Approach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities

In microgrid projects, social ownership involves aspects beyond their operation that may compromise the sustainability of the system. For this reason, the development of analysis methods to assess the feasibility and impact during the design stages of these solutions is of growing interest. Recent s...

Full description

Autores:
Paredes Valencia, Carlos Mario
Bayona, Andrés Felipe
Martínez Castro, Diego
Crespo, Alfonso
González Potes, Apolinar
Simo, José
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13874
Acceso en línea:
https://hdl.handle.net/10614/13874
https://red.uao.edu.co/
Palabra clave:
Microrredes
Electrificación rural
Desarrollo sostenible
Environmental assessment
Isolated communities
Microgrid
Socio-economic impact
Socio technological impact
Techno-economic assessment
Rights
openAccess
License
Derechos reservados - MDPI, 2021
id REPOUAO2_1f0cc04d95b42495f52e37b45b30f373
oai_identifier_str oai:red.uao.edu.co:10614/13874
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Approach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities
title Approach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities
spellingShingle Approach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities
Microrredes
Electrificación rural
Desarrollo sostenible
Environmental assessment
Isolated communities
Microgrid
Socio-economic impact
Socio technological impact
Techno-economic assessment
title_short Approach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities
title_full Approach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities
title_fullStr Approach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities
title_full_unstemmed Approach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities
title_sort Approach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities
dc.creator.fl_str_mv Paredes Valencia, Carlos Mario
Bayona, Andrés Felipe
Martínez Castro, Diego
Crespo, Alfonso
González Potes, Apolinar
Simo, José
dc.contributor.author.none.fl_str_mv Paredes Valencia, Carlos Mario
Bayona, Andrés Felipe
Martínez Castro, Diego
Crespo, Alfonso
González Potes, Apolinar
Simo, José
dc.subject.none.fl_str_mv
dc.subject.spa.fl_str_mv Microrredes
Electrificación rural
Desarrollo sostenible
topic Microrredes
Electrificación rural
Desarrollo sostenible
Environmental assessment
Isolated communities
Microgrid
Socio-economic impact
Socio technological impact
Techno-economic assessment
dc.subject.proposal.eng.fl_str_mv Environmental assessment
Isolated communities
Microgrid
Socio-economic impact
Socio technological impact
Techno-economic assessment
description In microgrid projects, social ownership involves aspects beyond their operation that may compromise the sustainability of the system. For this reason, the development of analysis methods to assess the feasibility and impact during the design stages of these solutions is of growing interest. Recent studies have proposed methods that allow an individual analysis of technological components and social behaviors. However, a complete evaluation of the performance and the impact of these projects should allow the simultaneous evaluation of the behavior of these subsystems, allowing the analysis of their interactions and effects in a dynamic way. Accordingly, this paper presents simulation and emulation models to evaluate the impact of a microgrid in isolated communities. These models contemplate sublevels that consider the energetic, automation and computational aspects in the microgrids and a multi-agent system (MAS) that is used to study the environmental and economic impact of the microgrid through the evolution of certain indicators. The socio-technological interdependence in the operation of the isolated microgrid is analyzed through the integration of the microgrid emulation platform with the MAS. Our approach includes a comprehensive study of the performance of these projects in specific communities, in order to contribute to the design and implementation, considering the technological, economic, environmental, and social impacts
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-08-27
dc.date.accessioned.none.fl_str_mv 2022-05-16T17:14:00Z
dc.date.available.none.fl_str_mv 2022-05-16T17:14:00Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 19961073
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13874
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 19961073
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/13874
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 34
dc.relation.citationissue.spa.fl_str_mv 17
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 14
dc.relation.cites.eng.fl_str_mv Paredes, C.M.; Bayona, A.F.; Martínez, D.; Crespo, A.; González, A.; Simo, J. (2021). Approach to an Emulation Model to Evaluate the Behavior and Impact of Microgrids in Isolated Communities. Energies. Vol.14 (17), pp. 1-34.
dc.relation.ispartofjournal.eng.fl_str_mv Energies
dc.relation.references.none.fl_str_mv 1. Ajaz, W.; Bernell, D. California’s adoption of microgrids: A tale of symbiotic regimes and energy transitions. Renew. Sustain. Energy Rev. 2021, 138, 110568, doi:10.1016/j.rser.2020.110568. [CrossRef]
2. Kumar, A.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. Integrated assessment of a sustainable microgrid for a remote village in hilly region. Energy Convers. Manag. 2019, 180, 442–472. doi:10.1016/j.enconman.2018.10.084. [CrossRef]
3. Aguilar-Jiménez, J.; Velázquez, N.; Acuña, A.; Cota, R.; González, E.; González, L.; López, R.; Islas, S. Techno-economic analysis of a hybrid PV-CSP system with thermal energy storage applied to isolated microgrids. Sol. Energy 2018, 174, 55–65. doi:10.1016/j.solener.2018.08.078. [CrossRef]
4. Harris,W.; Ehsani, M. Socioeconomically sustainable rural microgrid engineering design. In Proceedings of the GHTC 2017—IEEE Global Humanitarian Technology Conference, San Jose, CA, USA, 19–22 October 2017; pp. 1–9. doi:10.1109/GHTC.2017.8239319. [CrossRef]
5. Rahmann, C.; Núñez-Mata, O.; Valencia, F.; Arrechea, S.; Sager, J.; Kammen, D. Methodology for Monitoring Sustainable Development of Isolated Microgrids in Rural Communities. Sustainability 2016, 8, 1163, doi:10.3390/su8111163. [CrossRef]
6. Akhtari, M.R.; Baneshi, M. Techno-economic assessment and optimization of a hybrid renewable co-supply of electricity, heat and hydrogen system to enhance performance by recovering excess electricity for a large energy consumer. Energy Convers. Manag. 2019, 188, 131–141. doi:10.1016/j.enconman.2019.03.067. [CrossRef]
7. Groppi, D.; Astiaso Garcia, D.; Lo Basso, G.; De Santoli, L. Synergy between smart energy systems simulation tools for greening small Mediterranean islands. Renew. Energy 2019, 135, 515–524. doi:10.1016/j.renene.2018.12.043. [CrossRef]
8. Baneshi, M.; Hadianfard, F. Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions. Energy Convers. Manag. 2016, 127, 233–244. doi:10.1016/j.enconman.2016.09.008. [CrossRef]
9. Fazelpour, F.; Soltani, N.; Rosen, M.A. Economic analysis of standalone hybrid energy systems for application in Tehran, Iran. Int. J. Hydrog. Energy 2016, 41, 7732–7743. doi:10.1016/j.ijhydene.2016.01.113. [CrossRef]
10. Echave, C.; Ceh, D.; Boulanger, A.; Shaw-Taberlet, J. An Ecosystemic Approach for Energy Transition in the Mediterranean Region. In Proceedings of the 2019 1st International Conference on Energy Transition in the Mediterranean Area (SyNERGY MED), Cagliari, Italy, 28–30 May 2019; pp. 1–5. doi:10.1109/SyNERGY-MED.2019.8764107. [CrossRef]
11. Palma-Behnke, R.; Jiménez-Estévez, G.A.; Sáez, D.; Montedonico, M.; Mendoza-Araya, P.; Hernández, R.; Muñoz Poblete, C. Lowering Electricity Access Barriers by Means of Participative Processes Applied to Microgrid Solutions: The Chilean Case. Proc. IEEE 2019, 107, 1857–1871. doi:10.1109/JPROC.2019.2922342. [CrossRef]
12. Wolsink, M. The research agenda on social acceptance of distributed generation in smart grids: Renewable as common pool resources. Renew. Sustain. Energy Rev. 2012, 16, 822–835. doi:10.1016/j.rser.2011.09.006. [CrossRef]
13. Kappagantu, R.; Daniel, S.A. Challenges and issues of smart grid implementation: A case of Indian scenario. J. Electr. Syst. Inf. Technol. 2018, 5, 453–467. doi:10.1016/j.jesit.2018.01.002. [CrossRef]
14. Passino, K.M. Humanitarian Engineering: Creating Technologies That Help People; Bede Publishing: Columbus, OH, USA, 2015.
15. Gamarra, C.; Guerrero, J.M. Computational optimization techniques applied to microgrids planning: A review. Renew. Sustain. Energy Rev. 2015, 48, 413–424. doi:10.1016/j.rser.2015.04.025. [CrossRef]
16. Ahmad, F.; Alam, M.S. Economic and ecological aspects for microgrids deployment in India. Sustain. Cities Soc. 2018, 37, 407– 419. [CrossRef]
17. Xiao, D.; do Prado, J.C.; Qiao,W. Optimal joint demand and virtual bidding for a strategic retailer in the short-term electricity market. Electr. Power Syst. Res. 2021, 190, 106855, doi:10.1016/j.epsr.2020.106855. [CrossRef]
18. Xiao, D.; AlAshery, M.K.; Qiao, W. Optimal Price-Maker Trading Strategy of Wind Power Producer using Virtual Bidding. J. Mod. Power Syst. Clean Energy 2021, 1–13. doi:10.35833/MPCE.2020.000070. [CrossRef]
19. Williams, N.J.; Jaramillo, P.; Taneja, J. An investment risk assessment of microgrid utilities for rural electrification using the stochastic techno-economic microgrid model: A case study in Rwanda. Energy Sustain. Dev. 2018, 42, 87–96. doi:10.1016/j.esd.2017.09.012. [CrossRef]
20. Nagapurkar, P.; Smith, J.D. Techno-economic optimization and social costs assessment of microgrid-conventional grid integration using genetic algorithm and Artificial Neural Networks: A case study for two US cities. J. Clean. Prod. 2019, 229, 552–569. doi:10.1016/j.jclepro.2019.05.005. [CrossRef]
21. Parag, Y.; Ainspan, M. Sustainable microgrids: Economic, environmental and social costs and benefits of microgrid deployment. Energy Sustain. Dev. 2019, 52, 72–81. doi:10.1016/j.esd.2019.07.003. [CrossRef]
22. Ortega-Arriaga, P.; Babacan, O.; Nelson, J.; Gambhir, A. Grid versus off-grid electricity access options: A review on the economic and environmental impacts. Renew. Sustain. Energy Rev. 2021, 143, 110864, doi:10.1016/j.rser.2021.110864. [CrossRef]
23. Chaweewat, P.; Singh, J.G.; Ongsakul, W.; Srivastrava, A.K. Economic and environmental impact assessment with network reconfiguration in microgrid by using artificial bee colony. In Proceedings of the 2016 International Conference on Cogeneration, Small Power Plants and District Energy (ICUE), Bangkok, Thailand, 14–16 September 2016; pp. 1–7. doi:10.1109/COGEN.2016.7728971. [CrossRef]
24. Adefarati, T.; Bansal, R. Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources. Appl. Energy 2019, 236, 1089–1114. doi:10.1016/j.apenergy.2018.12.050. [CrossRef]
25. Obando-Ceron, J.S.; Arias-Castro, J.J.; Martínez-Castro, D.; Manrique-Castillo, P.A.; M-Moreno, J.C. Evaluación del Rendimiento de Modulos Solares Híbridos (FV/T) Para el Abastecimiento Energético de Autoclaves Hospitalarias. In Proceedings of the 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 22–24 August 2018; pp. 1–9. doi:10.1109/ANDESCON.2018.8564628. [CrossRef]
26. Tian, H.; Mancilla-David, F.; Ellis, K.; Muljadi, E.; Jenkins, P. A Detailed Performance Model for Photovoltaic Systems; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2012.
27. Obando Ceron, J.S.; Arias Castro, J.J.; Biomédico, I.; Mecatrónico, I. Prototipo de un Sistema de Abastecimiento Energético para Autoclave Hospitalario Soportado en Paneles Solares Híbridos (FV/T). Ph.D. Thesis, Universidad Autónoma de Occidente, Santiago de Cali, Colombia, 2017.
28. Mohamed, F. Microgrid Modelling and Simulation. Licentiate Thesis, Helsinki University of Technology, Espoo, Finland, 2006.
29. Kuang, B.; Wang, Y.; Tan, Y. An H¥ Controller Design for Diesel Engine Systems. In Proceedings of the PowerCon 2000. 2000 International Conference on Power System Technology, Perth, Australia, 4–7 December 2000; Volume 1, pp. 61–66. doi:10.1109/ICPST.2000.900032. [CrossRef]
30. Saeed, M.; Fawzy, S.; El-Saadawi, M. Modeling and simulation of biogas-fueled power system. Int. J. Green Energy 2019, 16, 125–151. doi:10.1080/15435075.2018.1549997. [CrossRef]
31. Paredes, C.M.; Alzate, R.E.; Castro, D.M.; Bayona, A.F.; García, D.R. Detection and isolation of DoS and integrity attacks in Cyber-Physical Microgrid System. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 15–18 October 2019; pp. 1–6.
32. Karbasforooshan, M.; Monfared, M. Design and implementation of a single-phase shunt active power filter based on PQ theory for current harmonic compensation in electric distribution networks. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 6389–6394. doi:10.1109/IECON.2017.8217113. [CrossRef]
33. Alexis, F.; Mera, D. Modelamiento y Control de una Microrred en Modo Isla. Master’s Thesis, Universidad de los Andes, Bogotá, Colombia, 2015.
34. Fan, Z.; Kulkarni, P.; Gormus, S.; Efthymiou, C.; Kalogridis, G.; Sooriyabandara, M.; Zhu, Z.; Lambotharan, S.; Chin, W.H. Smart grid communications: Overview of research challenges, solutions, and standardization activities. IEEE Commun. Surv. Tutor. 2013, 15, 21–38. doi:10.1109/SURV.2011.122211.00021. [CrossRef]
35. An Luu, N. Control and Management Strategies for a Microgrid. Ph.D. Thesis, Université de Grenoble, Grenoble, Francia, 2014.
36. Queiroz, J.; Leitão, P.; Dias, A. Predictive data analysis driven multi-agent system approach for electrical micro grids management. In Proceedings of the 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, 8–10 June 2016; pp. 738–743.
37. Shayanfar, H.A.; Malek, S. Photovoltaic microgrids control by the cooperative control of multi-agent systems. In Proceedings of the 30th Power System Conference, PSC 2015, Tehran, Iran, 23–25 November 2015; pp. 287–293. doi:10.1109/IPSC.2015.7827761. [CrossRef]
38. Jia, S.; Chang, J. Research on multi-agent decision-making model of wind-solar complementary power generation system. In Proceedings of the 2009 2nd International Conference on Intelligent Computing Technology and Automation, Changsha, China, 10–11 October 2009; Volume 4, pp. 7–10. doi:10.1109/ICICTA.2009.718. [CrossRef]
39. El-Rahim, A.M.A.; Abd-El-Geliel, M.; Helal, A. Micro grid energy management using multi-agent systems. In Proceedings of the 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 27–29 December 2016; pp. 772–779. doi:10.1109/MEPCON.2016.7836981. [CrossRef]
40. Palmer, J.; Sorda, G.; Madlener, R. Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation. Technol. Forecast. Soc. Chang. 2015, 99, 106–131. doi:10.1016/j.techfore.2015.06.011. [CrossRef]
41. Murakami, T. Agent-based simulations of the influence of social policy and neighboring communication on the adoption of grid-connected photovoltaics. Energy Convers. Manag. 2014, 80, 158–164. doi:10.1016/j.enconman.2014.01.033. [CrossRef]
42. Engel, E.A. Sizing of a photovoltaic system with battery on the basis of the multi-agent adaptive fuzzy neuronet. In Proceedings of the 2016 International Conference on Engineering and Telecommunication, EnT 2016, Moscow, Russia, 29–30 November 2016; pp. 49–54. doi:10.1109/EnT.2016.17. [CrossRef]
43. CEPAL Charlas Sobre Sistemas Complejos Sociales (CCSSCS). Available online: http://www.martinhilbert.net/CCSSCS.html/ (accessed on 20 September 2017).
44. Epstein, J.M.; Axtell, R.L. Growing Artificial Societies: Social Science from the Bottom Up; Brookings Institution Press: Washington, DC, USA, 1996, doi:10.7551/mitpress/3374.001.0001. [CrossRef]
45. Esmaeili, A.; Mozayani, N.; Jahed Motlagh, M.R.; Matson, E.T. A socially-based distributed self-organizing algorithm for holonic multi-agent systems: Case study in a task environment. Cogn. Syst. Res. 2017, 43, 21–44. doi:10.1016/j.cogsys.2016.12.001. [CrossRef]
46. Benavides, J.N.; Posada, J.; Campo, N.; Piedraita, M.; Concha, V.E.; López, Y. Metodología Multicriterio para la Selección de Alternativas Sostenibles de Micro Redes de Suministro de Energía Eléctrica para Zonas no Interconectadas (ZNI) de Colombia; Technical Report; Universidad Autónoma de Occidente: Cali, Colombia, 2017.
47. Autores, V. Nosotros–Ecomanglar–Archipiélago de La Plata, Bahía Málaga. 2018. Available online: http://ecomanglar.org/ nosotros/ (accessed on 13 May 2019).
48. Hardin, G. The Tragedy of the Commons. Science 1968, 162, 1243–1248. doi:10.1126/science.162.3859.1243. [CrossRef]
49. Roopnarine, P. Ecology and the Tragedy of the Commons. Sustainability 2013, 5, 749–773. doi:10.3390/su5020749. [CrossRef]
50. de Ambiente y Desarrollo Sostenible, M. Resolución 2254 de 01 Nov 2017. Por la Cual se Adopta la Norma de Calidad de Aire Ambiente y se Dictan Otras Disposiciones; Technical Report; República de Colombia: Bogotá, Colombia, 2017.
51. Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; WILEY: Hoboken, NJ, USA, 2016.
52. Gaviria, F.; Gómez, J. Metodología De Optimización Para Microrredes Eléctricas En Zonas No Interconectadas; Universidad Autónoma de Occidente: Santiago de Cali, Colombia, 2017.
53. Huss, H.H. El Pescado Fresco: Su Calidad y Cambios de Calidad. FAO—Organización de las Nacionees Unidas para Agricultura e Alimentación; Tecnológico, Ministerio Danés de Agricultura y Pesca, Universidad Tecnológica: Lyngby, Dinamarca, 1988; Volume 53, pp. 1689–1699.
54. S.A., P.V.A. Cálculo de Emisiones de Fuentes Fijas; Technical Report; InnovaAmbiente, Reporte; IDEAM: Bogotá, Colombia, 2015.
55. Ayanian, C.; Desai, S.; Malmquist, A. Control of Biodiesel Generator Set in Biomass Gasification Emulation for Use in Emergency Energy Module (EEM); Department of Energy Technology, Royal Institute of Sweden: Stockholm, Sweden, 2016
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 2021
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 34 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.source.eng.fl_str_mv https://www.mdpi.com/1996-1073/14/17/5316
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/3d7bca3b-c36c-49a2-8337-9937250ca8f1/download
https://red.uao.edu.co/bitstreams/24c23890-345b-4cc7-b4e1-a3696913f1d1/download
https://red.uao.edu.co/bitstreams/9b5e5844-e72e-4806-b228-bd0701cab56d/download
https://red.uao.edu.co/bitstreams/8ee004d6-3e69-4397-90ee-95a704eadfc0/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
846e57d813a012ab3dfad10091421149
ba89da3943dc3d9f4d9b02bd3057634d
911fc9d59c9c0aa4cb3afb8cc1950122
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260136819032064
spelling Paredes Valencia, Carlos Mario7062f8c8f06333d94e05cd4e8ebad000Bayona, Andrés Felipe0669079af8b4531277ddc9ceeea7c11aMartínez Castro, Diegovirtual::2995-1Crespo, Alfonsoe35b5c45de1d81eb536c2150f6010c5aGonzález Potes, Apolinar6cb3c33f20a94d4c3fe8d832392f1cfaSimo, José950ad51837f952547b6aaf4f3dd6c2b92022-05-16T17:14:00Z2022-05-16T17:14:00Z2021-08-2719961073https://hdl.handle.net/10614/13874Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/In microgrid projects, social ownership involves aspects beyond their operation that may compromise the sustainability of the system. For this reason, the development of analysis methods to assess the feasibility and impact during the design stages of these solutions is of growing interest. Recent studies have proposed methods that allow an individual analysis of technological components and social behaviors. However, a complete evaluation of the performance and the impact of these projects should allow the simultaneous evaluation of the behavior of these subsystems, allowing the analysis of their interactions and effects in a dynamic way. Accordingly, this paper presents simulation and emulation models to evaluate the impact of a microgrid in isolated communities. These models contemplate sublevels that consider the energetic, automation and computational aspects in the microgrids and a multi-agent system (MAS) that is used to study the environmental and economic impact of the microgrid through the evolution of certain indicators. The socio-technological interdependence in the operation of the isolated microgrid is analyzed through the integration of the microgrid emulation platform with the MAS. Our approach includes a comprehensive study of the performance of these projects in specific communities, in order to contribute to the design and implementation, considering the technological, economic, environmental, and social impacts34 páginasapplication/pdfengMDPIDerechos reservados - MDPI, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.mdpi.com/1996-1073/14/17/5316MicrorredesElectrificación ruralDesarrollo sostenibleEnvironmental assessmentIsolated communitiesMicrogridSocio-economic impactSocio technological impactTechno-economic assessmentApproach to an emulation model to evaluate the behavior and impact of microgrids in isolated communitiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a853417114Paredes, C.M.; Bayona, A.F.; Martínez, D.; Crespo, A.; González, A.; Simo, J. (2021). Approach to an Emulation Model to Evaluate the Behavior and Impact of Microgrids in Isolated Communities. Energies. Vol.14 (17), pp. 1-34.Energies1. Ajaz, W.; Bernell, D. California’s adoption of microgrids: A tale of symbiotic regimes and energy transitions. Renew. Sustain. Energy Rev. 2021, 138, 110568, doi:10.1016/j.rser.2020.110568. [CrossRef]2. Kumar, A.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. Integrated assessment of a sustainable microgrid for a remote village in hilly region. Energy Convers. Manag. 2019, 180, 442–472. doi:10.1016/j.enconman.2018.10.084. [CrossRef]3. Aguilar-Jiménez, J.; Velázquez, N.; Acuña, A.; Cota, R.; González, E.; González, L.; López, R.; Islas, S. Techno-economic analysis of a hybrid PV-CSP system with thermal energy storage applied to isolated microgrids. Sol. Energy 2018, 174, 55–65. doi:10.1016/j.solener.2018.08.078. [CrossRef]4. Harris,W.; Ehsani, M. Socioeconomically sustainable rural microgrid engineering design. In Proceedings of the GHTC 2017—IEEE Global Humanitarian Technology Conference, San Jose, CA, USA, 19–22 October 2017; pp. 1–9. doi:10.1109/GHTC.2017.8239319. [CrossRef]5. Rahmann, C.; Núñez-Mata, O.; Valencia, F.; Arrechea, S.; Sager, J.; Kammen, D. Methodology for Monitoring Sustainable Development of Isolated Microgrids in Rural Communities. Sustainability 2016, 8, 1163, doi:10.3390/su8111163. [CrossRef]6. Akhtari, M.R.; Baneshi, M. Techno-economic assessment and optimization of a hybrid renewable co-supply of electricity, heat and hydrogen system to enhance performance by recovering excess electricity for a large energy consumer. Energy Convers. Manag. 2019, 188, 131–141. doi:10.1016/j.enconman.2019.03.067. [CrossRef]7. Groppi, D.; Astiaso Garcia, D.; Lo Basso, G.; De Santoli, L. Synergy between smart energy systems simulation tools for greening small Mediterranean islands. Renew. Energy 2019, 135, 515–524. doi:10.1016/j.renene.2018.12.043. [CrossRef]8. Baneshi, M.; Hadianfard, F. Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions. Energy Convers. Manag. 2016, 127, 233–244. doi:10.1016/j.enconman.2016.09.008. [CrossRef]9. Fazelpour, F.; Soltani, N.; Rosen, M.A. Economic analysis of standalone hybrid energy systems for application in Tehran, Iran. Int. J. Hydrog. Energy 2016, 41, 7732–7743. doi:10.1016/j.ijhydene.2016.01.113. [CrossRef]10. Echave, C.; Ceh, D.; Boulanger, A.; Shaw-Taberlet, J. An Ecosystemic Approach for Energy Transition in the Mediterranean Region. In Proceedings of the 2019 1st International Conference on Energy Transition in the Mediterranean Area (SyNERGY MED), Cagliari, Italy, 28–30 May 2019; pp. 1–5. doi:10.1109/SyNERGY-MED.2019.8764107. [CrossRef]11. Palma-Behnke, R.; Jiménez-Estévez, G.A.; Sáez, D.; Montedonico, M.; Mendoza-Araya, P.; Hernández, R.; Muñoz Poblete, C. Lowering Electricity Access Barriers by Means of Participative Processes Applied to Microgrid Solutions: The Chilean Case. Proc. IEEE 2019, 107, 1857–1871. doi:10.1109/JPROC.2019.2922342. [CrossRef]12. Wolsink, M. The research agenda on social acceptance of distributed generation in smart grids: Renewable as common pool resources. Renew. Sustain. Energy Rev. 2012, 16, 822–835. doi:10.1016/j.rser.2011.09.006. [CrossRef]13. Kappagantu, R.; Daniel, S.A. Challenges and issues of smart grid implementation: A case of Indian scenario. J. Electr. Syst. Inf. Technol. 2018, 5, 453–467. doi:10.1016/j.jesit.2018.01.002. [CrossRef]14. Passino, K.M. Humanitarian Engineering: Creating Technologies That Help People; Bede Publishing: Columbus, OH, USA, 2015.15. Gamarra, C.; Guerrero, J.M. Computational optimization techniques applied to microgrids planning: A review. Renew. Sustain. Energy Rev. 2015, 48, 413–424. doi:10.1016/j.rser.2015.04.025. [CrossRef]16. Ahmad, F.; Alam, M.S. Economic and ecological aspects for microgrids deployment in India. Sustain. Cities Soc. 2018, 37, 407– 419. [CrossRef]17. Xiao, D.; do Prado, J.C.; Qiao,W. Optimal joint demand and virtual bidding for a strategic retailer in the short-term electricity market. Electr. Power Syst. Res. 2021, 190, 106855, doi:10.1016/j.epsr.2020.106855. [CrossRef]18. Xiao, D.; AlAshery, M.K.; Qiao, W. Optimal Price-Maker Trading Strategy of Wind Power Producer using Virtual Bidding. J. Mod. Power Syst. Clean Energy 2021, 1–13. doi:10.35833/MPCE.2020.000070. [CrossRef]19. Williams, N.J.; Jaramillo, P.; Taneja, J. An investment risk assessment of microgrid utilities for rural electrification using the stochastic techno-economic microgrid model: A case study in Rwanda. Energy Sustain. Dev. 2018, 42, 87–96. doi:10.1016/j.esd.2017.09.012. [CrossRef]20. Nagapurkar, P.; Smith, J.D. Techno-economic optimization and social costs assessment of microgrid-conventional grid integration using genetic algorithm and Artificial Neural Networks: A case study for two US cities. J. Clean. Prod. 2019, 229, 552–569. doi:10.1016/j.jclepro.2019.05.005. [CrossRef]21. Parag, Y.; Ainspan, M. Sustainable microgrids: Economic, environmental and social costs and benefits of microgrid deployment. Energy Sustain. Dev. 2019, 52, 72–81. doi:10.1016/j.esd.2019.07.003. [CrossRef]22. Ortega-Arriaga, P.; Babacan, O.; Nelson, J.; Gambhir, A. Grid versus off-grid electricity access options: A review on the economic and environmental impacts. Renew. Sustain. Energy Rev. 2021, 143, 110864, doi:10.1016/j.rser.2021.110864. [CrossRef]23. Chaweewat, P.; Singh, J.G.; Ongsakul, W.; Srivastrava, A.K. Economic and environmental impact assessment with network reconfiguration in microgrid by using artificial bee colony. In Proceedings of the 2016 International Conference on Cogeneration, Small Power Plants and District Energy (ICUE), Bangkok, Thailand, 14–16 September 2016; pp. 1–7. doi:10.1109/COGEN.2016.7728971. [CrossRef]24. Adefarati, T.; Bansal, R. Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources. Appl. Energy 2019, 236, 1089–1114. doi:10.1016/j.apenergy.2018.12.050. [CrossRef]25. Obando-Ceron, J.S.; Arias-Castro, J.J.; Martínez-Castro, D.; Manrique-Castillo, P.A.; M-Moreno, J.C. Evaluación del Rendimiento de Modulos Solares Híbridos (FV/T) Para el Abastecimiento Energético de Autoclaves Hospitalarias. In Proceedings of the 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 22–24 August 2018; pp. 1–9. doi:10.1109/ANDESCON.2018.8564628. [CrossRef]26. Tian, H.; Mancilla-David, F.; Ellis, K.; Muljadi, E.; Jenkins, P. A Detailed Performance Model for Photovoltaic Systems; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2012.27. Obando Ceron, J.S.; Arias Castro, J.J.; Biomédico, I.; Mecatrónico, I. Prototipo de un Sistema de Abastecimiento Energético para Autoclave Hospitalario Soportado en Paneles Solares Híbridos (FV/T). Ph.D. Thesis, Universidad Autónoma de Occidente, Santiago de Cali, Colombia, 2017.28. Mohamed, F. Microgrid Modelling and Simulation. Licentiate Thesis, Helsinki University of Technology, Espoo, Finland, 2006.29. Kuang, B.; Wang, Y.; Tan, Y. An H¥ Controller Design for Diesel Engine Systems. In Proceedings of the PowerCon 2000. 2000 International Conference on Power System Technology, Perth, Australia, 4–7 December 2000; Volume 1, pp. 61–66. doi:10.1109/ICPST.2000.900032. [CrossRef]30. Saeed, M.; Fawzy, S.; El-Saadawi, M. Modeling and simulation of biogas-fueled power system. Int. J. Green Energy 2019, 16, 125–151. doi:10.1080/15435075.2018.1549997. [CrossRef]31. Paredes, C.M.; Alzate, R.E.; Castro, D.M.; Bayona, A.F.; García, D.R. Detection and isolation of DoS and integrity attacks in Cyber-Physical Microgrid System. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 15–18 October 2019; pp. 1–6.32. Karbasforooshan, M.; Monfared, M. Design and implementation of a single-phase shunt active power filter based on PQ theory for current harmonic compensation in electric distribution networks. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 6389–6394. doi:10.1109/IECON.2017.8217113. [CrossRef]33. Alexis, F.; Mera, D. Modelamiento y Control de una Microrred en Modo Isla. Master’s Thesis, Universidad de los Andes, Bogotá, Colombia, 2015.34. Fan, Z.; Kulkarni, P.; Gormus, S.; Efthymiou, C.; Kalogridis, G.; Sooriyabandara, M.; Zhu, Z.; Lambotharan, S.; Chin, W.H. Smart grid communications: Overview of research challenges, solutions, and standardization activities. IEEE Commun. Surv. Tutor. 2013, 15, 21–38. doi:10.1109/SURV.2011.122211.00021. [CrossRef]35. An Luu, N. Control and Management Strategies for a Microgrid. Ph.D. Thesis, Université de Grenoble, Grenoble, Francia, 2014.36. Queiroz, J.; Leitão, P.; Dias, A. Predictive data analysis driven multi-agent system approach for electrical micro grids management. In Proceedings of the 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, 8–10 June 2016; pp. 738–743.37. Shayanfar, H.A.; Malek, S. Photovoltaic microgrids control by the cooperative control of multi-agent systems. In Proceedings of the 30th Power System Conference, PSC 2015, Tehran, Iran, 23–25 November 2015; pp. 287–293. doi:10.1109/IPSC.2015.7827761. [CrossRef]38. Jia, S.; Chang, J. Research on multi-agent decision-making model of wind-solar complementary power generation system. In Proceedings of the 2009 2nd International Conference on Intelligent Computing Technology and Automation, Changsha, China, 10–11 October 2009; Volume 4, pp. 7–10. doi:10.1109/ICICTA.2009.718. [CrossRef]39. El-Rahim, A.M.A.; Abd-El-Geliel, M.; Helal, A. Micro grid energy management using multi-agent systems. In Proceedings of the 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 27–29 December 2016; pp. 772–779. doi:10.1109/MEPCON.2016.7836981. [CrossRef]40. Palmer, J.; Sorda, G.; Madlener, R. Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation. Technol. Forecast. Soc. Chang. 2015, 99, 106–131. doi:10.1016/j.techfore.2015.06.011. [CrossRef]41. Murakami, T. Agent-based simulations of the influence of social policy and neighboring communication on the adoption of grid-connected photovoltaics. Energy Convers. Manag. 2014, 80, 158–164. doi:10.1016/j.enconman.2014.01.033. [CrossRef]42. Engel, E.A. Sizing of a photovoltaic system with battery on the basis of the multi-agent adaptive fuzzy neuronet. In Proceedings of the 2016 International Conference on Engineering and Telecommunication, EnT 2016, Moscow, Russia, 29–30 November 2016; pp. 49–54. doi:10.1109/EnT.2016.17. [CrossRef]43. CEPAL Charlas Sobre Sistemas Complejos Sociales (CCSSCS). Available online: http://www.martinhilbert.net/CCSSCS.html/ (accessed on 20 September 2017).44. Epstein, J.M.; Axtell, R.L. Growing Artificial Societies: Social Science from the Bottom Up; Brookings Institution Press: Washington, DC, USA, 1996, doi:10.7551/mitpress/3374.001.0001. [CrossRef]45. Esmaeili, A.; Mozayani, N.; Jahed Motlagh, M.R.; Matson, E.T. A socially-based distributed self-organizing algorithm for holonic multi-agent systems: Case study in a task environment. Cogn. Syst. Res. 2017, 43, 21–44. doi:10.1016/j.cogsys.2016.12.001. [CrossRef]46. Benavides, J.N.; Posada, J.; Campo, N.; Piedraita, M.; Concha, V.E.; López, Y. Metodología Multicriterio para la Selección de Alternativas Sostenibles de Micro Redes de Suministro de Energía Eléctrica para Zonas no Interconectadas (ZNI) de Colombia; Technical Report; Universidad Autónoma de Occidente: Cali, Colombia, 2017.47. Autores, V. Nosotros–Ecomanglar–Archipiélago de La Plata, Bahía Málaga. 2018. Available online: http://ecomanglar.org/ nosotros/ (accessed on 13 May 2019).48. Hardin, G. The Tragedy of the Commons. Science 1968, 162, 1243–1248. doi:10.1126/science.162.3859.1243. [CrossRef]49. Roopnarine, P. Ecology and the Tragedy of the Commons. Sustainability 2013, 5, 749–773. doi:10.3390/su5020749. [CrossRef]50. de Ambiente y Desarrollo Sostenible, M. Resolución 2254 de 01 Nov 2017. Por la Cual se Adopta la Norma de Calidad de Aire Ambiente y se Dictan Otras Disposiciones; Technical Report; República de Colombia: Bogotá, Colombia, 2017.51. Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; WILEY: Hoboken, NJ, USA, 2016.52. Gaviria, F.; Gómez, J. Metodología De Optimización Para Microrredes Eléctricas En Zonas No Interconectadas; Universidad Autónoma de Occidente: Santiago de Cali, Colombia, 2017.53. Huss, H.H. El Pescado Fresco: Su Calidad y Cambios de Calidad. FAO—Organización de las Nacionees Unidas para Agricultura e Alimentación; Tecnológico, Ministerio Danés de Agricultura y Pesca, Universidad Tecnológica: Lyngby, Dinamarca, 1988; Volume 53, pp. 1689–1699.54. S.A., P.V.A. Cálculo de Emisiones de Fuentes Fijas; Technical Report; InnovaAmbiente, Reporte; IDEAM: Bogotá, Colombia, 2015.55. Ayanian, C.; Desai, S.; Malmquist, A. Control of Biodiesel Generator Set in Biomass Gasification Emulation for Use in Emergency Energy Module (EEM); Department of Energy Technology, Royal Institute of Sweden: Stockholm, Sweden, 2016Comunidad generalPublication16469e35-6f18-4e0c-acfe-e8a2e314fedfvirtual::2995-116469e35-6f18-4e0c-acfe-e8a2e314fedfvirtual::2995-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000195928virtual::2995-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/3d7bca3b-c36c-49a2-8337-9937250ca8f1/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALApproach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities.pdfApproach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf3670202https://red.uao.edu.co/bitstreams/24c23890-345b-4cc7-b4e1-a3696913f1d1/download846e57d813a012ab3dfad10091421149MD53TEXTApproach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities.pdf.txtApproach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities.pdf.txtExtracted texttext/plain96737https://red.uao.edu.co/bitstreams/9b5e5844-e72e-4806-b228-bd0701cab56d/downloadba89da3943dc3d9f4d9b02bd3057634dMD54THUMBNAILApproach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities.pdf.jpgApproach to an emulation model to evaluate the behavior and impact of microgrids in isolated communities.pdf.jpgGenerated Thumbnailimage/jpeg16196https://red.uao.edu.co/bitstreams/8ee004d6-3e69-4397-90ee-95a704eadfc0/download911fc9d59c9c0aa4cb3afb8cc1950122MD5510614/13874oai:red.uao.edu.co:10614/138742024-03-07 16:46:20.696https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2021open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K