elemental powders of titanium dioxide, aluminum, and graphite by means of the mechanical alloying technique, using a semi-industrial attritor mill. Three grindings were performing: a wet, a dry, and a vacuum grinding. The mass relations between grinding elements and powders used were 20:1 to wet grinding and 40:1 to dry and vacuum grinding. Each grinding took 36 h with a control stop at 18 h. The samples were analyzed using X-ray diffraction analysis and the characteristics peak were detected on 2θ = 41, 60, 72, and 76°. Targets of TiC were produced using compaction and sintering processes. The particle size (between 200 nm and 1 μm) was measure using a scanning electron microscopy (SEM). After the milling process, the particle size showed a huge distribution. However, after the sintered process, the particle size (lower than 5 μm) distribution had a low dispersion and their shape trends to be spherical. It is necessary to highlight that the precursors used were low cost compared to the high cost and purity powders used for this purpose; so this method is an excellent alternative to implement as a low-cost industrial process17 páginasapplication/pdfengIntechOpenDerechos reservados - IntechOpen, 2018https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Titanium carbide (TiC) production by mechanical alloyingCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Carburo de titanioAleación mecánicaTitanium carbideMechanical alloyMechanosynthesisMillingSintering process131115Jaramillo Suárez, H. E., Alba de Sánchez, N., Ávila Díaz, J. A. (2018). Titanium carbide (TiC) production by mechanical alloying. Editorial IntechOpen. Powder Technology. (Capítulo 7), pp. 115-136. https://www.researchgate.net/publication/327895253_Titanium_Carbide_TiC_Production_by_Mechanical_AlloyingPowder technology[1] Koch CC. The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review. Nanostructured Materials. 1993;2(2):109-129[2] Murty BS, Ranganathan S. Novel materials synthesis by mechanical alloying/milling. International Materials Reviews. 1998;43(3):101-141[3] DCNM by MA Techniques. New Materials by Mechanical Alloying Techniques. Oberursel: Ir Pubns Ltd; 1989[4] Cahn RW. Materials Science and Technology, Processing of Metals and Alloys. Vol. 15. Weinheim: Wiley-VCH; 1996[5] Zhang L, Shen H-F, Rong Y, Huang T-Y. Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods. Materials Science and Engineering: A. 2007;466(1):71-78[6] Ye LL, Quan MX. Synthesis of nanocrystalline TiC powders by mechanical alloying. Nanostructured Materials. 1995;5(1):25-31[7] Hack GAJ. Dispersion strengthened alloys for aerospace. Metals and Materials. 1987;3(457): 457-462[8] Dossett JL, Luetje RE. Heat Treating: Proceedings of the 16th Conference. ASM International. OH, USA: ASM Press; 1996[9] Froes FH, DeBarbadillo JJ. Structural Applications of Mechanical Alloying: Proceedings of an ASM International Conference; Myrtle Beach, South Carolina; 27-29 March 1990. ASM International; 1990[10] Botero F, Torres JG, Jaramillo HE, de Sanchez NA, Sanchez SH. Diseño de un molino de bolas tipo atritor. Latin American Journal of Metallurgy and Materials. 2009;S1(4): 1423-1431[11] El-Eskandarany MS. Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy. NY, USA: Elsevier Ltd; 2015[12] Lü L, Lai MO. Mechanical Alloying. NY, USA: Springer Science & Business Media; 2013[13] Angelo PC, Subramanian R. Powder Metallurgy: Science, Technology and Applications. New Delhi, India: PHI Learning Private Limited; 2008GenralPublicationada2f35e-57bd-4bbb-91d3-e197573bfab8virtual::2728-1ada2f35e-57bd-4bbb-91d3-e197573bfab8virtual::2728-1https://scholar.google.com.co/citations?user=GEzrsjQAAAAJ&hl=esvirtual::2728-10000-0002-7324-9478virtual::2728-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000144967virtual::2728-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/2e1181db-f2cd-43ad-baed-e73dd5069463/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALTitanium Carbide (TiC) production by mechanical alloying.pdfTitanium Carbide (TiC) production by mechanical alloying.pdfTexto archivo completo del capítulo del libro, PDFapplication/pdf5807764https://red.uao.edu.co/bitstreams/e85e2387-04b1-4549-8735-1372fb0d825e/downloadc60fd6062eb49221dc97b8ac40268a0eMD53TEXTTitanium Carbide (TiC) production by mechanical alloying.pdf.txtTitanium Carbide (TiC) production by mechanical alloying.pdf.txtExtracted texttext/plain25079https://red.uao.edu.co/bitstreams/88ef713b-31bb-4acf-9862-5eea50bba8fc/download33477ccf2b50565ff222b071f3abc2aaMD54THUMBNAILTitanium Carbide (TiC) production by mechanical alloying.pdf.jpgTitanium Carbide (TiC) production by mechanical alloying.pdf.jpgGenerated Thumbnailimage/jpeg9555https://red.uao.edu.co/bitstreams/30113a42-b8ce-4d40-982e-7a66f233f61d/download86bfe2ede34d356e7244294f43edbd62MD5510614/13447oai:red.uao.edu.co:10614/134472024-03-07 09:58:41.038https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - IntechOpen, 2018open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |