Computational characterization of turbulent flow in a microfluidic actuator
In this contribution, an unsteady numerical simulation of the flow in a microfluidic oscillator has been performed. The transient turbulent flow inside the device is described by the Unsteady Reynolds Averaged Navier–Stokes equations (URANS) coupled with proper turbulence models. The main characteri...
- Autores:
-
Laín Beatove, Santiago
Lozano Parada, Jaime H.
Guzmán, Javier
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/14697
- Acceso en línea:
- https://hdl.handle.net/10614/14697
https://red.uao.edu.co/
- Palabra clave:
- Dinámica de fluidos
Fluid dynamics
Computational fluid dynamics (CFD) numerical simulation
2D and 3D unsteady analysis
Fluidic actuator
Turbulent flow
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2022
id |
REPOUAO2_1e30ead02466d78b17eeed77870785d4 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/14697 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Computational characterization of turbulent flow in a microfluidic actuator |
title |
Computational characterization of turbulent flow in a microfluidic actuator |
spellingShingle |
Computational characterization of turbulent flow in a microfluidic actuator Dinámica de fluidos Fluid dynamics Computational fluid dynamics (CFD) numerical simulation 2D and 3D unsteady analysis Fluidic actuator Turbulent flow |
title_short |
Computational characterization of turbulent flow in a microfluidic actuator |
title_full |
Computational characterization of turbulent flow in a microfluidic actuator |
title_fullStr |
Computational characterization of turbulent flow in a microfluidic actuator |
title_full_unstemmed |
Computational characterization of turbulent flow in a microfluidic actuator |
title_sort |
Computational characterization of turbulent flow in a microfluidic actuator |
dc.creator.fl_str_mv |
Laín Beatove, Santiago Lozano Parada, Jaime H. Guzmán, Javier |
dc.contributor.author.none.fl_str_mv |
Laín Beatove, Santiago Lozano Parada, Jaime H. Guzmán, Javier |
dc.subject.armarc.spa.fl_str_mv |
Dinámica de fluidos |
topic |
Dinámica de fluidos Fluid dynamics Computational fluid dynamics (CFD) numerical simulation 2D and 3D unsteady analysis Fluidic actuator Turbulent flow |
dc.subject.armarc.eng.fl_str_mv |
Fluid dynamics |
dc.subject.proposal.eng.fl_str_mv |
Computational fluid dynamics (CFD) numerical simulation 2D and 3D unsteady analysis Fluidic actuator Turbulent flow |
description |
In this contribution, an unsteady numerical simulation of the flow in a microfluidic oscillator has been performed. The transient turbulent flow inside the device is described by the Unsteady Reynolds Averaged Navier–Stokes equations (URANS) coupled with proper turbulence models. The main characteristics of the complex fluid flow inside the device along one oscillation cycle was analyzed in detail, including not only velocity contours but also the pressure and turbulent kinetic energy fields. As a result, two-dimensional simulations provided good estimations of the operating frequency of the fluidic actuator when compared with experimental measurements in a range of Reynolds numbers. Moreover, with the objective of altering the operating frequency of the apparatus and, in order to adapt it to different applications, geometrical modifications of the feedback channels were proposed and evaluated. Finally, a fully three-dimensional simulation was carried out, which allowed for the identification of intricate coherent structures revealing the complexity of the turbulent flow dynamics inside the fluidic oscillator |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-04 |
dc.date.accessioned.none.fl_str_mv |
2023-05-04T20:21:11Z |
dc.date.available.none.fl_str_mv |
2023-05-04T20:21:11Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
20763417 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/14697 |
dc.identifier.doi.none.fl_str_mv |
doi.org/10.3390/app12073589 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital UAO |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
20763417 doi.org/10.3390/app12073589 Universidad Autónoma de Occidente Repositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/14697 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
16 |
dc.relation.citationissue.spa.fl_str_mv |
7 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
12 |
dc.relation.cites.none.fl_str_mv |
Laín Beatove, S., Lozano Parada, J.H., Guzmán, J. (2022). Computational Characterization of Turbulent Flow in a Microfluidic Actuator. Applied sciences, vol. 12,(7), pp. 1-16 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Applied sciences |
dc.relation.references.none.fl_str_mv |
1. Tesar, V. Taxonomic trees of fluidic oscillators. EPJ Web Conf. 2017, 143, 02128. [CrossRef] 2. Ghanami, S.; Farhadi, M. Fluidic Oscillators Applications, Structures and Mechanisms—A review. Trans. Phenom. Nano Micro Scales 2019, 7, 9–27. 3. Guzmán, J.; Lozano-Parada, J.H.; Zimmerman, W.B.J.; Laín, S. Numerical simulation of the transient behavior of the turbulent flow in a microfluidic oscillator. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 29. [CrossRef] 4. Adhikari, A.; Schweitzer, T.; Lückoff, F.; Oberleithner, K. Design of a Fluidic Actuator with Independent Frequency and Amplitude Modulation for Control of Swirl Flame Dynamics. Fluids 2021, 6, 128. [CrossRef] 5. Cosi´c, B.; Waßmer, D.; Genin, F. Integration of Fluidic Nozzles in the New Low Emission Dual Fuel Combustion System for MGT ´ Gas Turbines. Fluids 2021, 6, 129. [CrossRef] 6. Koklu, M. Performance Assessment of Fluidic Oscillators Tested on the NASA Hump Model. Fluids 2021, 6, 74. [CrossRef] 7. Schweitzer, T.; Hörmann, M.; Bühling, B.; Bobusch, B. Switching Action of a Bistable Fluidic Amplifier for Ultrasonic Testing. Fluids 2021, 6, 171. [CrossRef] 8. Löffler, S.; Ebert, C.; Weiss, J. Fluidic-Oscillator-Based Pulsed Jet Actuators for Flow Separation Control. Fluids 2021, 6, 166. [CrossRef] 9. Fink, A.; Nett, O.; Schmidt, S.; Krüger, O.; Ebert, T.; Trottner, A.; Jander, B. Free Stream Behavior of Hydrogen Released from a Fluidic Oscillating Nozzle. Fluids 2021, 6, 245. [CrossRef] 10. Liebsch, J.; Paschereit, C.O. Oscillating Wall Jets for Active Flow Control in a Laboratory Fume Hood—Experimental Investigations. Fluids 2021, 6, 279. [CrossRef] 11. Pandhal, J.; Siswanto, A.; Kuvshinov, D.; Zimmerman, W.B.; Lawton, L.; Edwards, C. Cell Lysis and Detoxification of Cyanotoxins Using a Novel Combination of Microbubble Generation and Plasma Microreactor Technology for Ozonation. Front. Microbiol. 2018, 9, 678. [CrossRef] 12. Lozano-Parada, J.H.; Zimmerman, W.B.J. The role of kinetics in the design of plasma microreactors. Chem. Eng. Sci. 2010, 65, 4925–4930. [CrossRef] 13. Tesar, V. Fluidic Oscillators Mediating Generation of Microbubbles (Survey). Fluids 2021, 6, 77. [CrossRef] 14. Bobusch, B.C.; Woszidlo, R.; Bergada, J.M.; Nayeri, C.N.; Paschereit, C.O. Experimental Study of the Internal Flow Structures inside a Fluidic Oscillator. Exp. Fluids 2013, 54, 1559. [CrossRef] 15. Krüger, O.; Bobusch, B.; Woszidlo, R.; Paschereit, C. Numerical Modeling and Validation of the Flow in a Fluidic Oscillator. In Proceedings of the 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, USA, 27 June 2013; p. AIAA2013-3087. 16. Baghaei, M.; Bergada, J.M.; del Campo, D.; del Campo, V. Research on Fluidic Amplifiers Dimensional Modifications via Computer Simulation (CFD). In Proceedings of the 9th International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, 11–15 July 2016; p. 256. 17. Laín, S.; García, J.A. Study of four-way coupling on turbulent particle-laden jet flows. Chem. Eng. Sci. 2006, 61, 6775–6785. [CrossRef] 18. Menter, F. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA. J. 1994, 32, 269–289. [CrossRef] 19. Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [CrossRef] 20. Launder, B.E.; Reece, G.J.; Rodi, W. Progress in the Development of a Reynolds-stress Turbulence Closure. J. Fluid Mech. 1975, 68, 537–566. [CrossRef] 21. Langtry, R.B.; Menter, F. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, 2894–2906. [CrossRef] 22. Jizu Lv, P.W.; Bai, M.; Wang, Y.; Hu, C. Numerical investigation of the flow and heat behaviours of an impinging jet. Int. J. Comput. Fluid Dyn. 2014, 28, 301–315. 23. Laín, S.; Taborda, M.A.; López, O.D. Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies 2018, 11, 297. [CrossRef] 24. Karbasian, H.R.; Kim, K.C. Numerical investigations on flow structure and behavior of vortices in the dynamic stall of an oscillating pitching hydrofoil. Ocean. Eng. 2016, 127, 200–211. [CrossRef] 25. Hærvig, J.; Sørensen, K.; Condra, T.J. On the fully-developed heat transfer enhancing flow field in sinusoidally, spirally corrugated tubes using computational fluid dynamics. Int. J. Heat Mass Transf. 2017, 106, 1051–1062. [CrossRef] 26. Sudo, K.; Sumida, M.; Hibara, H. Experimental investigation of turbulent flow in a square-sectioned 90-degree bend. Exp. Fluids 2001, 30, 246–252. [CrossRef] 27. Sommerfeld, M.; Laín, S. Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach. Can. J. Chem. Eng. 2015, 93, 1–17. [CrossRef] 28. Hunt, J.C.R.; Wray, A.A.; Moin, P. Eddies, streams, and convergence zones in turbulent flows. Cent. Turbul. Res. Proc. Summer Program. 1988, 1, 193–208. |
dc.rights.spa.fl_str_mv |
Derechos reservados - MDPI, 2022 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - MDPI, 2022 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
16 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
dc.publisher.place.spa.fl_str_mv |
Basel, Suiza |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/863de2e2-fcc0-4c21-9701-93938a984c50/download https://red.uao.edu.co/bitstreams/21e4a707-28ad-492c-b3e4-7b1ecef38946/download https://red.uao.edu.co/bitstreams/e7c280a9-4db5-4aaf-afce-f54d44583890/download https://red.uao.edu.co/bitstreams/c09e7889-cdcd-41c0-b191-90ed80a7f9d1/download |
bitstream.checksum.fl_str_mv |
e442aa9514920279c14ce538ad172cf9 20b5ba22b1117f71589c7318baa2c560 9cb0e51bd36a77c2d81086ce9245ffaa 8a78a08e77473d732e75246421d7df36 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259902061740032 |
spelling |
Laín Beatove, Santiagovirtual::2576-1Lozano Parada, Jaime H.9ed5492cb1f07c16916fafe2c5663a7aGuzmán, Javier48badecca42ebb675d0c58f7b5719b952023-05-04T20:21:11Z2023-05-04T20:21:11Z2022-0420763417https://hdl.handle.net/10614/14697doi.org/10.3390/app12073589Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/In this contribution, an unsteady numerical simulation of the flow in a microfluidic oscillator has been performed. The transient turbulent flow inside the device is described by the Unsteady Reynolds Averaged Navier–Stokes equations (URANS) coupled with proper turbulence models. The main characteristics of the complex fluid flow inside the device along one oscillation cycle was analyzed in detail, including not only velocity contours but also the pressure and turbulent kinetic energy fields. As a result, two-dimensional simulations provided good estimations of the operating frequency of the fluidic actuator when compared with experimental measurements in a range of Reynolds numbers. Moreover, with the objective of altering the operating frequency of the apparatus and, in order to adapt it to different applications, geometrical modifications of the feedback channels were proposed and evaluated. Finally, a fully three-dimensional simulation was carried out, which allowed for the identification of intricate coherent structures revealing the complexity of the turbulent flow dynamics inside the fluidic oscillator 16 páginasapplication/pdfengMDPIBasel, SuizaDerechos reservados - MDPI, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Computational characterization of turbulent flow in a microfluidic actuatorArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Dinámica de fluidosFluid dynamicsComputational fluid dynamics (CFD) numerical simulation2D and 3D unsteady analysisFluidic actuatorTurbulent flow167112Laín Beatove, S., Lozano Parada, J.H., Guzmán, J. (2022). Computational Characterization of Turbulent Flow in a Microfluidic Actuator. Applied sciences, vol. 12,(7), pp. 1-16Applied sciences1. Tesar, V. Taxonomic trees of fluidic oscillators. EPJ Web Conf. 2017, 143, 02128. [CrossRef]2. Ghanami, S.; Farhadi, M. Fluidic Oscillators Applications, Structures and Mechanisms—A review. Trans. Phenom. Nano Micro Scales 2019, 7, 9–27.3. Guzmán, J.; Lozano-Parada, J.H.; Zimmerman, W.B.J.; Laín, S. Numerical simulation of the transient behavior of the turbulent flow in a microfluidic oscillator. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 29. [CrossRef]4. Adhikari, A.; Schweitzer, T.; Lückoff, F.; Oberleithner, K. Design of a Fluidic Actuator with Independent Frequency and Amplitude Modulation for Control of Swirl Flame Dynamics. Fluids 2021, 6, 128. [CrossRef]5. Cosi´c, B.; Waßmer, D.; Genin, F. Integration of Fluidic Nozzles in the New Low Emission Dual Fuel Combustion System for MGT ´ Gas Turbines. Fluids 2021, 6, 129. [CrossRef]6. Koklu, M. Performance Assessment of Fluidic Oscillators Tested on the NASA Hump Model. Fluids 2021, 6, 74. [CrossRef]7. Schweitzer, T.; Hörmann, M.; Bühling, B.; Bobusch, B. Switching Action of a Bistable Fluidic Amplifier for Ultrasonic Testing. Fluids 2021, 6, 171. [CrossRef]8. Löffler, S.; Ebert, C.; Weiss, J. Fluidic-Oscillator-Based Pulsed Jet Actuators for Flow Separation Control. Fluids 2021, 6, 166. [CrossRef]9. Fink, A.; Nett, O.; Schmidt, S.; Krüger, O.; Ebert, T.; Trottner, A.; Jander, B. Free Stream Behavior of Hydrogen Released from a Fluidic Oscillating Nozzle. Fluids 2021, 6, 245. [CrossRef]10. Liebsch, J.; Paschereit, C.O. Oscillating Wall Jets for Active Flow Control in a Laboratory Fume Hood—Experimental Investigations. Fluids 2021, 6, 279. [CrossRef]11. Pandhal, J.; Siswanto, A.; Kuvshinov, D.; Zimmerman, W.B.; Lawton, L.; Edwards, C. Cell Lysis and Detoxification of Cyanotoxins Using a Novel Combination of Microbubble Generation and Plasma Microreactor Technology for Ozonation. Front. Microbiol. 2018, 9, 678. [CrossRef]12. Lozano-Parada, J.H.; Zimmerman, W.B.J. The role of kinetics in the design of plasma microreactors. Chem. Eng. Sci. 2010, 65, 4925–4930. [CrossRef]13. Tesar, V. Fluidic Oscillators Mediating Generation of Microbubbles (Survey). Fluids 2021, 6, 77. [CrossRef]14. Bobusch, B.C.; Woszidlo, R.; Bergada, J.M.; Nayeri, C.N.; Paschereit, C.O. Experimental Study of the Internal Flow Structures inside a Fluidic Oscillator. Exp. Fluids 2013, 54, 1559. [CrossRef]15. Krüger, O.; Bobusch, B.; Woszidlo, R.; Paschereit, C. Numerical Modeling