Biocomposites from Colombian Sugarcane Bagassewith Polypropylene: Mechanical, Thermal and Viscoelastic Properties
Biocomposites are materials formed by mixing a polymer matrix and a filler or reinforcement, with the characteristic that at least one should be of biological origin. For this study, biocomposites were obtained from natural fibers of cane bagasse and polypropylene, using bagasse from postindustrial...
- Autores:
-
Hidalgo Salazar, Miguel Ángel
Luna Vera, Fernando
Correa Aguirre, Juan Pablo
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2018
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13535
- Acceso en línea:
- https://hdl.handle.net/10614/13535
- Palabra clave:
- Bagazo de caña
Bagasse
Biocomposites
Sugarcane bagasse
Mechanical properties
Thermal properties
DMA
- Rights
- openAccess
- License
- Derechos reservados - IntechOpen, 2018
id |
REPOUAO2_1977701105db734187cb965a630b9d8d |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13535 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Biocomposites from Colombian Sugarcane Bagassewith Polypropylene: Mechanical, Thermal and Viscoelastic Properties |
title |
Biocomposites from Colombian Sugarcane Bagassewith Polypropylene: Mechanical, Thermal and Viscoelastic Properties |
spellingShingle |
Biocomposites from Colombian Sugarcane Bagassewith Polypropylene: Mechanical, Thermal and Viscoelastic Properties Bagazo de caña Bagasse Biocomposites Sugarcane bagasse Mechanical properties Thermal properties DMA |
title_short |
Biocomposites from Colombian Sugarcane Bagassewith Polypropylene: Mechanical, Thermal and Viscoelastic Properties |
title_full |
Biocomposites from Colombian Sugarcane Bagassewith Polypropylene: Mechanical, Thermal and Viscoelastic Properties |
title_fullStr |
Biocomposites from Colombian Sugarcane Bagassewith Polypropylene: Mechanical, Thermal and Viscoelastic Properties |
title_full_unstemmed |
Biocomposites from Colombian Sugarcane Bagassewith Polypropylene: Mechanical, Thermal and Viscoelastic Properties |
title_sort |
Biocomposites from Colombian Sugarcane Bagassewith Polypropylene: Mechanical, Thermal and Viscoelastic Properties |
dc.creator.fl_str_mv |
Hidalgo Salazar, Miguel Ángel Luna Vera, Fernando Correa Aguirre, Juan Pablo |
dc.contributor.author.none.fl_str_mv |
Hidalgo Salazar, Miguel Ángel |
dc.contributor.author.spa.fl_str_mv |
Luna Vera, Fernando Correa Aguirre, Juan Pablo |
dc.contributor.corporatename.spa.fl_str_mv |
IntechOpen |
dc.subject.armarc.spa.fl_str_mv |
Bagazo de caña |
topic |
Bagazo de caña Bagasse Biocomposites Sugarcane bagasse Mechanical properties Thermal properties DMA |
dc.subject.armarc.eng.fl_str_mv |
Bagasse |
dc.subject.proposal.eng.fl_str_mv |
Biocomposites Sugarcane bagasse Mechanical properties Thermal properties DMA |
description |
Biocomposites are materials formed by mixing a polymer matrix and a filler or reinforcement, with the characteristic that at least one should be of biological origin. For this study, biocomposites were obtained from natural fibers of cane bagasse and polypropylene, using bagasse from postindustrial sources, originating from the production of sugarcane from the Valle-Cauca region in Colombia. In addition, cane bagasse fibers were treated chemically, with the purpose of improving the interfacial relationship. Polypropylene homopolymer was used as a polymeric matrix, which was mixed in a twin screw extruder, obtaining different materials as biocomposites. Finally, it was possible to obtain a suitable biocomposite for application in injection molding processes and studying its mechanical, viscoelastic, and thermal behaviors, through DSC, TGA, DMA, and SEM techniques |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2022-01-13T18:36:29Z |
dc.date.available.none.fl_str_mv |
2022-01-13T18:36:29Z |
dc.type.spa.fl_str_mv |
Capítulo - Parte de Libro |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.redcol.eng.fl_str_mv |
https://purl.org/redcol/resource_type/CAP_LIB |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_3248 |
status_str |
publishedVersion |
dc.identifier.isbn.none.fl_str_mv |
9789535163237 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13535 |
identifier_str_mv |
9789535163237 |
url |
https://hdl.handle.net/10614/13535 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
151 |
dc.relation.citationstartpage.spa.fl_str_mv |
131 |
dc.relation.cites.eng.fl_str_mv |
Hidalgo Salazar, M.A., Luna Vera, F., Correa Aguirre, J.P. (2018). Biocomposites from Colombian Sugarcane Bagassewith Polypropylene: Mechanical, Thermal and Viscoelastic Properties. Characterizations of Some Composite Materials. IntechOpen. Characterizations of Some Composite Materials. IntechOpen (Capítulo 8), pp. 131-151. |
dc.relation.ispartofbook.spa.fl_str_mv |
Characterizations of Some Composite Materials |
dc.relation.references.none.fl_str_mv |
[1] Joseph K, Thomas S, Pavithran C. Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer (Guildf). 1996;37(23):5139- 5149. Available from: https://www.sciencedirect.com/science/article/pii/0032386196001449 [2] Chen HL, Porter RS. Composite of polyethylene and kenaf, a natural cellulose fiber. Journal of Applied Polymer Science. 1994; 54(11):1781-1783. DOI: 10.1002/app.1994.070541121 [3] Coutinho FMB, Costa THS, Carvalho DL. Polypropylene-wood fiber composites: Effect of treatment and mixing conditions on mechanical properties. Journal of Applied Polymer Science. 1997;65(6):1227-1235. DOI: 10.1002/%28SICI%291097-4628%2819970808%2965% 3A6%3C1227%3A%3AAID-APP18%3E3.0.CO%3B2-Q [4] La Mantia FP, Morreale M. Improving the properties of polypropylene–wood flour composites by utilization of maleated adhesion promoters. Composite Interfaces. 2007;14(7-9): 685-698. DOI: 10.1163/156855407782106500 [5] Khalil HPSA, Rozman HD, Ahmad MN, Ismail H. Acetylated plant-fiber-reinforced polyester composites: A study of mechanical, hygrothermal, and aging characteristics. Polymer-Plastics Technology and Engineering. 2000;39(4):757-781. DOI: 10.1081/PPT-100 100057 [6] Mathew L, Joseph KU, Joseph R. Isora fibres and their composites with natural rubber. Progress in Rubber, Plastics and Recycling Technology. 2004;20(4):337-349 [7] La Mantia FP, Morreale M. Green composites: A brief review. Composites Part A: Applied Science and Manufacturing. 2011;42(6):579-588. Available from: https://www.sciencedirect. com/science/article/pii/S1359835X11000406 [8] Panthapulakkal S, Raghunanan L, Sain M, KC B, Tjong J. Natural fiber and hybrid fiber thermoplastic composites: Advancements in lightweighting applications. Green Composites. 2017:39-72. Available from: https://www.sciencedirect.com/science/article/ pii/B9780081007839000034 [9] El-Sabbagh A. Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour. Composites Part B: Engineering. 2014;57:126- 135. Available from: https://www.sciencedirect.com/science/article/pii/S135983681300560X [10] Truong M, Zhong W, Boyko S, Alcock M. A comparative study on natural fibre density measurement. Journal of the Textile Institute. 2009;100(6):525-529. DOI: 10.1080/00405 000801997595 [11] Teja MS, Ramana MV, Sriramulu D, Rao CJ. Experimental investigation of mechanical and thermal properties of sisal fibre reinforced composite and effect of sic filler material. IOP Conference Series Materials Science and Engineering. 2016;149(1):012095. Available from: http://stacks.iop.org/1757-899X/149/i=1/a=012095?key=crossref.f58678 00e25ad9145654bd70cae9ae11 [12] Ashik KP, Sharma RS. A review on mechanical properties of natural fiber reinforced hybrid polymer composites. Journal of Minerals and Materials Characterization and Engineering. 2015;03(05):420-426. Available from: http://www.scirp.org/journal/Paper Download.aspx?DOI=10.4236/jmmce.2015.35044 [13] Posada JA, Osseweijer P. Socioeconomic and environmental considerations for sustainable supply and fractionation of lignocellulosic biomass in a biorefinery context. Biomass Fractionation Technology a Lignocellulosic Feedstock Based Biorefinery. 2016:611-631. Available from: https://www.sciencedirect.com/science/article/pii/B9780128023235000268 [14] Hagemann N, Gawel E, Purkus A, Pannicke N, Hauck J. Possible futures towards awood-based bioeconomy:A ScenarioA nalysis for Germany. Sustain. 20186(;98):1-24 [15] Carlos Cueva-Orjuela J, Hormaza-Anaguano A, Merino-Restrepo A. Sugarcane bagasse and its potential use for the textile effluent treatment. DYNA. 2017;84(203):291-297. DOI: 10.15446/dyna.v84n203.61723 [16] Vilay V, Mariatti M, Mat Taib R, Todo M. Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites. Composites Science and Technology. 2008;68(3-4):631-638. Available from: https://www. sciencedirect.com/science/article/pii/S0266353807003843 [17] Huang Z, Wang N, Zhang Y, Hu H, Luo Y. Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly(vinyl chloride) composites. Composites Part A: Applied Science and Manufacturing. 2012;43(1, 1):114-120. Available from: https://www.sciencedirect.com/science/article/pii/S1359835X11003228 [18] Beninia KCCC, Voorwald HJC, Cioffi MOH. Mechanical properties of HIPS/sugarcane bagasse fiber composites after accelerated weathering. Procedia Engineering. 2011;10:3246-3251. Available from: https://www.sciencedirect.com/science/article/pii/ S1877705811007247 [19] Mulinari DR, Voorwald HJC, Cioffi MOH, da Silva MLCP, Luz SM. Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydrate Polymers. 2009;75(2):317-321. Available from: https://www.sciencedirect. com/science/article/pii/S014486170800338X [20] Fogorasi M, Barbu I. The potential of natural fibres for automotive sector—review. IOP Conference Series Materials Science and Engineering. 2017 [21] Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS. A review on natural fiber reinforced polymer composite and its applications. The International Journal of Polymer Science. 2015;2015:1-15. Available from: http://www.hindawi.com/journals/ijps/2015/243947/ [22] Rao J, Zhou Y, Fan M. Revealing the interface structure and bonding mechanism of coupling agent treated WPC. Polymers (Basel). 2018;10(3):266-279 [23] Catto AL, Stefani BV, Ribeiro VF, Santana RMC. Influence of coupling agent in compatibility of post-consumer HDPE in thermoplastic composites reinforced with eucalyptus fiber. Materials Research. 2014;17(suppl 1):203-209. Available from: http://www.scielo. br/scielo.php?script=sci_arttext&pid=S1516-14392014000700033&lng=en&tlng=en [24] Zou H, Wu S, Shen J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chemical Reviews. 2008;108(9):3893-3957. Available from: http://pubs.acs.org/doi/abs/10.1021/cr068035q [25] Clemons CM, Sabo RC, Kaland ML, Hirth KC. Effects of silane on the properties of wood-plastic composites with polyethylene-polypropylene blends as matrices. Journal of Applied Polymer Science. 2011;119(3):1398-1409. DOI: 10.1002/app.32566 [26] Lu JZ, Professor A, McNabb HS, Professor J. Society of wood science and technology state-of-the-art review Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments’ Qinglin W u t [27] Cao H, Amador C, Jia X, Ding Y. Capillary dynamics of water/ethanol mixtures. Industrial and Engineering Chemistry Research. 2015;54(48):12196-12203. DOI: 10.1021/ acs.iecr.5b03366 [28] Prakash S, Xi E, Patel AJ. Spontaneous recovery of superhydrophobicity on nanotextured surfaces. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(20):5508-5513. Available from: http://www.ncbi.nlm.nih.gov/pubmed/ 27140619 [29] Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiberreinforced composites: A review. Journal of Polymers and the Environment. 2007;15(1): 25-33. DOI: 10.1007/s10924-006-0042-3 [30] Luna Vera F, Melo Cortes HA, Viviana Murcia C, Charry Galvis I. Informador técnico. Informador técnico. 2014;78(2):106-114. ISSN 0122-056X, ISSN-e 2256-5035. Centro Nacional de Asistencia Técnica a la Industria, ASTIN-SENA. Available from: https://dialnet.unirioja. es/servlet/articulo?codigo=5129559 [31] Lin B-J, Chen W-H. Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating. Frontiers in Energy Research. 2015;3:1-4 [32] Sood M, Dwivedi G. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egypt J Pet [Internet]. 2017;26(4):911-919 [33] Malenab RAJ, Ngo JPS, Promentilla MAB. Chemical treatment of waste abaca for natural fiber-reinforced geopolymer composite. Materials (Basel, Switzerland). 2017; 10(6):579-598 [34] Goulart SAS, Oliveira TA, Teixeira A, Miléo PC, Mulinari DR. Mechanical behaviour of polypropylene reinforced palm fibers composites. In: Procedia Engineering. 2011;10: 2034-2039 [35] Chui-gen G, Yong-ming S, Qing-wen W, Chang-sheng S. Dynamic-mechanical analysis and SEM morphology of wood flour/polypropylene composites. 2006;17(4):315-318 [36] Hidalgo-Salazar MA, Munõz MF, Mina JH. Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. International Journal of Polymer Science. 2015;2015:1-8 [37] Luz SM, Gonçalves AR, Del’arco AP, Ferrão PMC. Composites from Brazilian natural fibers with polypropylene: mechanical and thermal properties. Composite Interfaces. 2008;15(7-9):841-850. DOI: 10.1163/156855408786778366 [38] Hidalgo-Salazar MA, Mina JH, Herrera-Franco PJ. The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials. Composites Part B: Engineering. 2013;55:345-351. Available from: https://www.sciencedirect.com/science/ article/pii/S1359836813003430 |
dc.rights.spa.fl_str_mv |
Derechos reservados - IntechOpen, 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - IntechOpen, 2018 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
21 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IntechOpen |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/90b5a39e-4840-4074-acac-a2b51cfd85ae/download https://red.uao.edu.co/bitstreams/e3511b63-16fb-41f9-b089-7e3c8031afe2/download https://red.uao.edu.co/bitstreams/de383ebc-4154-4c3d-96ff-945a21b9f80e/download https://red.uao.edu.co/bitstreams/eb8a25f1-a78a-480c-9794-d49d629984a6/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 f56f81f37721ee17215db42b2e1f96eb 9839f87f039dc8912f631b14314c4fda 6ff06fb9c1e49e9440b5582b7b71a301 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259822084751360 |
spelling |
Hidalgo Salazar, Miguel Ángelvirtual::2127-1Luna Vera, Fernando0b8d89d41112ce55cbb1ae984e1ea0c8Correa Aguirre, Juan Pabloe37041bc496bde8cf2fdefb8ed0a7675IntechOpen2022-01-13T18:36:29Z2022-01-13T18:36:29Z20189789535163237https://hdl.handle.net/10614/13535Biocomposites are materials formed by mixing a polymer matrix and a filler or reinforcement, with the characteristic that at least one should be of biological origin. For this study, biocomposites were obtained from natural fibers of cane bagasse and polypropylene, using bagasse from postindustrial sources, originating from the production of sugarcane from the Valle-Cauca region in Colombia. In addition, cane bagasse fibers were treated chemically, with the purpose of improving the interfacial relationship. Polypropylene homopolymer was used as a polymeric matrix, which was mixed in a twin screw extruder, obtaining different materials as biocomposites. Finally, it was possible to obtain a suitable biocomposite for application in injection molding processes and studying its mechanical, viscoelastic, and thermal behaviors, through DSC, TGA, DMA, and SEM techniquesPrimera edición21 páginasapplication/pdfengIntechOpenDerechos reservados - IntechOpen, 2018https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Biocomposites from Colombian Sugarcane Bagassewith Polypropylene: Mechanical, Thermal and Viscoelastic PropertiesCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Bagazo de cañaBagasseBiocompositesSugarcane bagasseMechanical propertiesThermal propertiesDMA151131Hidalgo Salazar, M.A., Luna Vera, F., Correa Aguirre, J.P. (2018). Biocomposites from Colombian Sugarcane Bagassewith Polypropylene: Mechanical, Thermal and Viscoelastic Properties. Characterizations of Some Composite Materials. IntechOpen. Characterizations of Some Composite Materials. IntechOpen (Capítulo 8), pp. 131-151.Characterizations of Some Composite Materials[1] Joseph K, Thomas S, Pavithran C. Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer (Guildf). 1996;37(23):5139- 5149. Available from: https://www.sciencedirect.com/science/article/pii/0032386196001449[2] Chen HL, Porter RS. Composite of polyethylene and kenaf, a natural cellulose fiber. Journal of Applied Polymer Science. 1994; 54(11):1781-1783. DOI: 10.1002/app.1994.070541121[3] Coutinho FMB, Costa THS, Carvalho DL. Polypropylene-wood fiber composites: Effect of treatment and mixing conditions on mechanical properties. Journal of Applied Polymer Science. 1997;65(6):1227-1235. DOI: 10.1002/%28SICI%291097-4628%2819970808%2965% 3A6%3C1227%3A%3AAID-APP18%3E3.0.CO%3B2-Q[4] La Mantia FP, Morreale M. Improving the properties of polypropylene–wood flour composites by utilization of maleated adhesion promoters. Composite Interfaces. 2007;14(7-9): 685-698. DOI: 10.1163/156855407782106500[5] Khalil HPSA, Rozman HD, Ahmad MN, Ismail H. Acetylated plant-fiber-reinforced polyester composites: A study of mechanical, hygrothermal, and aging characteristics. Polymer-Plastics Technology and Engineering. 2000;39(4):757-781. DOI: 10.1081/PPT-100 100057[6] Mathew L, Joseph KU, Joseph R. Isora fibres and their composites with natural rubber. Progress in Rubber, Plastics and Recycling Technology. 2004;20(4):337-349[7] La Mantia FP, Morreale M. Green composites: A brief review. Composites Part A: Applied Science and Manufacturing. 2011;42(6):579-588. Available from: https://www.sciencedirect. com/science/article/pii/S1359835X11000406[8] Panthapulakkal S, Raghunanan L, Sain M, KC B, Tjong J. Natural fiber and hybrid fiber thermoplastic composites: Advancements in lightweighting applications. Green Composites. 2017:39-72. Available from: https://www.sciencedirect.com/science/article/ pii/B9780081007839000034[9] El-Sabbagh A. Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour. Composites Part B: Engineering. 2014;57:126- 135. Available from: https://www.sciencedirect.com/science/article/pii/S135983681300560X[10] Truong M, Zhong W, Boyko S, Alcock M. A comparative study on natural fibre density measurement. Journal of the Textile Institute. 2009;100(6):525-529. DOI: 10.1080/00405 000801997595[11] Teja MS, Ramana MV, Sriramulu D, Rao CJ. Experimental investigation of mechanical and thermal properties of sisal fibre reinforced composite and effect of sic filler material. IOP Conference Series Materials Science and Engineering. 2016;149(1):012095. Available from: http://stacks.iop.org/1757-899X/149/i=1/a=012095?key=crossref.f58678 00e25ad9145654bd70cae9ae11[12] Ashik KP, Sharma RS. A review on mechanical properties of natural fiber reinforced hybrid polymer composites. Journal of Minerals and Materials Characterization and Engineering. 2015;03(05):420-426. Available from: http://www.scirp.org/journal/Paper Download.aspx?DOI=10.4236/jmmce.2015.35044[13] Posada JA, Osseweijer P. Socioeconomic and environmental considerations for sustainable supply and fractionation of lignocellulosic biomass in a biorefinery context. Biomass Fractionation Technology a Lignocellulosic Feedstock Based Biorefinery. 2016:611-631. Available from: https://www.sciencedirect.com/science/article/pii/B9780128023235000268[14] Hagemann N, Gawel E, Purkus A, Pannicke N, Hauck J. Possible futures towards awood-based bioeconomy:A ScenarioA nalysis for Germany. Sustain. 20186(;98):1-24[15] Carlos Cueva-Orjuela J, Hormaza-Anaguano A, Merino-Restrepo A. Sugarcane bagasse and its potential use for the textile effluent treatment. DYNA. 2017;84(203):291-297. DOI: 10.15446/dyna.v84n203.61723[16] Vilay V, Mariatti M, Mat Taib R, Todo M. Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites. Composites Science and Technology. 2008;68(3-4):631-638. Available from: https://www. sciencedirect.com/science/article/pii/S0266353807003843[17] Huang Z, Wang N, Zhang Y, Hu H, Luo Y. Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly(vinyl chloride) composites. Composites Part A: Applied Science and Manufacturing. 2012;43(1, 1):114-120. Available from: https://www.sciencedirect.com/science/article/pii/S1359835X11003228[18] Beninia KCCC, Voorwald HJC, Cioffi MOH. Mechanical properties of HIPS/sugarcane bagasse fiber composites after accelerated weathering. Procedia Engineering. 2011;10:3246-3251. Available from: https://www.sciencedirect.com/science/article/pii/ S1877705811007247[19] Mulinari DR, Voorwald HJC, Cioffi MOH, da Silva MLCP, Luz SM. Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydrate Polymers. 2009;75(2):317-321. Available from: https://www.sciencedirect. com/science/article/pii/S014486170800338X[20] Fogorasi M, Barbu I. The potential of natural fibres for automotive sector—review. IOP Conference Series Materials Science and Engineering. 2017[21] Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS. A review on natural fiber reinforced polymer composite and its applications. The International Journal of Polymer Science. 2015;2015:1-15. Available from: http://www.hindawi.com/journals/ijps/2015/243947/[22] Rao J, Zhou Y, Fan M. Revealing the interface structure and bonding mechanism of coupling agent treated WPC. Polymers (Basel). 2018;10(3):266-279[23] Catto AL, Stefani BV, Ribeiro VF, Santana RMC. Influence of coupling agent in compatibility of post-consumer HDPE in thermoplastic composites reinforced with eucalyptus fiber. Materials Research. 2014;17(suppl 1):203-209. Available from: http://www.scielo. br/scielo.php?script=sci_arttext&pid=S1516-14392014000700033&lng=en&tlng=en[24] Zou H, Wu S, Shen J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chemical Reviews. 2008;108(9):3893-3957. Available from: http://pubs.acs.org/doi/abs/10.1021/cr068035q[25] Clemons CM, Sabo RC, Kaland ML, Hirth KC. Effects of silane on the properties of wood-plastic composites with polyethylene-polypropylene blends as matrices. Journal of Applied Polymer Science. 2011;119(3):1398-1409. DOI: 10.1002/app.32566[26] Lu JZ, Professor A, McNabb HS, Professor J. Society of wood science and technology state-of-the-art review Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments’ Qinglin W u t[27] Cao H, Amador C, Jia X, Ding Y. Capillary dynamics of water/ethanol mixtures. Industrial and Engineering Chemistry Research. 2015;54(48):12196-12203. DOI: 10.1021/ acs.iecr.5b03366[28] Prakash S, Xi E, Patel AJ. Spontaneous recovery of superhydrophobicity on nanotextured surfaces. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(20):5508-5513. Available from: http://www.ncbi.nlm.nih.gov/pubmed/ 27140619[29] Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiberreinforced composites: A review. Journal of Polymers and the Environment. 2007;15(1): 25-33. DOI: 10.1007/s10924-006-0042-3[30] Luna Vera F, Melo Cortes HA, Viviana Murcia C, Charry Galvis I. Informador técnico. Informador técnico. 2014;78(2):106-114. ISSN 0122-056X, ISSN-e 2256-5035. Centro Nacional de Asistencia Técnica a la Industria, ASTIN-SENA. Available from: https://dialnet.unirioja. es/servlet/articulo?codigo=5129559[31] Lin B-J, Chen W-H. Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating. Frontiers in Energy Research. 2015;3:1-4[32] Sood M, Dwivedi G. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egypt J Pet [Internet]. 2017;26(4):911-919[33] Malenab RAJ, Ngo JPS, Promentilla MAB. Chemical treatment of waste abaca for natural fiber-reinforced geopolymer composite. Materials (Basel, Switzerland). 2017; 10(6):579-598[34] Goulart SAS, Oliveira TA, Teixeira A, Miléo PC, Mulinari DR. Mechanical behaviour of polypropylene reinforced palm fibers composites. In: Procedia Engineering. 2011;10: 2034-2039[35] Chui-gen G, Yong-ming S, Qing-wen W, Chang-sheng S. Dynamic-mechanical analysis and SEM morphology of wood flour/polypropylene composites. 2006;17(4):315-318[36] Hidalgo-Salazar MA, Munõz MF, Mina JH. Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. International Journal of Polymer Science. 2015;2015:1-8[37] Luz SM, Gonçalves AR, Del’arco AP, Ferrão PMC. Composites from Brazilian natural fibers with polypropylene: mechanical and thermal properties. Composite Interfaces. 2008;15(7-9):841-850. DOI: 10.1163/156855408786778366[38] Hidalgo-Salazar MA, Mina JH, Herrera-Franco PJ. The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials. Composites Part B: Engineering. 2013;55:345-351. Available from: https://www.sciencedirect.com/science/ article/pii/S1359836813003430Comunidad en generalPublication00f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2127-100f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2127-1https://scholar.google.es/citations?user=OTNvAeoAAAAJ&hl=esvirtual::2127-10000-0002-6907-2091virtual::2127-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143936virtual::2127-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/90b5a39e-4840-4074-acac-a2b51cfd85ae/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALBiocomposites from colombian sugar cane bagasse with polypropylene - Mechanical, thermal and viscoelastic properties.pdfBiocomposites from colombian sugar cane bagasse with polypropylene - Mechanical, thermal and viscoelastic properties.pdfTexto archivo completo del capítulo del libro, PDFapplication/pdf6118181https://red.uao.edu.co/bitstreams/e3511b63-16fb-41f9-b089-7e3c8031afe2/downloadf56f81f37721ee17215db42b2e1f96ebMD53TEXTBiocomposites from colombian sugar cane bagasse with polypropylene - Mechanical, thermal and viscoelastic properties.pdf.txtBiocomposites from colombian sugar cane bagasse with polypropylene - Mechanical, thermal and viscoelastic properties.pdf.txtExtracted texttext/plain44184https://red.uao.edu.co/bitstreams/de383ebc-4154-4c3d-96ff-945a21b9f80e/download9839f87f039dc8912f631b14314c4fdaMD54THUMBNAILBiocomposites from colombian sugar cane bagasse with polypropylene - Mechanical, thermal and viscoelastic properties.pdf.jpgBiocomposites from colombian sugar cane bagasse with polypropylene - Mechanical, thermal and viscoelastic properties.pdf.jpgGenerated Thumbnailimage/jpeg11512https://red.uao.edu.co/bitstreams/eb8a25f1-a78a-480c-9794-d49d629984a6/download6ff06fb9c1e49e9440b5582b7b71a301MD5510614/13535oai:red.uao.edu.co:10614/135352024-03-06 09:36:52.636https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - IntechOpen, 2018open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |