Study of colliding particle-pair velocity correlation in homogeneous isotropic turbulence
This paper deals with the numerical analysis of the particle inertia and volume fraction effects on colliding particle-pair velocity correlation immersed in an unsteady isotropic homogeneous turbulent flow. Such correlation function is required to build reliable statistical models for inter-particle...
- Autores:
-
Ernst, Martin
Sommerfeld, Martin
Laín Beatove, Santiago
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13287
- Acceso en línea:
- https://hdl.handle.net/10614/13287
- Palabra clave:
- Análisis numérico
Turbulencia
Colisiones (Física)
Numerical analysis
Turbulence
Collisions (Physics)
Homogeneous isotropic turbulence
Lagrangian tracking
Deterministic collision model
Colliding particle-pair velocity correlation function
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2020
id |
REPOUAO2_178127e388ac7962d5bb752c440e27d7 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13287 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Study of colliding particle-pair velocity correlation in homogeneous isotropic turbulence |
title |
Study of colliding particle-pair velocity correlation in homogeneous isotropic turbulence |
spellingShingle |
Study of colliding particle-pair velocity correlation in homogeneous isotropic turbulence Análisis numérico Turbulencia Colisiones (Física) Numerical analysis Turbulence Collisions (Physics) Homogeneous isotropic turbulence Lagrangian tracking Deterministic collision model Colliding particle-pair velocity correlation function |
title_short |
Study of colliding particle-pair velocity correlation in homogeneous isotropic turbulence |
title_full |
Study of colliding particle-pair velocity correlation in homogeneous isotropic turbulence |
title_fullStr |
Study of colliding particle-pair velocity correlation in homogeneous isotropic turbulence |
title_full_unstemmed |
Study of colliding particle-pair velocity correlation in homogeneous isotropic turbulence |
title_sort |
Study of colliding particle-pair velocity correlation in homogeneous isotropic turbulence |
dc.creator.fl_str_mv |
Ernst, Martin Sommerfeld, Martin Laín Beatove, Santiago |
dc.contributor.author.spa.fl_str_mv |
Ernst, Martin Sommerfeld, Martin |
dc.contributor.author.none.fl_str_mv |
Laín Beatove, Santiago |
dc.subject.armarc.spa.fl_str_mv |
Análisis numérico Turbulencia Colisiones (Física) |
topic |
Análisis numérico Turbulencia Colisiones (Física) Numerical analysis Turbulence Collisions (Physics) Homogeneous isotropic turbulence Lagrangian tracking Deterministic collision model Colliding particle-pair velocity correlation function |
dc.subject.armarc.eng.fl_str_mv |
Numerical analysis Turbulence Collisions (Physics) |
dc.subject.proposal.eng.fl_str_mv |
Homogeneous isotropic turbulence Lagrangian tracking Deterministic collision model Colliding particle-pair velocity correlation function |
description |
This paper deals with the numerical analysis of the particle inertia and volume fraction effects on colliding particle-pair velocity correlation immersed in an unsteady isotropic homogeneous turbulent flow. Such correlation function is required to build reliable statistical models for inter-particle collisions, in the frame of the Euler–Lagrange approach, to be used in a broad range of two-phase flow applications. Computations of the turbulent flow have been carried out by means of Direct Numerical Simulation (DNS) by the Lattice Boltzmann Method (LBM). Moreover, the dependence of statistical properties of collisions on particle inertia and volumetric fraction is evaluated and quantified. It has been found that collision locations of particles of intermediate inertia, StK ∼ 1, occurs in regions where the fluid strain rate and dissipation are higher than the corresponding averaged values at particle positions. Connected with this fact, the average kinetic energy of colliding particles of intermediate inertia (i.e., Stokes number around 1) is lower than the value averaged over all particles. From the study of the particle-pair velocity correlation, it has been demonstrated that the colliding particle-pair velocity correlation function cannot be approximated by the Eulerian particle-pair correlation, obtained by theoretical approaches, as particle separation tends to zero, a fact related with the larger values of the relative radial velocity between colliding particles |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-12-19 |
dc.date.accessioned.none.fl_str_mv |
2021-09-29T18:02:15Z |
dc.date.available.none.fl_str_mv |
2021-09-29T18:02:15Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
14545101 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13287 |
identifier_str_mv |
14545101 |
url |
https://hdl.handle.net/10614/13287 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 10, número 24 (2020) |
dc.relation.citationendpage.spa.fl_str_mv |
22 |
dc.relation.citationissue.spa.fl_str_mv |
Número 24 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
Volumen 10 |
dc.relation.cites.eng.fl_str_mv |
Lain S., Ernst M., Sommerfeld M. (2020). Study of colliding particle-pair velocity correlation in homogeneous isotropic turbulence. Applied Sciences. Vol. 10 (24), pp.1-22. https://doi.org/10.3390/app10249095 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Applied Sciences |
dc.relation.references.eng.fl_str_mv |
Safronov, V.S. Evolution of the protoplanetary cloud and formation of the Earth and the planets. Nauka NASA Tech. Transl. 1969, 677, 1–206. Zsom, A.; Ormel, C.W.; Guettler, C.; Blum, J.; Dullemond, C.P. The outcome of protoplanetary dust growth: Pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astron. Astrophys. 2010, 513, A57. Falkovich, G.; Fouxon, A.; Stepanov, M.G. Acceleration of rain initiation by cloud turbulence. Nature 2002, 419, 151–154. Shaw, R.A. Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 2003, 35, 183–227. Motter, A.E.; Lai, Y.C.; Grebogi, C. Reactive dynamics of inertial particles in nonhyperbolic chaotic flows. Phys. Rev. E 2003, 68, 056307. Varas, A.E.C.; Peters, E.A.J.F.; Kuipers, J.A.M. CFD-DEM simulations and experimental validation of clustering phenomena and riser hydrodynamics. Chem. Eng. Sci. 2017, 169, 246–258. Cahyadi, A.; Anantharaman, A.; Yang, S.; Reddy Karri, S.B.; Findlay, J.G.; Cocco, R.A.; Chew, J.W. Review of cluster characteristics in circulating fluidized bed (CFB) risers. Chem. Eng. Sci. 2017, 158, 70–95. Laín, S.; Sommerfeld, M. Euler/Lagrange computations of pneumatic conveying in a horizontal channel with di erent wall roughness. Powder Technol. 2008, 184, 76–88. Laín, S.; Sommerfeld, M. Numerical calculation of pneumatic conveying in horizontal channels and pipes: Detailed analysis of conveying behavior. Int. J. Multiph. Flow 2012, 39, 105–120. Laín, S.; Sommerfeld, M. Characterization of pneumatic conveying systems using the Euler/Lagrange approach. Powder Technol. 2013, 235, 764–782. Laín, S.; Sommerfeld, M. Numerical prediction of particle erosion of pipe bends. Adv. Powder Technol. 2019, 30, 366–383. Laín, S.; García, M.; Quintero, B.; Orrego, S. CFD Numerical simulations of Francis turbines. Rev. Fac. Ing. Univ. Antioq. 2010, 51, 24–33. Westphal, D.L.; Toon, O.B.; Carlson, T.N. A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms. J. Geophys. Res. 1987, 92, 3027–3049. Kroy, K.; Sauermann, G.; Herrmann, H.J. Minimal model for aeolian sand dunes. Phys. Rev. E 2002, 66, 031302. Sundaram, S.; Collins, L.R. Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 1997, 335, 75–109. Wang, L.P.; Wexler, A.S.; Zhou, Y. Statistical mechanical description and modelling of turbulent collision of inertial particles. J. Fluid Mech. 2000, 415, 117–153. Reade,W.C.; Collins, L.R. E ect of preferential concentration on turbulent collision rates. Phys. Fluids 2000, 12, 2530–2540. Zaichik, L.I.; Alipchenkov, V.M.; Avetissian, A.R. Modelling turbulent collisions rates of inertial particles. Int. J. Heat Fluid Flow 2006, 27, 937–944. Février, P.; Simonin, O.; Squires, K.D. Partitioning of particle velocities in gas–solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: Theoretical formalism and numerical study. J. Fluid Mech. 2005, 533, 1–46. Reeks, M.W. On the dispersion of small particles suspended in an isotropic turbulent field. J. Fluid Mech. 1977, 83, 529–546. Bewley, G.P.; Saw, E.W.; Bodenschatz, E. Observation of the sling e ect. New J. Phys. 2013, 15, 083051. Choi, J.; Park, Y.; Kwon, O.; Lee, C. Interparticle collision mechanism in turbulence. Phys. Rev. E 2016, 93, 013112. Williams, J.J.E.; Crane, R.I. Particle collision rate in turbulent flow. Int. J. Multiph. Flow 1983, 9, 421–435. Kruis, F.E.; Kusters, K.A. The collision rate of particles in turbulent media. J. Aerosol Sci. 1996, 27, 263–264. Ireland, P.J.; Bragg, A.D.; Collins, L.R. The e ect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational e ects. J. Fluid Mech. 2016, 796, 617–658. Bec, J.; Celani, A.; Cencini, M.; Musacchio, S. Clustering and collisions of heavy particle in random smooth flows. Phys. Fluids 2005, 17, 073301. Wilkinson, M.; Mehlig, B. Caustics in turbulent aerosols. Europhys. Lett. 2005, 71, 186–192. Vosskuhle, M.; Pumir, A.; Lévêque, E.;Wilkinson, M. Prevalence of the sling e ect for enhancing collision rates in turbulent suspensions. J. Fluid Mech. 2014, 749, 841–852. Van Wachem, B.; Curran, T.; Evrard, F. Fully Correlated Stochastic Inter-Particle Collision Model for Euler–Lagrange Gas–Solid Flows. Flow Turb. Comb. 2020. Sommerfeld, M.; Laín, S. From elementary processes to the numerical prediction of industrial particle-laden flows. Multiph. Sci. Technol. 2009, 21, 123–140. Sommerfeld, M. Validation of a stochastic Lagrangian modeling approach for inter-particle collisions in homogeneous isotropic turbulence. Int. J. Multiph. Flow 2001, 27, 1829–1858. Berlemont, A.; Achim, P.; Chang, Z. Lagrangian approaches for particle collisions: The colliding particle velocity correlation in the multiple particles tracking method and in the stochastic approach. Phys. Fluids 2001, 13, 2946–2956. Sommerfeld, M.; Lipowsky, J.; Laín, S. (Keynote lecture). Transient Euler/Lagrange modelling for predicting unsteady rope behaviour in gas-particle flows. In Proceedings of the FEDSM2010 ASME Joint U.S.–European Fluids Engineering Summer Meeting, Montreal, QB, Canada, 1–5 August 2010. Paper No. FEDSM-ICNMM2010-31335. Laviéville, J.; Deutsch, E.; Simonin, O. Large eddy simulation of interactions between colliding particles and a homogeneous isotropic turbulence field. Gas-Solid-Flows 1995, 228, 347–357. Lipowsky, J.; Sommerfeld, M. Time dependent simulation of a swirling two-phase flow using an anisotropic turbulent dispersion model. In Proceedings of the ASME Fluids Engineering Summer Conference, Houston, TX, USA, 19–23 June 2005. Paper No. FEDSM2005-77210. Laín, S.; Ernst, M.; Sommerfeld, M. Colliding particle-pair velocity correlation function in turbulent flows. In Proceedings of the 7th International Conference on Multiphase Flow, ICMF 2010, Tampa, FL, USA, 30 May–4 June 2010. Zaichik, L.I.; Alipchenkov, V.M. Pair dispersion and preferential concentration of particles in isotropic turbulence. Phys. Fluids 2003, 15, 1776–1787. Ernst, M.; Sommerfeld, M. On the volume fraction e ects of inertial colliding particles in homogeneous isotropic turbulence. ASME J. Fluids Eng. 2012, 134, 031302. Ernst, M.; Sommerfeld, M.; Laín, S. Quantification of preferential concentration of colliding particles in a homogeneous isotropic turbulent flow. Int. J. Multiph. Flow 2019, 117, 163–181. Schiller, L.; Naumann, A. Über die grundlegenden Berechnungen bei der Schwerkraftaufbe-reitung. Z. Ver. Deut. Ing. 1933, 77, 318–320. Comte-Bellot, G.; Corrsin, S. Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. J. Fluid Mech. 1971, 48, 273–337. Crowe, C.T. On the relative importance of particle-particle collisions in gas-particle flows. In Proceedings of the Conference on Gas Borne Particles, Oxford, UK, June 1981; pp. 135–137. Available online: https: //pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL82X0129704 (accessed on 5 October 2020). Ten Cate, A.; Derksen, J.J.; Portela, L.M.; van den Akker, H.E.A. Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. 2004, 519, 233–271. Saffman, P.G.; Turner, J.S. On the collisions of drops in turbulent clouds. J. FluidMech. 1956, 1, 16–30. Abrahamson, J. Collision rates of small particles in a vigorously turbulent fluid. Chem. Eng. Sci. 1975, 30, 1371–1379. Vosskuhle, M. Particle Collisions in Turbulent Flows. Ph.D. Thesis, University of Lyon, Lyon, France, 2013. Sundaram, S.; Collins, L.R. Numerical Considerations in Simulating a Turbulent Suspension of Finite-Volume Particles. J. Comp. Phys. 1996, 124, 337–350. Tanaka, T.; Tsuji, Y. Numerical simulation of gas-solid two-phase flow in a vertical pipe: On the e ect of inter-particle collisions. ASME Gas-Solid-Flows 1991, 121, 123–128. |
dc.rights.spa.fl_str_mv |
Derechos reservados - MDPI, 2020 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - MDPI, 2020 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
22 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/71efe8e0-a997-47cf-8b03-247a4008ffd8/download https://red.uao.edu.co/bitstreams/9e8ad063-db2e-4058-81c4-69812fcb595a/download https://red.uao.edu.co/bitstreams/50480834-5cc0-47d2-8138-389a264f8b41/download https://red.uao.edu.co/bitstreams/4f8ca82a-1850-4f18-9ff5-30cafa80fbb4/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 9d7e6343117a65353bf46ef608baea55 eacba581654985137bff4780bc8e6d02 8fc33feadf4a5fcc3ebed037796b2b37 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259820961726464 |
spelling |
Ernst, Martin1728e3bd5d87985c07257ed65e4a1abdSommerfeld, Martin4225b01693727b10986bcc383715fa70Laín Beatove, Santiagovirtual::2563-12021-09-29T18:02:15Z2021-09-29T18:02:15Z2020-12-1914545101https://hdl.handle.net/10614/13287This paper deals with the numerical analysis of the particle inertia and volume fraction effects on colliding particle-pair velocity correlation immersed in an unsteady isotropic homogeneous turbulent flow. Such correlation function is required to build reliable statistical models for inter-particle collisions, in the frame of the Euler–Lagrange approach, to be used in a broad range of two-phase flow applications. Computations of the turbulent flow have been carried out by means of Direct Numerical Simulation (DNS) by the Lattice Boltzmann Method (LBM). Moreover, the dependence of statistical properties of collisions on particle inertia and volumetric fraction is evaluated and quantified. It has been found that collision locations of particles of intermediate inertia, StK ∼ 1, occurs in regions where the fluid strain rate and dissipation are higher than the corresponding averaged values at particle positions. Connected with this fact, the average kinetic energy of colliding particles of intermediate inertia (i.e., Stokes number around 1) is lower than the value averaged over all particles. From the study of the particle-pair velocity correlation, it has been demonstrated that the colliding particle-pair velocity correlation function cannot be approximated by the Eulerian particle-pair correlation, obtained by theoretical approaches, as particle separation tends to zero, a fact related with the larger values of the relative radial velocity between colliding particles22 páginasapplication/pdfengMDPIDerechos reservados - MDPI, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Study of colliding particle-pair velocity correlation in homogeneous isotropic turbulenceArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Análisis numéricoTurbulenciaColisiones (Física)Numerical analysisTurbulenceCollisions (Physics)Homogeneous isotropic turbulenceLagrangian trackingDeterministic collision modelColliding particle-pair velocity correlation functionVolumen 10, número 24 (2020)22Número 241Volumen 10Lain S., Ernst M., Sommerfeld M. (2020). Study of colliding particle-pair velocity correlation in homogeneous isotropic turbulence. Applied Sciences. Vol. 10 (24), pp.1-22. https://doi.org/10.3390/app10249095Applied SciencesSafronov, V.S. Evolution of the protoplanetary cloud and formation of the Earth and the planets. Nauka NASA Tech. Transl. 1969, 677, 1–206.Zsom, A.; Ormel, C.W.; Guettler, C.; Blum, J.; Dullemond, C.P. The outcome of protoplanetary dust growth: Pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astron. Astrophys. 2010, 513, A57.Falkovich, G.; Fouxon, A.; Stepanov, M.G. Acceleration of rain initiation by cloud turbulence. Nature 2002, 419, 151–154.Shaw, R.A. Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 2003, 35, 183–227.Motter, A.E.; Lai, Y.C.; Grebogi, C. Reactive dynamics of inertial particles in nonhyperbolic chaotic flows. Phys. Rev. E 2003, 68, 056307.Varas, A.E.C.; Peters, E.A.J.F.; Kuipers, J.A.M. CFD-DEM simulations and experimental validation of clustering phenomena and riser hydrodynamics. Chem. Eng. Sci. 2017, 169, 246–258.Cahyadi, A.; Anantharaman, A.; Yang, S.; Reddy Karri, S.B.; Findlay, J.G.; Cocco, R.A.; Chew, J.W. Review of cluster characteristics in circulating fluidized bed (CFB) risers. Chem. Eng. Sci. 2017, 158, 70–95.Laín, S.; Sommerfeld, M. Euler/Lagrange computations of pneumatic conveying in a horizontal channel with di erent wall roughness. Powder Technol. 2008, 184, 76–88.Laín, S.; Sommerfeld, M. Numerical calculation of pneumatic conveying in horizontal channels and pipes: Detailed analysis of conveying behavior. Int. J. Multiph. Flow 2012, 39, 105–120.Laín, S.; Sommerfeld, M. Characterization of pneumatic conveying systems using the Euler/Lagrange approach. Powder Technol. 2013, 235, 764–782.Laín, S.; Sommerfeld, M. Numerical prediction of particle erosion of pipe bends. Adv. Powder Technol. 2019, 30, 366–383.Laín, S.; García, M.; Quintero, B.; Orrego, S. CFD Numerical simulations of Francis turbines. Rev. Fac. Ing. Univ. Antioq. 2010, 51, 24–33.Westphal, D.L.; Toon, O.B.; Carlson, T.N. A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms. J. Geophys. Res. 1987, 92, 3027–3049.Kroy, K.; Sauermann, G.; Herrmann, H.J. Minimal model for aeolian sand dunes. Phys. Rev. E 2002, 66, 031302.Sundaram, S.; Collins, L.R. Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 1997, 335, 75–109.Wang, L.P.; Wexler, A.S.; Zhou, Y. Statistical mechanical description and modelling of turbulent collision of inertial particles. J. Fluid Mech. 2000, 415, 117–153.Reade,W.C.; Collins, L.R. E ect of preferential concentration on turbulent collision rates. Phys. Fluids 2000, 12, 2530–2540.Zaichik, L.I.; Alipchenkov, V.M.; Avetissian, A.R. Modelling turbulent collisions rates of inertial particles. Int. J. Heat Fluid Flow 2006, 27, 937–944.Février, P.; Simonin, O.; Squires, K.D. Partitioning of particle velocities in gas–solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: Theoretical formalism and numerical study. J. Fluid Mech. 2005, 533, 1–46.Reeks, M.W. On the dispersion of small particles suspended in an isotropic turbulent field. J. Fluid Mech. 1977, 83, 529–546.Bewley, G.P.; Saw, E.W.; Bodenschatz, E. Observation of the sling e ect. New J. Phys. 2013, 15, 083051.Choi, J.; Park, Y.; Kwon, O.; Lee, C. Interparticle collision mechanism in turbulence. Phys. Rev. E 2016, 93, 013112.Williams, J.J.E.; Crane, R.I. Particle collision rate in turbulent flow. Int. J. Multiph. Flow 1983, 9, 421–435.Kruis, F.E.; Kusters, K.A. The collision rate of particles in turbulent media. J. Aerosol Sci. 1996, 27, 263–264.Ireland, P.J.; Bragg, A.D.; Collins, L.R. The e ect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational e ects. J. Fluid Mech. 2016, 796, 617–658.Bec, J.; Celani, A.; Cencini, M.; Musacchio, S. Clustering and collisions of heavy particle in random smooth flows. Phys. Fluids 2005, 17, 073301.Wilkinson, M.; Mehlig, B. Caustics in turbulent aerosols. Europhys. Lett. 2005, 71, 186–192.Vosskuhle, M.; Pumir, A.; Lévêque, E.;Wilkinson, M. Prevalence of the sling e ect for enhancing collision rates in turbulent suspensions. J. Fluid Mech. 2014, 749, 841–852.Van Wachem, B.; Curran, T.; Evrard, F. Fully Correlated Stochastic Inter-Particle Collision Model for Euler–Lagrange Gas–Solid Flows. Flow Turb. Comb. 2020.Sommerfeld, M.; Laín, S. From elementary processes to the numerical prediction of industrial particle-laden flows. Multiph. Sci. Technol. 2009, 21, 123–140.Sommerfeld, M. Validation of a stochastic Lagrangian modeling approach for inter-particle collisions in homogeneous isotropic turbulence. Int. J. Multiph. Flow 2001, 27, 1829–1858.Berlemont, A.; Achim, P.; Chang, Z. Lagrangian approaches for particle collisions: The colliding particle velocity correlation in the multiple particles tracking method and in the stochastic approach. Phys. Fluids 2001, 13, 2946–2956.Sommerfeld, M.; Lipowsky, J.; Laín, S. (Keynote lecture). Transient Euler/Lagrange modelling for predicting unsteady rope behaviour in gas-particle flows. In Proceedings of the FEDSM2010 ASME Joint U.S.–European Fluids Engineering Summer Meeting, Montreal, QB, Canada, 1–5 August 2010. Paper No. FEDSM-ICNMM2010-31335.Laviéville, J.; Deutsch, E.; Simonin, O. Large eddy simulation of interactions between colliding particles and a homogeneous isotropic turbulence field. Gas-Solid-Flows 1995, 228, 347–357.Lipowsky, J.; Sommerfeld, M. Time dependent simulation of a swirling two-phase flow using an anisotropic turbulent dispersion model. In Proceedings of the ASME Fluids Engineering Summer Conference, Houston, TX, USA, 19–23 June 2005. Paper No. FEDSM2005-77210.Laín, S.; Ernst, M.; Sommerfeld, M. Colliding particle-pair velocity correlation function in turbulent flows. In Proceedings of the 7th International Conference on Multiphase Flow, ICMF 2010, Tampa, FL, USA, 30 May–4 June 2010.Zaichik, L.I.; Alipchenkov, V.M. Pair dispersion and preferential concentration of particles in isotropic turbulence. Phys. Fluids 2003, 15, 1776–1787.Ernst, M.; Sommerfeld, M. On the volume fraction e ects of inertial colliding particles in homogeneous isotropic turbulence. ASME J. Fluids Eng. 2012, 134, 031302.Ernst, M.; Sommerfeld, M.; Laín, S. Quantification of preferential concentration of colliding particles in a homogeneous isotropic turbulent flow. Int. J. Multiph. Flow 2019, 117, 163–181.Schiller, L.; Naumann, A. Über die grundlegenden Berechnungen bei der Schwerkraftaufbe-reitung. Z. Ver. Deut. Ing. 1933, 77, 318–320.Comte-Bellot, G.; Corrsin, S. Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. J. Fluid Mech. 1971, 48, 273–337.Crowe, C.T. On the relative importance of particle-particle collisions in gas-particle flows. In Proceedings of the Conference on Gas Borne Particles, Oxford, UK, June 1981; pp. 135–137. Available online: https: //pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL82X0129704 (accessed on 5 October 2020).Ten Cate, A.; Derksen, J.J.; Portela, L.M.; van den Akker, H.E.A. Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. 2004, 519, 233–271.Saffman, P.G.; Turner, J.S. On the collisions of drops in turbulent clouds. J. FluidMech. 1956, 1, 16–30.Abrahamson, J. Collision rates of small particles in a vigorously turbulent fluid. Chem. Eng. Sci. 1975, 30, 1371–1379.Vosskuhle, M. Particle Collisions in Turbulent Flows. Ph.D. Thesis, University of Lyon, Lyon, France, 2013.Sundaram, S.; Collins, L.R. Numerical Considerations in Simulating a Turbulent Suspension of Finite-Volume Particles. J. Comp. Phys. 1996, 124, 337–350.Tanaka, T.; Tsuji, Y. Numerical simulation of gas-solid two-phase flow in a vertical pipe: On the e ect of inter-particle collisions. ASME Gas-Solid-Flows 1991, 121, 123–128.GeneralPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2563-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2563-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2563-10000-0002-0269-2608virtual::2563-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2563-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/71efe8e0-a997-47cf-8b03-247a4008ffd8/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALStudy of colliding particle-pair velocity correlation in homogeneous isotropic turbulence.pdfStudy of colliding particle-pair velocity correlation in homogeneous isotropic turbulence.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf3822228https://red.uao.edu.co/bitstreams/9e8ad063-db2e-4058-81c4-69812fcb595a/download9d7e6343117a65353bf46ef608baea55MD53TEXTStudy of colliding particle-pair velocity correlation in homogeneous isotropic turbulence.pdf.txtStudy of colliding particle-pair velocity correlation in homogeneous isotropic turbulence.pdf.txtExtracted texttext/plain113869https://red.uao.edu.co/bitstreams/50480834-5cc0-47d2-8138-389a264f8b41/downloadeacba581654985137bff4780bc8e6d02MD54THUMBNAILStudy of colliding particle-pair velocity correlation in homogeneous isotropic turbulence.pdf.jpgStudy of colliding particle-pair velocity correlation in homogeneous isotropic turbulence.pdf.jpgGenerated Thumbnailimage/jpeg14826https://red.uao.edu.co/bitstreams/4f8ca82a-1850-4f18-9ff5-30cafa80fbb4/download8fc33feadf4a5fcc3ebed037796b2b37MD5510614/13287oai:red.uao.edu.co:10614/132872024-03-06 16:43:15.177https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2020open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |