Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine
In this contribution, unsteady three-dimensional numerical simulations of the water flow through a horizontal axis hydrokinetic turbine (HAHT) of the Garman type are performed. This study was conducted in order to estimate the influence of turbine inclination with respect to the incoming flow on tur...
- Autores:
-
Laín Beatove, Santiago
López Mejía, Omar Darío
Contreras Montoya, Leidy Tatiana
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11385
- Acceso en línea:
- http://hdl.handle.net/10614/11385
https://doi.org/10.3390/en11113151
- Palabra clave:
- Dinámica de fluidos
Fluid dynamics
Computational fluid dynamics
Three-dimensional unsteady flow
Inclined axis hydrokinetic turbine
Turbulent flow
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_1dfe753612f8cc010241ce9408505089 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11385 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine |
title |
Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine |
spellingShingle |
Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine Dinámica de fluidos Fluid dynamics Computational fluid dynamics Three-dimensional unsteady flow Inclined axis hydrokinetic turbine Turbulent flow |
title_short |
Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine |
title_full |
Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine |
title_fullStr |
Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine |
title_full_unstemmed |
Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine |
title_sort |
Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine |
dc.creator.fl_str_mv |
Laín Beatove, Santiago López Mejía, Omar Darío Contreras Montoya, Leidy Tatiana |
dc.contributor.author.none.fl_str_mv |
Laín Beatove, Santiago López Mejía, Omar Darío Contreras Montoya, Leidy Tatiana |
dc.subject.lemb.spa.fl_str_mv |
Dinámica de fluidos |
topic |
Dinámica de fluidos Fluid dynamics Computational fluid dynamics Three-dimensional unsteady flow Inclined axis hydrokinetic turbine Turbulent flow |
dc.subject.lemb.eng.fl_str_mv |
Fluid dynamics |
dc.subject.proposal.eng.fl_str_mv |
Computational fluid dynamics Three-dimensional unsteady flow Inclined axis hydrokinetic turbine Turbulent flow |
description |
In this contribution, unsteady three-dimensional numerical simulations of the water flow through a horizontal axis hydrokinetic turbine (HAHT) of the Garman type are performed. This study was conducted in order to estimate the influence of turbine inclination with respect to the incoming flow on turbine performance and forces acting on the rotor, which is studied using a time-accurate Reynolds-averaged Navier-Stokes (RANS) commercial solver. Changes of the flow in time are described by a physical transient model based on two domains, one rotating and the other stationary, combined with a sliding mesh technique. Flow turbulence is described by the well-established Shear Stress Transport (SST) model using its standard and transitional versions. Three inclined operation conditions have been analyzed for the turbine regarding the main stream: 0◦ (SP configuration, shaft parallel to incoming velocity), 15◦ (SI15 configuration), and 30◦ (SI30 configuration). It was found that the hydrodynamic efficiency of the turbine decreases with increasing inclination angles. Besides, it was obtained that in the inclined configurations, the thrust and drag forces acting on rotor were lower than in the SP configuration, although in the former cases, blades experience alternating loads that may induce failure due to fatigue in the long term. Moreover, if the boundary layer transitional effects are included in the computations, a slight increase in the power coefficient is computed for all inclination configurations |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018-11-14 |
dc.date.accessioned.none.fl_str_mv |
2019-11-01T20:57:06Z |
dc.date.available.none.fl_str_mv |
2019-11-01T20:57:06Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1996-1073 (en línea) |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11385 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.3390/en11113151 |
identifier_str_mv |
1996-1073 (en línea) |
url |
http://hdl.handle.net/10614/11385 https://doi.org/10.3390/en11113151 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationissue.none.fl_str_mv |
11 |