and Validation of the Flow in a Fluidic Oscillator. In Proceedings of the 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, USA, 27 June 2013; p. AIAA2013-3087.16. Baghaei, M.; Bergada, J.M.; del Campo, D.; del Campo, V. Research on Fluidic Amplifiers Dimensional Modifications via Computer Simulation (CFD). In Proceedings of the 9th International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, 11–15 July 2016; p. 256.17. Laín, S.; García, J.A. Study of four-way coupling on turbulent particle-laden jet flows. Chem. Eng. Sci. 2006, 61, 6775–6785. [CrossRef]18. Menter, F. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA. J. 1994, 32, 269–289. [CrossRef]19. Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [CrossRef]20. Launder, B.E.; Reece, G.J.; Rodi, W. Progress in the Development of a Reynolds-stress Turbulence Closure. J. Fluid Mech. 1975, 68, 537–566. [CrossRef]21. Langtry, R.B.; Menter, F. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, 2894–2906. [CrossRef]22. Jizu Lv, P.W.; Bai, M.; Wang, Y.; Hu, C. Numerical investigation of the flow and heat behaviours of an impinging jet. Int. J. Comput. Fluid Dyn. 2014, 28, 301–315.23. Laín, S.; Taborda, M.A.; López, O.D. Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies 2018, 11, 297. [CrossRef]24. Karbasian, H.R.; Kim, K.C. Numerical investigations on flow structure and behavior of vortices in the dynamic stall of an oscillating pitching hydrofoil. Ocean. Eng. 2016, 127, 200–211. [CrossRef]25. Hærvig, J.; Sørensen, K.; Condra, T.J. On the fully-developed heat transfer enhancing flow field in sinusoidally, spirally corrugated tubes using computational fluid dynamics. Int. J. Heat Mass Transf. 2017, 106, 1051–1062. [CrossRef]26. Sudo, K.; Sumida, M.; Hibara, H. Experimental investigation of turbulent flow in a square-sectioned 90-degree bend. Exp. Fluids 2001, 30, 246–252. [CrossRef]27. Sommerfeld, M.; Laín, S. Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach. Can. J. Chem. Eng. 2015, 93, 1–17. [CrossRef]28. Hunt, J.C.R.; Wray, A.A.; Moin, P. Eddies, streams, and convergence zones in turbulent flows. Cent. Turbul. Res. Proc. Summer Program. 1988, 1, 193–208.Comunidad generalPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2576-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2576-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2576-10000-0002-0269-2608virtual::2576-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2576-1ORIGINALComputational_Characterization_of_Turbulent_Flow_in_a_Microfluidic_Actuator.pdfComputational_Characterization_of_Turbulent_Flow_in_a_Microfluidic_Actuator.pdftexto completo del artículoapplication/pdf5470297https://red.uao.edu.co/bitstreams/863de2e2-fcc0-4c21-9701-93938a984c50/downloade442aa9514920279c14ce538ad172cf9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/21e4a707-28ad-492c-b3e4-7b1ecef38946/download20b5ba22b1117f71589c7318baa2c560MD52TEXTComputational_Characterization_of_Turbulent_Flow_in_a_Microfluidic_Actuator.pdf.txtComputational_Characterization_of_Turbulent_Flow_in_a_Microfluidic_Actuator.pdf.txtExtracted texttext/plain78296https://red.uao.edu.co/bitstreams/e7c280a9-4db5-4aaf-afce-f54d44583890/download9cb0e51bd36a77c2d81086ce9245ffaaMD53THUMBNAILComputational_Characterization_of_Turbulent_Flow_in_a_Microfluidic_Actuator.pdf.jpgComputational_Characterization_of_Turbulent_Flow_in_a_Microfluidic_Actuator.pdf.jpgGenerated Thumbnailimage/jpeg15820https://red.uao.edu.co/bitstreams/c09e7889-cdcd-41c0-b191-90ed80a7f9d1/download8a78a08e77473d732e75246421d7df36MD5410614/14697oai:red.uao.edu.co:10614/146972024-03-19 11:34:44.808https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |