Thermal analysis of the physicochemical properties of organic waste to application in the compost process

Autores:
Carmona Pardo, Rosa Natalia
Aparicio Rojas, Gladis Miriam
Flórez Pardo, Luz Marina
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13870
Acceso en línea:
https://hdl.handle.net/10614/13870
https://red.uao.edu.co/
Palabra clave:
Residuos orgánicos
Análisis térmico
Termogravimetría
Espectrometría de masas
Biomasa
Compost
Composting process
Organic waste
Thermal analysis
Thermal degradation
Thermogravimetry
Differential scanning calorimetry
Mass spectrometry
Biomass
Rights
openAccess
License
Derechos Reservados Revista Biomass Conversion and Biorefinery, 2021
id REPOUAO2_23bfca3f8813899b4e9d2643c625d4c7
oai_identifier_str oai:red.uao.edu.co:10614/13870
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Thermal analysis of the physicochemical properties of organic waste to application in the compost process
title Thermal analysis of the physicochemical properties of organic waste to application in the compost process
spellingShingle Thermal analysis of the physicochemical properties of organic waste to application in the compost process
Residuos orgánicos
Análisis térmico
Termogravimetría
Espectrometría de masas
Biomasa
Compost
Composting process
Organic waste
Thermal analysis
Thermal degradation
Thermogravimetry
Differential scanning calorimetry
Mass spectrometry
Biomass
title_short Thermal analysis of the physicochemical properties of organic waste to application in the compost process
title_full Thermal analysis of the physicochemical properties of organic waste to application in the compost process
title_fullStr Thermal analysis of the physicochemical properties of organic waste to application in the compost process
title_full_unstemmed Thermal analysis of the physicochemical properties of organic waste to application in the compost process
title_sort Thermal analysis of the physicochemical properties of organic waste to application in the compost process
dc.creator.fl_str_mv Carmona Pardo, Rosa Natalia
Aparicio Rojas, Gladis Miriam
Flórez Pardo, Luz Marina
dc.contributor.author.none.fl_str_mv Carmona Pardo, Rosa Natalia
Aparicio Rojas, Gladis Miriam
Flórez Pardo, Luz Marina
dc.subject.armarc.spa.fl_str_mv Residuos orgánicos
Análisis térmico
Termogravimetría
Espectrometría de masas
Biomasa
topic Residuos orgánicos
Análisis térmico
Termogravimetría
Espectrometría de masas
Biomasa
Compost
Composting process
Organic waste
Thermal analysis
Thermal degradation
Thermogravimetry
Differential scanning calorimetry
Mass spectrometry
Biomass
dc.subject.proposal.eng.fl_str_mv Compost
Composting process
Organic waste
Thermal analysis
Thermal degradation
Thermogravimetry
Differential scanning calorimetry
Mass spectrometry
Biomass
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-08
dc.date.accessioned.none.fl_str_mv 2022-05-16T14:16:32Z
dc.date.available.none.fl_str_mv 2022-05-16T14:16:32Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 21906815
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13870
dc.identifier.doi.none.fl_str_mv 10.1007/s13399-021-01786-2
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 21906815
10.1007/s13399-021-01786-2
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/13870
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 13
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.cites.eng.fl_str_mv Carmona Pardo, R. N., Aparicio Rojas, G.M., Flórez Pardo, L.M. (2021). Thermal analysis of the physicochemical properties of organic waste to application in the compost process. Biomass Conversion and Biorefinery, pp. 1-13. https://link.springer.com/content/pdf/10.1007/s13399-021-01786-2.pdf
dc.relation.ispartofjournal.eng.fl_str_mv Biomass Conversion and Biorefinery
dc.relation.references.none.fl_str_mv 1. Khiari B, JeguirimM(2018) Pyrolysis of grapemarc fromTunisian wine industry: feedstock characterization, thermal degradation and kinetic analysis. Energies 11(4). https://doi.org/10.3390/ en11040730
2. Gunasee SD, Carrier M, Gorgens JF, Mohee R (2016) Pyrolysis and combustion ofmunicipal solid wastes: evaluation of synergistic effects using TGA-MS. J Anal Appl Pyrolysis 121:50–61. https:// doi.org/10.1016/j.jaap.2016.07.001
3. Deaquiz Y, Moreno B (2016) Producción y biosíntesis de fibras vegetales una revisión. Conex Agropecu 6:29–42 https://www. jdc.edu.co/revistas/index.php/conexagro/article/view/53
4. Gómez RB (2006) Compostaje de residuos sólidos orgánicos. aplicación de técnicas respirométricas en el seguimiento del proceso. Tesis Dr 80:1–315. https://www.tdx.cat/handle/10803/ 5307#page=1.
5. Sarkar S, Pal S, Chanda S (2016) Optimization of a vegetable waste composting process with a significant thermophilic phase. Procedia Environ Sci 35:435–440. https://doi.org/10.1016/j.proenv.2016.07. 026
6. Cerda A, Artola A, Font X, Barrena R, Gea T, Sánchez A (2018) Composting of food wastes: status and challenges. Bioresource Technology 248:57–67. https://doi.org/10.1016/j.biortech.2017. 06.133
7. Márquez PB, Díaz Blanco MJ, Cabrera Capitán F (2005) Factores que afectan al proceso de Compostaje. Univ Huelva Fac Ciencias Exp, p 16. http://hdl.handle.net/10261/20837.
8. Ngo HTT, Cavagnaro TR (2018) Interactive effects of compost and pre-planting soilmoisture on plant biomass, nutrition and formation of mycorrhizas: a context dependent response. Sci Rep 8:1509. https://doi.org/10.1038/s41598-017-18780-2
9. Dadi D, Beyene GDA, Van Der Bruggen PLB (2019) Composting and co - composting of coffee husk and pulpwith source - separated municipal solid waste: a breakthrough in valorization of coffee waste. Int J RecyLL Org Waste Agric 8(3):263–277. https://doi. org/10.1007/s40093-019-0256-8
10. Tinio MMR, Rollon AP, Moya TB (2019) Synergy in the urban solid waste management system in Malolos City, Philippines. 148: 73–97. https://philjournalsci.dost.gov.ph/images/pdf/pjs_pdf/vol148no1/synergy_in_the_urban_solid_waste_management_ with_APPENDIX.pdf
11. Setyowati M, Kusumawanto A, Prasetya A (2018) Study of waste management towards sustainable green campus in Universitas Gadjah Mada. https://iopscience.iop.org/article/10.1088/1742- 6596/1022/1/012041.
12. Sepúlveda Villada LA, Alvarado Torres JA (2013) Manual de compostaje doméstico. Manual de aprovechamiento de residuos orgánicos a través de sistemas de compostaje y lombricultura en el Valle de Aburrá
13. Mia S et al (2018) Pyrolysis and co-composting of municipal organic waste in Bangladesh: a quantitative estimate of recyLLable nutrients, greenhouse gas emissions, and economic benefits.Waste Manag 75:503–513. https://doi.org/10.1016/j.wasman.2018.01. 038. https://doi.org/10.1016/j.wasman.2018.01.038
14. Alwani MS, Khalil HPSA, Sulaiman O, Islam MN, Dungani R (2014)Waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. BioResources 9(1):218– 230 https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/4718
15. Singh S, Wu C, Williams PT (2012) Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques. J Anal Appl Pyrolysis 94:99–107. https://doi.org/10. 1016/j.jaap.2011.11.011
16. Stępień P, Pulka J, Serowik M, Białowiec A (2018) Thermogravimetric and calorimetric characteristics of alternative fuel in terms of its use in low-temperature pyrolysis Waste Biomass Valoriz 10:1669–1677. https://doi.org/10.1007/s12649- 017-0169-6
17. ASTM D3302/D3302M-17 (2017) Standard test method for total moisture in coal, ASTMInternational,West Conshohocken. https:// www.astm.org/Standards/D3302.htm
18. ASTM D5373–16 (2016) Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke. ASTM International, West Conshohocken. https://www.astm.org/Standards/D5373.htm
19. Veeramachineni AK, Sathasivam T, Muniyandy S (2016) Applied sciences optimizing extraction of cellulose and synthesizing pharmaceutical grade Carboxymethyl sago cellulose from Malaysian sago pulp. Appl Sci 6:18. https://doi.org/10.3390/app6060170
20. Gait J, Moya (2018) Differential scanning calorimetry analyses of biomass of tropical plantation species of Costa Rica torrefied at different temperatures and times. Energies 11:26. https://doi.org/ 10.3390/en11040696
21. ChávezM, DomineM, Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial lignin, structure and applications: depolymerization methods. Av en Cienc e Ing. 4(4):15–46. https://www.redalyc. org/articulo.oa?id=323629266003
22. Prieto Ruíz JA, Bustamante García V, Corral-Rivas JJ, Hernández Díaz JC, Carrillo Parra A (2018) Química de la biomasa vegetal y su efecto en el rendimiento durante la torrefacción: revisión. Rev Mex Ciencias For 7(38):5–24. https://doi.org/10.29298/rmcf.v7i38. 8
23. Meng A, Chen S, Long Y, Zhou H, Zhang Y, Li Q (2015) Pyrolysis and gasification of typical components in wastes with macro-TGA. WasteManag 46:247–256. https://doi.org/10.1016/j.wasman.2015. 08.025
24. Pineda Gomez P, Bedoya Hincapié MC, Rosales Rivera A (2011) Kinetic parameters and lifetime estimation of rice husk and LLay by using the thermogravimetric analysis (TGA). Dyna 78:207–214 https://dialnet.unirioja.es/servlet/articulo?codigo=7761305
25. Sarria Bienvenido MJVA (2007) Análisis comparativo de las características fisicoquímicas de la cascarilla de arroz. Scientia et Technica 37:6. https://doi.org/10.22517/23447214.4055
26. Moya M, Sibaja M, Durán M, Vega J (1995) Obtención potencial de polímeros biodegradables. Estudio de la disolución de la cascara de piña en PEG. UNICIENCIA 12(1):39–43 https://dialnet. unirioja.es/servlet/articulo?codigo=5381239
27. González-Velandia K-D, Daza-Rey D, Caballero-Amado PA, Martínez-González C (2016) Evaluación de las propiedades físicas y químicas de residuos sólidos orgánicos a emplearse en la elaboración de papel. Luna Azul 43:499–517. https://doi.org/10. 17151/luaz.2016.43.21
28. Medina Arroyo HH, Martínez GuardiaM, Bonilla Flórez JA (2007) Caracterización Bromatológica de Materias Primas Y Subproductos en Quibdó, Chocó. Rev Inst Univ TecnoLLógica del Chocó Investig Biodivers y Desarro 26(2):9–12 https://dialnet. unirioja.es/servlet/articulo?codigo=2544417
29. Soto V (2010) Cuantificación de almidón total y de almidón resistente en harina de plátano verde (Musa Cavendishii) y banana verde (Musa paradisíaca). Rev Boliv Química 27(2):94–99 https:// www.redalyc.org/articulo.oa?id=426339674004
30. Soto N, Ruiz W, Lopez (2010) Determinación de los parámetros cinéticos en la pirólisis del pino ciprés,” vol. 33(7):1500–1505. https://doi.org/10.1590/S0100-40422010000700014
31. Huang S, Sheng JJ (2017) An innovative method to build a comprehensive kinetic model for air injection using TGA/DSC experiments. FueL 210:98–106. https://doi.org/10.1016/j.fuel.2017.08. 048
32. Paricaguán B et al (2013) Thermal degradation of fibers of coconut with chemical treatment from mixtures of I make concrete (kinetic study). https://www.redalyc.org/articulo.oa?id=70732655008
33. Fan H, Liao J, Abass OK, Liu L, Huang X,Wei L (2019) Efects of compost characteristics on nutrient retention and simultaneous pollutant immobilization and degradation during co-composting process. Bioresour Technol 275:61–69. https://doi.org/10.1016/j. biortech.2018.12.049
34. Pérez-godínez EA, Lagunes-zarate J, Corona-hernández J, Barajasaceves M (2017) Growth and reproductive potential of Eisenia foetida (Sav) on various zoo animal dungs after two methods of pre-composting followed by vermicomposting. 64:67–78. https:// doi.org/10.1016/j.wasman.2017.03.036
35. Esmaeili A, Reyahi M, Gholami M, Eslami H (2020) Pistachio waste management using combined composting- vermicomposting technique: physico-chemical changes and worm growth analysis. J Lean Prod 242:118523. https://doi.org/10.1016/j.jLLepro.2019. 118523
dc.rights.spa.fl_str_mv Derechos Reservados Revista Biomass Conversion and Biorefinery, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados Revista Biomass Conversion and Biorefinery, 2021
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/1138a0c4-34d7-420b-8c79-4b58ad236d55/download
https://red.uao.edu.co/bitstreams/50f5f73c-8d4e-456e-b288-fff3929d8acd/download
https://red.uao.edu.co/bitstreams/e50792d5-e348-482b-90c5-131820001d04/download
https://red.uao.edu.co/bitstreams/02adb560-3624-4571-aedc-dff5d4d62a79/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
4be2d907d61f1fa09ab9a08c150d040b
c1f63c07d93b8ead37a3e6c0a6b95f68
f35562f00ba4c850d7d4c8918bf920e8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259921663819776
spelling Carmona Pardo, Rosa NataliaAparicio Rojas, Gladis Miriamvirtual::299-1Flórez Pardo, Luz Marinavirtual::1713-12022-05-16T14:16:32Z2022-05-16T14:16:32Z2021-0821906815https://hdl.handle.net/10614/1387010.1007/s13399-021-01786-2Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/13 páginasapplication/pdfengDerechos Reservados Revista Biomass Conversion and Biorefinery, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Thermal analysis of the physicochemical properties of organic waste to application in the compost processArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Residuos orgánicosAnálisis térmicoTermogravimetríaEspectrometría de masasBiomasaCompostComposting processOrganic wasteThermal analysisThermal degradationThermogravimetryDifferential scanning calorimetryMass spectrometryBiomass131Carmona Pardo, R. N., Aparicio Rojas, G.M., Flórez Pardo, L.M. (2021). Thermal analysis of the physicochemical properties of organic waste to application in the compost process. Biomass Conversion and Biorefinery, pp. 1-13. https://link.springer.com/content/pdf/10.1007/s13399-021-01786-2.pdfBiomass Conversion and Biorefinery1. Khiari B, JeguirimM(2018) Pyrolysis of grapemarc fromTunisian wine industry: feedstock characterization, thermal degradation and kinetic analysis. Energies 11(4). https://doi.org/10.3390/ en110407302. Gunasee SD, Carrier M, Gorgens JF, Mohee R (2016) Pyrolysis and combustion ofmunicipal solid wastes: evaluation of synergistic effects using TGA-MS. J Anal Appl Pyrolysis 121:50–61. https:// doi.org/10.1016/j.jaap.2016.07.0013. Deaquiz Y, Moreno B (2016) Producción y biosíntesis de fibras vegetales una revisión. Conex Agropecu 6:29–42 https://www. jdc.edu.co/revistas/index.php/conexagro/article/view/534. Gómez RB (2006) Compostaje de residuos sólidos orgánicos. aplicación de técnicas respirométricas en el seguimiento del proceso. Tesis Dr 80:1–315. https://www.tdx.cat/handle/10803/ 5307#page=1.5. Sarkar S, Pal S, Chanda S (2016) Optimization of a vegetable waste composting process with a significant thermophilic phase. Procedia Environ Sci 35:435–440. https://doi.org/10.1016/j.proenv.2016.07. 0266. Cerda A, Artola A, Font X, Barrena R, Gea T, Sánchez A (2018) Composting of food wastes: status and challenges. Bioresource Technology 248:57–67. https://doi.org/10.1016/j.biortech.2017. 06.1337. Márquez PB, Díaz Blanco MJ, Cabrera Capitán F (2005) Factores que afectan al proceso de Compostaje. Univ Huelva Fac Ciencias Exp, p 16. http://hdl.handle.net/10261/20837.8. Ngo HTT, Cavagnaro TR (2018) Interactive effects of compost and pre-planting soilmoisture on plant biomass, nutrition and formation of mycorrhizas: a context dependent response. Sci Rep 8:1509. https://doi.org/10.1038/s41598-017-18780-29. Dadi D, Beyene GDA, Van Der Bruggen PLB (2019) Composting and co - composting of coffee husk and pulpwith source - separated municipal solid waste: a breakthrough in valorization of coffee waste. Int J RecyLL Org Waste Agric 8(3):263–277. https://doi. org/10.1007/s40093-019-0256-810. Tinio MMR, Rollon AP, Moya TB (2019) Synergy in the urban solid waste management system in Malolos City, Philippines. 148: 73–97. https://philjournalsci.dost.gov.ph/images/pdf/pjs_pdf/vol148no1/synergy_in_the_urban_solid_waste_management_ with_APPENDIX.pdf11. Setyowati M, Kusumawanto A, Prasetya A (2018) Study of waste management towards sustainable green campus in Universitas Gadjah Mada. https://iopscience.iop.org/article/10.1088/1742- 6596/1022/1/012041.12. Sepúlveda Villada LA, Alvarado Torres JA (2013) Manual de compostaje doméstico. Manual de aprovechamiento de residuos orgánicos a través de sistemas de compostaje y lombricultura en el Valle de Aburrá13. Mia S et al (2018) Pyrolysis and co-composting of municipal organic waste in Bangladesh: a quantitative estimate of recyLLable nutrients, greenhouse gas emissions, and economic benefits.Waste Manag 75:503–513. https://doi.org/10.1016/j.wasman.2018.01. 038. https://doi.org/10.1016/j.wasman.2018.01.03814. Alwani MS, Khalil HPSA, Sulaiman O, Islam MN, Dungani R (2014)Waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. BioResources 9(1):218– 230 https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/471815. Singh S, Wu C, Williams PT (2012) Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques. J Anal Appl Pyrolysis 94:99–107. https://doi.org/10. 1016/j.jaap.2011.11.01116. Stępień P, Pulka J, Serowik M, Białowiec A (2018) Thermogravimetric and calorimetric characteristics of alternative fuel in terms of its use in low-temperature pyrolysis Waste Biomass Valoriz 10:1669–1677. https://doi.org/10.1007/s12649- 017-0169-617. ASTM D3302/D3302M-17 (2017) Standard test method for total moisture in coal, ASTMInternational,West Conshohocken. https:// www.astm.org/Standards/D3302.htm18. ASTM D5373–16 (2016) Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke. ASTM International, West Conshohocken. https://www.astm.org/Standards/D5373.htm19. Veeramachineni AK, Sathasivam T, Muniyandy S (2016) Applied sciences optimizing extraction of cellulose and synthesizing pharmaceutical grade Carboxymethyl sago cellulose from Malaysian sago pulp. Appl Sci 6:18. https://doi.org/10.3390/app606017020. Gait J, Moya (2018) Differential scanning calorimetry analyses of biomass of tropical plantation species of Costa Rica torrefied at different temperatures and times. Energies 11:26. https://doi.org/ 10.3390/en1104069621. ChávezM, DomineM, Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial lignin, structure and applications: depolymerization methods. Av en Cienc e Ing. 4(4):15–46. https://www.redalyc. org/articulo.oa?id=32362926600322. Prieto Ruíz JA, Bustamante García V, Corral-Rivas JJ, Hernández Díaz JC, Carrillo Parra A (2018) Química de la biomasa vegetal y su efecto en el rendimiento durante la torrefacción: revisión. Rev Mex Ciencias For 7(38):5–24. https://doi.org/10.29298/rmcf.v7i38. 823. Meng A, Chen S, Long Y, Zhou H, Zhang Y, Li Q (2015) Pyrolysis and gasification of typical components in wastes with macro-TGA. WasteManag 46:247–256. https://doi.org/10.1016/j.wasman.2015. 08.02524. Pineda Gomez P, Bedoya Hincapié MC, Rosales Rivera A (2011) Kinetic parameters and lifetime estimation of rice husk and LLay by using the thermogravimetric analysis (TGA). Dyna 78:207–214 https://dialnet.unirioja.es/servlet/articulo?codigo=776130525. Sarria Bienvenido MJVA (2007) Análisis comparativo de las características fisicoquímicas de la cascarilla de arroz. Scientia et Technica 37:6. https://doi.org/10.22517/23447214.405526. Moya M, Sibaja M, Durán M, Vega J (1995) Obtención potencial de polímeros biodegradables. Estudio de la disolución de la cascara de piña en PEG. UNICIENCIA 12(1):39–43 https://dialnet. unirioja.es/servlet/articulo?codigo=538123927. González-Velandia K-D, Daza-Rey D, Caballero-Amado PA, Martínez-González C (2016) Evaluación de las propiedades físicas y químicas de residuos sólidos orgánicos a emplearse en la elaboración de papel. Luna Azul 43:499–517. https://doi.org/10. 17151/luaz.2016.43.2128. Medina Arroyo HH, Martínez GuardiaM, Bonilla Flórez JA (2007) Caracterización Bromatológica de Materias Primas Y Subproductos en Quibdó, Chocó. Rev Inst Univ TecnoLLógica del Chocó Investig Biodivers y Desarro 26(2):9–12 https://dialnet. unirioja.es/servlet/articulo?codigo=254441729. Soto V (2010) Cuantificación de almidón total y de almidón resistente en harina de plátano verde (Musa Cavendishii) y banana verde (Musa paradisíaca). Rev Boliv Química 27(2):94–99 https:// www.redalyc.org/articulo.oa?id=42633967400430. Soto N, Ruiz W, Lopez (2010) Determinación de los parámetros cinéticos en la pirólisis del pino ciprés,” vol. 33(7):1500–1505. https://doi.org/10.1590/S0100-4042201000070001431. Huang S, Sheng JJ (2017) An innovative method to build a comprehensive kinetic model for air injection using TGA/DSC experiments. FueL 210:98–106. https://doi.org/10.1016/j.fuel.2017.08. 04832. Paricaguán B et al (2013) Thermal degradation of fibers of coconut with chemical treatment from mixtures of I make concrete (kinetic study). https://www.redalyc.org/articulo.oa?id=7073265500833. Fan H, Liao J, Abass OK, Liu L, Huang X,Wei L (2019) Efects of compost characteristics on nutrient retention and simultaneous pollutant immobilization and degradation during co-composting process. Bioresour Technol 275:61–69. https://doi.org/10.1016/j. biortech.2018.12.04934. Pérez-godínez EA, Lagunes-zarate J, Corona-hernández J, Barajasaceves M (2017) Growth and reproductive potential of Eisenia foetida (Sav) on various zoo animal dungs after two methods of pre-composting followed by vermicomposting. 64:67–78. https:// doi.org/10.1016/j.wasman.2017.03.03635. Esmaeili A, Reyahi M, Gholami M, Eslami H (2020) Pistachio waste management using combined composting- vermicomposting technique: physico-chemical changes and worm growth analysis. J Lean Prod 242:118523. https://doi.org/10.1016/j.jLLepro.2019. 118523Comunidad generalPublicationb4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::299-1cc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1713-1b4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::299-1cc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1713-1https://scholar.google.com/citations?user=WtTqM8IAAAAJ&hl=esvirtual::299-1https://scholar.google.com/citations?user=88OyeaAAAAAJ&hl=es&oi=aovirtual::1713-10000-0002-7158-1223virtual::299-10000-0001-8779-8120virtual::1713-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000112399virtual::299-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000002410virtual::1713-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/1138a0c4-34d7-420b-8c79-4b58ad236d55/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALThermal analysis of the physicochemical properties of organic waste to application in the compost process.pdfThermal analysis of the physicochemical properties of organic waste to application in the compost process.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1676181https://red.uao.edu.co/bitstreams/50f5f73c-8d4e-456e-b288-fff3929d8acd/download4be2d907d61f1fa09ab9a08c150d040bMD53TEXTThermal analysis of the physicochemical properties of organic waste to application in the compost process.pdf.txtThermal analysis of the physicochemical properties of organic waste to application in the compost process.pdf.txtExtracted texttext/plain46512https://red.uao.edu.co/bitstreams/e50792d5-e348-482b-90c5-131820001d04/downloadc1f63c07d93b8ead37a3e6c0a6b95f68MD54THUMBNAILThermal analysis of the physicochemical properties of organic waste to application in the compost process.pdf.jpgThermal analysis of the physicochemical properties of organic waste to application in the compost process.pdf.jpgGenerated Thumbnailimage/jpeg14510https://red.uao.edu.co/bitstreams/02adb560-3624-4571-aedc-dff5d4d62a79/downloadf35562f00ba4c850d7d4c8918bf920e8MD5510614/13870oai:red.uao.edu.co:10614/138702024-03-05 10:05:52.912https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados Revista Biomass Conversion and Biorefinery, 2021open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K