dc.relation.citationvolume.none.fl_str_mv |
11 |
dc.relation.cites.spa.fl_str_mv |
Contreras, L., Lopez, O., y Lain, S. (2018). Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine. Energies, 11(11), 3151 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Energies |
dc.relation.references.none.fl_str_mv |
1. Silva, P.A.S.F. Estudo Numérico de Turbinas Hidrocinéticas de Eixo Horizontal. Master’s Thesis, University of Brasilia, Brasília, Brazil, 2014. 2. Khan, M.J.; Iqbal, M.T.; Quaicoe, J.E. River current energy conversion systems: Progress, prospects and challenges. Renew. Sustain. Energy Rev. 2008, 12, 2177–2193. [CrossRef] 3. Güney, M.S.; Kaygusuz, K. Hydrokinetic energy conversion systems: A technology status review. Renew. Sustain. Energy Rev. 2010, 14, 2996–3004. [CrossRef] 4. Muratoglu, A.; Yuce, M.I. Design of a river hydrokinetic turbine using optimization and CFD Simulations. J. Energy Eng. 2017, 143. [CrossRef] 5. Gaden, D.L. An Investigation of River Kinetic Turbines: Performance Enhancements, Turbine Modeling Techniques, and an Assessment of Turbulence Models. Ph.D. Thesis, University of Manitoba, Winnipeg, MB, Canada, 2007. 6. Guney, M.S. Evaluation and measures to increase performance coefficient of hydrokinetic turbines. Renew. Sustain. Energy Rev. 2011, 15, 3669–3675. [CrossRef] 7. Bai, G.; Li, J.; Fan, P.; Li, G. Numerical investigations of the effects of different arrays on power extractions of horizontal axis tidal current turbines. Renew. Energy 2013, 53, 180–186. [CrossRef] 8. Van Els, R.H.; Junior, A.C.P.B. The Brazilian experience with hydrokinetic turbines. Energy Procedia 2015, 75, 259–264. [CrossRef] 9. López, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type cross flow water turbines. J. Renew. Sustain. Energy 2016, 8, 014501. [CrossRef] 10. Kang, S.; Borazjani, I.; Colby, J.A.; Sotiropoulos, F. Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine. Adv. Water Resour. 2012, 39, 33–43. [CrossRef] 11. Wu, H.; Chen, L.; Yu, M.; Li, W.; Chen, B. On design and performance prediction of the horizontal axis wáter turbine. Ocean Eng. 2012, 50, 23–30. [CrossRef] 12. Guo, Q.; Zhou, L.J.; Xiao, Y.X.; Wang, Z.W. Flow field characteristics analysis of a horizontal axis marine current turbine by large eddy simulation. IOP Conf. Ser. Mater. Sci. Eng. 2013, 52, 052017. [CrossRef] 13. Malki, R.; Williams, A.J.; Croft, T.N.; Togneri, M.; Masters, I. A coupled blade element momentum—Computational fluid dynamics model for evaluating tidal stream turbine performance. Appl. Math. Model. 2013, 37, 3006–3020. [CrossRef] 14. Guo, Q.; Zhou, L.; Wang, Z. Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine. Renew. Energy 2015, 75, 640–648. [CrossRef] 15. Masters, I.; Williams, A.T.; Croft, N.; Michael, T.; Edmunds, M.; Zangiabadi, E.; Fairley, L.; Karunarathna, H. A Comparison of numerical modelling techniques for tidal stream turbine analysis. Energies 2015, 8, 7833–7853. [CrossRef] 16. Zhang, Y.; Zhang, J.; Zheng, Y.; Yang, C.; Zang, W.; Fernandez-Rodriguez, E. Experimental analysis and evaluation of the numerical prediction of wake characteristics of tidal stream turbine. Energies 2017, 10, 2057. [CrossRef] 17. Lee, J.H.; Park, S.; Kim, D.H.; Rhee, S.H.; Kim, M.C. Computational methods for performance analysis of horizontal axis tidal stream turbines. Appl. Energy 2012, 98, 512–523. [CrossRef] 18. Al Mamun, N.H. Utilization of River Current for Small Scale Electricity Generation in Bangladesh. Master’s Thesis, University of Bangladesh, Dhaka, Bangladesh, 2001. 19. Islam, A.S.; Al-Mamun, N.H.; Islam, M.Q.; Infield, D.G. Energy from river current for small scale electricity generation in Bangladesh. In Proceedings of the Conference C76 of the Solar Energy Society, Belfast, UK, 10–11 September 2001; pp. 207–213. 20. Chiroque, J.; Dávila, C. Microaerogenerador IT-PE-100 Para Electrificación Rural; Soluciones Prácticas-ITDG: Lima, Perú, 2012. (In Spanish) 21. Menter, F.R. Zonal two equation k-turbulence models for aerodynamic flows. In Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993. [CrossRef] 22. Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 269–289. [CrossRef] 23. Langtry, R.B.; Menter, F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, 2894–2906. [CrossRef] 24. Balduzzi, F.; Bianchini, A.; Malece, R.; Ferrara, G.; Ferrari, L. Critical issues in the CFD simulation of Darrieus wind turbines. Renew. Energy 2016, 85, 419–435. [CrossRef] 25. Burton, T.; Sharpe, D.; Jenkins, N.; Bossanyi, E. Wind Energy Handbook; JohnWiley & Sons, Ltd.: New York, NY, USA, 2001. 26. Laín, S.; Taborda, M.A.; López, O.D. Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies 2018, 11, 297. [CrossRef] 27. Marsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G. The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines. Renew. Energy 2017, 105, 106–116. [CrossRef] 28. Chiroque, J.; Sánchez, T.; Dávila, C. Microaerogeneradores de 100 y 500W-Modelos IT-PE-100 y SP-500; Soluciones Prácticas-ITDG: Lima, Perú, 2008. (In Spanish) 29. Marten, D.; Wendler, J.; Pechlivanoglou, G.; Nayeri, C.N.; Paschereit, C.O. Qblade: An open source tool for design and simulation of horizontal and vertical axis wind turbines. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 264–269. 30. Mukherji, S.S. Design and Critical Performance Evaluation of Horizontal Axis Hydrokinetic Turbines. Master’s Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2010. 31. Kolekar, N.; Hu, Z.; Banerjee, A.; Du, X. Hydrodynamic design and optimization of hydro-kinetic turbines using a robust design method. In Proceedings of the 1st Marine Energy Technology Symposium (METS13), Washington,WA, USA, 10–11 April 2013. 32. Harrison, M.E.; Batten, W.M.J.; Myers, L.E.; Bahaj, A.S. Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renew. Power Gener. 2010, 4, 613–627. [CrossRef] 33. Suatean, B.; Colidiuc, A.; Galetuse, S. CFD methods for wind turbines. In Proceedings of the 9th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences: ICNPAA, Vienna, Austria, 10–14 July 2012; pp. 998–1002. 34. Bahaj, A.S.; Batten, W.M.J.; McCann, G. Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renew. Energy 2007, 32, 2479–2490. [CrossRef] 35. Sommerfeld, M.; Laín, S. From elementary processes to the numerical prediction of industrial particle-laden flows. Multiph. Sci. Technol. 2009, 21, 123–140. [CrossRef] 36. Laín, S.; García, M.; Quintero, B.; Orrego, S. CFD numerical simulations of Francis turbines. Rev. Fac. Ing. Univ. Antioq. 2010, 51, 24–33. 37. Caballero, A.D.; Laín, S. Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. Comput. Methods Biomech. Biomed. Eng. 2015, 18, 1200–1216. [CrossRef] [PubMed] |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
23 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.spa.fl_str_mv |
MDPI |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/0050c482-e7fe-45a5-83c8-f75e1c7d10a3/download https://red.uao.edu.co/bitstreams/098000ef-909e-44eb-8006-294f49ae779e/download https://red.uao.edu.co/bitstreams/8c4abcef-11dc-47ef-981f-aa67328aee41/download https://red.uao.edu.co/bitstreams/a30a6a0c-5807-4054-a6e4-3666c8bdef69/download https://red.uao.edu.co/bitstreams/0d097a77-8725-47c2-ab5c-c16019163612/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 dfa832e3a96d23cff10a8cd373960dde b0ae5f2d240758c46c49851bf6fab242 56e396f6b3ee745cac010dce6935e977 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259933397385216 |
spelling |
Laín Beatove, Santiagovirtual::2565-1López Mejía, Omar Darío9587264ae58bf04da9c0d781444c2710Contreras Montoya, Leidy Tatianaa9646bffbcc08ad25222afa2be038c2bUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-01T20:57:06Z2019-11-01T20:57:06Z2018-11-141996-1073 (en línea)http://hdl.handle.net/10614/11385https://doi.org/10.3390/en11113151In this contribution, unsteady three-dimensional numerical simulations of the water flow through a horizontal axis hydrokinetic turbine (HAHT) of the Garman type are performed. This study was conducted in order to estimate the influence of turbine inclination with respect to the incoming flow on turbine performance and forces acting on the rotor, which is studied using a time-accurate Reynolds-averaged Navier-Stokes (RANS) commercial solver. Changes of the flow in time are described by a physical transient model based on two domains, one rotating and the other stationary, combined with a sliding mesh technique. Flow turbulence is described by the well-established Shear Stress Transport (SST) model using its standard and transitional versions. Three inclined operation conditions have been analyzed for the turbine regarding the main stream: 0◦ (SP configuration, shaft parallel to incoming velocity), 15◦ (SI15 configuration), and 30◦ (SI30 configuration). It was found that the hydrodynamic efficiency of the turbine decreases with increasing inclination angles. Besides, it was obtained that in the inclined configurations, the thrust and drag forces acting on rotor were lower than in the SP configuration, although in the former cases, blades experience alternating loads that may induce failure due to fatigue in the long term. Moreover, if the boundary layer transitional effects are included in the computations, a slight increase in the power coefficient is computed for all inclination configurationsapplication/pdf23 páginasengMDPIDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbineArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Dinámica de fluidosFluid dynamicsComputational fluid dynamicsThree-dimensional unsteady flowInclined axis hydrokinetic turbineTurbulent flow1111Contreras, L., Lopez, O., y Lain, S. (2018). Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine. Energies, 11(11), 3151Energies1. Silva, P.A.S.F. Estudo Numérico de Turbinas Hidrocinéticas de Eixo Horizontal. Master’s Thesis, University of Brasilia, Brasília, Brazil, 2014.2. Khan, M.J.; Iqbal, M.T.; Quaicoe, J.E. River current energy conversion systems: Progress, prospects and challenges. Renew. Sustain. Energy Rev. 2008, 12, 2177–2193. [CrossRef]3. Güney, M.S.; Kaygusuz, K. Hydrokinetic energy conversion systems: A technology status review. Renew. Sustain. Energy Rev. 2010, 14, 2996–3004. [CrossRef]4. Muratoglu, A.; Yuce, M.I. Design of a river hydrokinetic turbine using optimization and CFD Simulations. J. Energy Eng. 2017, 143. [CrossRef]5. Gaden, D.L. An Investigation of River Kinetic Turbines: Performance Enhancements, Turbine Modeling Techniques, and an Assessment of Turbulence Models. Ph.D. Thesis, University of Manitoba, Winnipeg, MB, Canada, 2007.6. Guney, M.S. Evaluation and measures to increase performance coefficient of hydrokinetic turbines. Renew. Sustain. Energy Rev. 2011, 15, 3669–3675. [CrossRef]7. Bai, G.; Li, J.; Fan, P.; Li, G. Numerical investigations of the effects of different arrays on power extractions of horizontal axis tidal current turbines. Renew. Energy 2013, 53, 180–186. [CrossRef]8. Van Els, R.H.; Junior, A.C.P.B. The Brazilian experience with hydrokinetic turbines. Energy Procedia 2015, 75, 259–264. [CrossRef]9. López, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type cross flow water turbines. J. Renew. Sustain. Energy 2016, 8, 014501. [CrossRef]10. Kang, S.; Borazjani, I.; Colby, J.A.; Sotiropoulos, F. Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine. Adv. Water Resour. 2012, 39, 33–43. [CrossRef]11. Wu, H.; Chen, L.; Yu, M.; Li, W.; Chen, B. On design and performance prediction of the horizontal axis wáter turbine. Ocean Eng. 2012, 50, 23–30. [CrossRef]12. Guo, Q.; Zhou, L.J.; Xiao, Y.X.; Wang, Z.W. Flow field characteristics analysis of a horizontal axis marine current turbine by large eddy simulation. IOP Conf. Ser. Mater. Sci. Eng. 2013, 52, 052017. [CrossRef]13. Malki, R.; Williams, A.J.; Croft, T.N.; Togneri, M.; Masters, I. A coupled blade element momentum—Computational fluid dynamics model for evaluating tidal stream turbine performance. Appl. Math. Model. 2013, 37, 3006–3020. [CrossRef]14. Guo, Q.; Zhou, L.; Wang, Z. Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine. Renew. Energy 2015, 75, 640–648. [CrossRef]15. Masters, I.; Williams, A.T.; Croft, N.; Michael, T.; Edmunds, M.; Zangiabadi, E.; Fairley, L.; Karunarathna, H. A Comparison of numerical modelling techniques for tidal stream turbine analysis. Energies 2015, 8, 7833–7853. [CrossRef]16. Zhang, Y.; Zhang, J.; Zheng, Y.; Yang, C.; Zang, W.; Fernandez-Rodriguez, E. Experimental analysis and evaluation of the numerical prediction of wake characteristics of tidal stream turbine. Energies 2017, 10, 2057. [CrossRef]17. Lee, J.H.; Park, S.; Kim, D.H.; Rhee, S.H.; Kim, M.C. Computational methods for performance analysis of horizontal axis tidal stream turbines. Appl. Energy 2012, 98, 512–523. [CrossRef]18. Al Mamun, N.H. Utilization of River Current for Small Scale Electricity Generation in Bangladesh. Master’s Thesis, University of Bangladesh, Dhaka, Bangladesh, 2001.19. Islam, A.S.; Al-Mamun, N.H.; Islam, M.Q.; Infield, D.G. Energy from river current for small scale electricity generation in Bangladesh. In Proceedings of the Conference C76 of the Solar Energy Society, Belfast, UK, 10–11 September 2001; pp. 207–213.20. Chiroque, J.; Dávila, C. Microaerogenerador IT-PE-100 Para Electrificación Rural; Soluciones Prácticas-ITDG: Lima, Perú, 2012. (In Spanish)21. Menter, F.R. Zonal two equation k-turbulence models for aerodynamic flows. In Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993. [CrossRef]22. Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 269–289. [CrossRef]23. Langtry, R.B.; Menter, F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, 2894–2906. [CrossRef]24. Balduzzi, F.; Bianchini, A.; Malece, R.; Ferrara, G.; Ferrari, L. Critical issues in the CFD simulation of Darrieus wind turbines. Renew. Energy 2016, 85, 419–435. [CrossRef]25. Burton, T.; Sharpe, D.; Jenkins, N.; Bossanyi, E. Wind Energy Handbook; JohnWiley & Sons, Ltd.: New York, NY, USA, 2001.26. Laín, S.; Taborda, M.A.; López, O.D. Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies 2018, 11, 297. [CrossRef]27. Marsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G. The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines. Renew. Energy 2017, 105, 106–116. [CrossRef]28. Chiroque, J.; Sánchez, T.; Dávila, C. Microaerogeneradores de 100 y 500W-Modelos IT-PE-100 y SP-500; Soluciones Prácticas-ITDG: Lima, Perú, 2008. (In Spanish)29. Marten, D.; Wendler, J.; Pechlivanoglou, G.; Nayeri, C.N.; Paschereit, C.O. Qblade: An open source tool for design and simulation of horizontal and vertical axis wind turbines. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 264–269.30. Mukherji, S.S. Design and Critical Performance Evaluation of Horizontal Axis Hydrokinetic Turbines. Master’s Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2010.31. Kolekar, N.; Hu, Z.; Banerjee, A.; Du, X. Hydrodynamic design and optimization of hydro-kinetic turbines using a robust design method. In Proceedings of the 1st Marine Energy Technology Symposium (METS13), Washington,WA, USA, 10–11 April 2013.32. Harrison, M.E.; Batten, W.M.J.; Myers, L.E.; Bahaj, A.S. Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renew. Power Gener. 2010, 4, 613–627. [CrossRef]33. Suatean, B.; Colidiuc, A.; Galetuse, S. CFD methods for wind turbines. In Proceedings of the 9th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences: ICNPAA, Vienna, Austria, 10–14 July 2012; pp. 998–1002.34. Bahaj, A.S.; Batten, W.M.J.; McCann, G. Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renew. Energy 2007, 32, 2479–2490. [CrossRef]35. Sommerfeld, M.; Laín, S. From elementary processes to the numerical prediction of industrial particle-laden flows. Multiph. Sci. Technol. 2009, 21, 123–140. [CrossRef]36. Laín, S.; García, M.; Quintero, B.; Orrego, S. CFD numerical simulations of Francis turbines. Rev. Fac. Ing. Univ. Antioq. 2010, 51, 24–33.37. Caballero, A.D.; Laín, S. Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. Comput. Methods Biomech. Biomed. Eng. 2015, 18, 1200–1216. [CrossRef] [PubMed]Publication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2565-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2565-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2565-10000-0002-0269-2608virtual::2565-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2565-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/0050c482-e7fe-45a5-83c8-f75e1c7d10a3/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/098000ef-909e-44eb-8006-294f49ae779e/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALComputational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine.pdfComputational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1079854https://red.uao.edu.co/bitstreams/8c4abcef-11dc-47ef-981f-aa67328aee41/downloaddfa832e3a96d23cff10a8cd373960ddeMD54TEXTComputational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine.pdf.txtComputational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine.pdf.txtExtracted texttext/plain115034https://red.uao.edu.co/bitstreams/a30a6a0c-5807-4054-a6e4-3666c8bdef69/downloadb0ae5f2d240758c46c49851bf6fab242MD55THUMBNAILComputational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine.pdf.jpgComputational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine.pdf.jpgGenerated Thumbnailimage/jpeg15005https://red.uao.edu.co/bitstreams/0d097a77-8725-47c2-ab5c-c16019163612/download56e396f6b3ee745cac010dce6935e977MD5610614/11385oai:red.uao.edu.co:10614/113852024-03-06 16:44:33.855https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |