Titanium carbide (TiC) production by mechanical alloying

This chapter presents the process for obtaining titanium carbides (TiC) from elemental powders of titanium dioxide, aluminum, and graphite by means of the mechanical alloying technique, using a semi-industrial attritor mill. Three grindings were performing: a wet, a dry, and a vacuum grinding. The m...

Full description

Autores:
Jaramillo Suárez, Héctor Enrique
Ávila Díaz, Julián Arnaldo
Alba de Sánchez, Nelly Cecilia
Tipo de recurso:
Part of book
Fecha de publicación:
2018
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13447
Acceso en línea:
https://hdl.handle.net/10614/13447
Palabra clave:
Carburo de titanio
Aleación mecánica
Titanium carbide
Mechanical alloy
Mechanosynthesis
Milling
Sintering process
Rights
openAccess
License
Derechos reservados - IntechOpen, 2018
id REPOUAO2_2613056ec02d2a2751804d8bb2c0c5fc
oai_identifier_str oai:red.uao.edu.co:10614/13447
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Titanium carbide (TiC) production by mechanical alloying
title Titanium carbide (TiC) production by mechanical alloying
spellingShingle Titanium carbide (TiC) production by mechanical alloying
Carburo de titanio
Aleación mecánica
Titanium carbide
Mechanical alloy
Mechanosynthesis
Milling
Sintering process
title_short Titanium carbide (TiC) production by mechanical alloying
title_full Titanium carbide (TiC) production by mechanical alloying
title_fullStr Titanium carbide (TiC) production by mechanical alloying
title_full_unstemmed Titanium carbide (TiC) production by mechanical alloying
title_sort Titanium carbide (TiC) production by mechanical alloying
dc.creator.fl_str_mv Jaramillo Suárez, Héctor Enrique
Ávila Díaz, Julián Arnaldo
Alba de Sánchez, Nelly Cecilia
dc.contributor.author.none.fl_str_mv Jaramillo Suárez, Héctor Enrique
dc.contributor.author.spa.fl_str_mv Ávila Díaz, Julián Arnaldo
Alba de Sánchez, Nelly Cecilia
dc.subject.lemb.spa.fl_str_mv Carburo de titanio
topic Carburo de titanio
Aleación mecánica
Titanium carbide
Mechanical alloy
Mechanosynthesis
Milling
Sintering process
dc.subject.armarc.spa.fl_str_mv Aleación mecánica
dc.subject.proposal.eng.fl_str_mv Titanium carbide
Mechanical alloy
Mechanosynthesis
Milling
Sintering process
description This chapter presents the process for obtaining titanium carbides (TiC) from elemental powders of titanium dioxide, aluminum, and graphite by means of the mechanical alloying technique, using a semi-industrial attritor mill. Three grindings were performing: a wet, a dry, and a vacuum grinding. The mass relations between grinding elements and powders used were 20:1 to wet grinding and 40:1 to dry and vacuum grinding. Each grinding took 36 h with a control stop at 18 h. The samples were analyzed using X-ray diffraction analysis and the characteristics peak were detected on 2θ = 41, 60, 72, and 76°. Targets of TiC were produced using compaction and sintering processes. The particle size (between 200 nm and 1 μm) was measure using a scanning electron microscopy (SEM). After the milling process, the particle size showed a huge distribution. However, after the sintered process, the particle size (lower than 5 μm) distribution had a low dispersion and their shape trends to be spherical. It is necessary to highlight that the precursors used were low cost compared to the high cost and purity powders used for this purpose; so this method is an excellent alternative to implement as a low-cost industrial process
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-09-26
dc.date.accessioned.none.fl_str_mv 2021-11-17T17:24:57Z
dc.date.available.none.fl_str_mv 2021-11-17T17:24:57Z
dc.type.spa.fl_str_mv Capítulo - Parte de Libro
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.eng.fl_str_mv https://purl.org/redcol/resource_type/CAP_LIB
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_3248
status_str publishedVersion
dc.identifier.isbn.none.fl_str_mv 9781789236613
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13447
identifier_str_mv 9781789236613
url https://hdl.handle.net/10614/13447
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 131
dc.relation.citationstartpage.spa.fl_str_mv 115
dc.relation.cites.eng.fl_str_mv Jaramillo Suárez, H. E., Alba de Sánchez, N., Ávila Díaz, J. A. (2018). Titanium carbide (TiC) production by mechanical alloying. Editorial IntechOpen. Powder Technology. (Capítulo 7), pp. 115-136. https://www.researchgate.net/publication/327895253_Titanium_Carbide_TiC_Production_by_Mechanical_Alloying
dc.relation.ispartofbook.eng.fl_str_mv Powder technology
dc.relation.references.none.fl_str_mv [1] Koch CC. The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review. Nanostructured Materials. 1993;2(2):109-129
[2] Murty BS, Ranganathan S. Novel materials synthesis by mechanical alloying/milling. International Materials Reviews. 1998;43(3):101-141
[3] DCNM by MA Techniques. New Materials by Mechanical Alloying Techniques. Oberursel: Ir Pubns Ltd; 1989
[4] Cahn RW. Materials Science and Technology, Processing of Metals and Alloys. Vol. 15. Weinheim: Wiley-VCH; 1996
[5] Zhang L, Shen H-F, Rong Y, Huang T-Y. Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods. Materials Science and Engineering: A. 2007;466(1):71-78
[6] Ye LL, Quan MX. Synthesis of nanocrystalline TiC powders by mechanical alloying. Nanostructured Materials. 1995;5(1):25-31
[7] Hack GAJ. Dispersion strengthened alloys for aerospace. Metals and Materials. 1987;3(457): 457-462
[8] Dossett JL, Luetje RE. Heat Treating: Proceedings of the 16th Conference. ASM International. OH, USA: ASM Press; 1996
[9] Froes FH, DeBarbadillo JJ. Structural Applications of Mechanical Alloying: Proceedings of an ASM International Conference; Myrtle Beach, South Carolina; 27-29 March 1990. ASM International; 1990
[10] Botero F, Torres JG, Jaramillo HE, de Sanchez NA, Sanchez SH. Diseño de un molino de bolas tipo atritor. Latin American Journal of Metallurgy and Materials. 2009;S1(4): 1423-1431
[11] El-Eskandarany MS. Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy. NY, USA: Elsevier Ltd; 2015
[12] Lü L, Lai MO. Mechanical Alloying. NY, USA: Springer Science & Business Media; 2013
[13] Angelo PC, Subramanian R. Powder Metallurgy: Science, Technology and Applications. New Delhi, India: PHI Learning Private Limited; 2008
dc.rights.spa.fl_str_mv Derechos reservados - IntechOpen, 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - IntechOpen, 2018
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 17 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv IntechOpen
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/2e1181db-f2cd-43ad-baed-e73dd5069463/download
https://red.uao.edu.co/bitstreams/e85e2387-04b1-4549-8735-1372fb0d825e/download
https://red.uao.edu.co/bitstreams/88ef713b-31bb-4acf-9862-5eea50bba8fc/download
https://red.uao.edu.co/bitstreams/30113a42-b8ce-4d40-982e-7a66f233f61d/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
c60fd6062eb49221dc97b8ac40268a0e
33477ccf2b50565ff222b071f3abc2aa
86bfe2ede34d356e7244294f43edbd62
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1808478980051828736
spelling Jaramillo Suárez, Héctor Enriquevirtual::2728-1Ávila Díaz, Julián Arnaldo89855b7e087e725282e1d8cfed2c2d46Alba de Sánchez, Nelly Cecilia2793e3a51a82a454e83e94b5b61af1132021-11-17T17:24:57Z2021-11-17T17:24:57Z2018-09-269781789236613https://hdl.handle.net/10614/13447This chapter presents the process for obtaining titanium carbides (TiC) from elemental powders of titanium dioxide, aluminum, and graphite by means of the mechanical alloying technique, using a semi-industrial attritor mill. Three grindings were performing: a wet, a dry, and a vacuum grinding. The mass relations between grinding elements and powders used were 20:1 to wet grinding and 40:1 to dry and vacuum grinding. Each grinding took 36 h with a control stop at 18 h. The samples were analyzed using X-ray diffraction analysis and the characteristics peak were detected on 2θ = 41, 60, 72, and 76°. Targets of TiC were produced using compaction and sintering processes. The particle size (between 200 nm and 1 μm) was measure using a scanning electron microscopy (SEM). After the milling process, the particle size showed a huge distribution. However, after the sintered process, the particle size (lower than 5 μm) distribution had a low dispersion and their shape trends to be spherical. It is necessary to highlight that the precursors used were low cost compared to the high cost and purity powders used for this purpose; so this method is an excellent alternative to implement as a low-cost industrial process17 páginasapplication/pdfengIntechOpenDerechos reservados - IntechOpen, 2018https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Titanium carbide (TiC) production by mechanical alloyingCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Carburo de titanioAleación mecánicaTitanium carbideMechanical alloyMechanosynthesisMillingSintering process131115Jaramillo Suárez, H. E., Alba de Sánchez, N., Ávila Díaz, J. A. (2018). Titanium carbide (TiC) production by mechanical alloying. Editorial IntechOpen. Powder Technology. (Capítulo 7), pp. 115-136. https://www.researchgate.net/publication/327895253_Titanium_Carbide_TiC_Production_by_Mechanical_AlloyingPowder technology[1] Koch CC. The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review. Nanostructured Materials. 1993;2(2):109-129[2] Murty BS, Ranganathan S. Novel materials synthesis by mechanical alloying/milling. International Materials Reviews. 1998;43(3):101-141[3] DCNM by MA Techniques. New Materials by Mechanical Alloying Techniques. Oberursel: Ir Pubns Ltd; 1989[4] Cahn RW. Materials Science and Technology, Processing of Metals and Alloys. Vol. 15. Weinheim: Wiley-VCH; 1996[5] Zhang L, Shen H-F, Rong Y, Huang T-Y. Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods. Materials Science and Engineering: A. 2007;466(1):71-78[6] Ye LL, Quan MX. Synthesis of nanocrystalline TiC powders by mechanical alloying. Nanostructured Materials. 1995;5(1):25-31[7] Hack GAJ. Dispersion strengthened alloys for aerospace. Metals and Materials. 1987;3(457): 457-462[8] Dossett JL, Luetje RE. Heat Treating: Proceedings of the 16th Conference. ASM International. OH, USA: ASM Press; 1996[9] Froes FH, DeBarbadillo JJ. Structural Applications of Mechanical Alloying: Proceedings of an ASM International Conference; Myrtle Beach, South Carolina; 27-29 March 1990. ASM International; 1990[10] Botero F, Torres JG, Jaramillo HE, de Sanchez NA, Sanchez SH. Diseño de un molino de bolas tipo atritor. Latin American Journal of Metallurgy and Materials. 2009;S1(4): 1423-1431[11] El-Eskandarany MS. Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy. NY, USA: Elsevier Ltd; 2015[12] Lü L, Lai MO. Mechanical Alloying. NY, USA: Springer Science & Business Media; 2013[13] Angelo PC, Subramanian R. Powder Metallurgy: Science, Technology and Applications. New Delhi, India: PHI Learning Private Limited; 2008GenralPublicationada2f35e-57bd-4bbb-91d3-e197573bfab8virtual::2728-1ada2f35e-57bd-4bbb-91d3-e197573bfab8virtual::2728-1https://scholar.google.com.co/citations?user=GEzrsjQAAAAJ&hl=esvirtual::2728-10000-0002-7324-9478virtual::2728-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000144967virtual::2728-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/2e1181db-f2cd-43ad-baed-e73dd5069463/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALTitanium Carbide (TiC) production by mechanical alloying.pdfTitanium Carbide (TiC) production by mechanical alloying.pdfTexto archivo completo del capítulo del libro, PDFapplication/pdf5807764https://red.uao.edu.co/bitstreams/e85e2387-04b1-4549-8735-1372fb0d825e/downloadc60fd6062eb49221dc97b8ac40268a0eMD53TEXTTitanium Carbide (TiC) production by mechanical alloying.pdf.txtTitanium Carbide (TiC) production by mechanical alloying.pdf.txtExtracted texttext/plain25079https://red.uao.edu.co/bitstreams/88ef713b-31bb-4acf-9862-5eea50bba8fc/download33477ccf2b50565ff222b071f3abc2aaMD54THUMBNAILTitanium Carbide (TiC) production by mechanical alloying.pdf.jpgTitanium Carbide (TiC) production by mechanical alloying.pdf.jpgGenerated Thumbnailimage/jpeg9555https://red.uao.edu.co/bitstreams/30113a42-b8ce-4d40-982e-7a66f233f61d/download86bfe2ede34d356e7244294f43edbd62MD5510614/13447oai:red.uao.edu.co:10614/134472024-03-07 09:58:41.038https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - IntechOpen, 2018open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K