Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante

El empleo de diferentes materiales cementicios suplementarios (MCS) en la elaboración de concretos autocompactantes (CACs) es una práctica cada vez más frecuente. En este artículo se presentan resultados de una investigación acerca de la utilización del residuo de mampostería (RM) como MCS. El mater...

Full description

Autores:
Gordillo Suárez, Marisol
Delvasto, Silvio
Silva Urrego, Yimmy Fernando
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/11527
Acceso en línea:
http://hdl.handle.net/10614/11527
https://doi.org/10.15446/dyna.v86n208.73103
Palabra clave:
Cemento Portland
Portland cement
Resistencia a la compresión
Resistencia a la compresión
Concreto autocompactante
Material cementicio suplementario
Residuo de mampostería
Actividad puzolánica
Compressive strength
Self-compacting concrete
Supplementary cementitious material
Pozzolanic activity
Residue of masonry
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_157653d927882eefaa85148114118172
oai_identifier_str oai:red.uao.edu.co:10614/11527
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.spa.fl_str_mv Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante
dc.title.alternative.eng.fl_str_mv Valorization and optimization of residue of masonry for the production of self-compacting concrete
title Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante
spellingShingle Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante
Cemento Portland
Portland cement
Resistencia a la compresión
Resistencia a la compresión
Concreto autocompactante
Material cementicio suplementario
Residuo de mampostería
Actividad puzolánica
Compressive strength
Self-compacting concrete
Supplementary cementitious material
Pozzolanic activity
Residue of masonry
title_short Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante
title_full Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante
title_fullStr Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante
title_full_unstemmed Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante
title_sort Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante
dc.creator.fl_str_mv Gordillo Suárez, Marisol
Delvasto, Silvio
Silva Urrego, Yimmy Fernando
dc.contributor.author.none.fl_str_mv Gordillo Suárez, Marisol
Delvasto, Silvio
Silva Urrego, Yimmy Fernando
dc.subject.armarc.spa.fl_str_mv Cemento Portland
topic Cemento Portland
Portland cement
Resistencia a la compresión
Resistencia a la compresión
Concreto autocompactante
Material cementicio suplementario
Residuo de mampostería
Actividad puzolánica
Compressive strength
Self-compacting concrete
Supplementary cementitious material
Pozzolanic activity
Residue of masonry
dc.subject.armarc.eng.fl_str_mv Portland cement
dc.subject.proposal.spa.fl_str_mv Resistencia a la compresión
Resistencia a la compresión
Concreto autocompactante
Material cementicio suplementario
Residuo de mampostería
Actividad puzolánica
dc.subject.proposal.eng.fl_str_mv Compressive strength
Self-compacting concrete
Supplementary cementitious material
Pozzolanic activity
Residue of masonry
description El empleo de diferentes materiales cementicios suplementarios (MCS) en la elaboración de concretos autocompactantes (CACs) es una práctica cada vez más frecuente. En este artículo se presentan resultados de una investigación acerca de la utilización del residuo de mampostería (RM) como MCS. El material se caracterizó utilizando la prueba de Frattini, índice de actividad de resistencia y termogravimetría. La influencia del RM en las propiedades del CAC se evaluó reemplazando el cemento Portland en porcentajes de 0 a 50% en volumen. Las propiedades en estado fresco de los CAC se evaluaron mediante los ensayos de flujo de asentamiento con cono de Abrams, caja en L y embudo en V. Los resultados muestran que el RM presenta actividad puzolánica y puede ser empleado como MCS. El CAC elaborado con RM presentó buen comportamiento en términos de autocompactabilidad; sin embargo, el RM, al presentar baja reactividad a edades tempranas, mostró disminución en la resistencia a la compresión en forma directamente proporcional al porcentaje de reemplazo
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-19T16:45:17Z
dc.date.available.none.fl_str_mv 2019-11-19T16:45:17Z
dc.date.issued.none.fl_str_mv 2019
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2346-2183 (en línea)
0012-7353 (impresa)
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/10614/11527
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.15446/dyna.v86n208.73103
identifier_str_mv 2346-2183 (en línea)
0012-7353 (impresa)
url http://hdl.handle.net/10614/11527
https://doi.org/10.15446/dyna.v86n208.73103
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationendpage.none.fl_str_mv 315
dc.relation.citationissue.none.fl_str_mv 208
dc.relation.citationstartpage.none.fl_str_mv 307
dc.relation.citationvolume.none.fl_str_mv 86
dc.relation.cites.spa.fl_str_mv Silva Urrego, Y., Gordillo, M., & Delvasto, S. (2019). Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante. DYNA, 86(208), 307-315. doi:https://doi.org/10.15446/dyna.v86n208.73103
dc.relation.ispartofjournal.spa.fl_str_mv Dyna
dc.relation.references.none.fl_str_mv [1] Caporale, A., Parisi, F., Asprone, D., Luciano R. and Prota A., Comparative micromechanical assessment of adobe and clay brick masonry assemblages based on experimental data sets. Composite Structures, 120, pp. 208-220, 2015. DOI: 10.1016/j.compstruct.2014.09.046
[2] Nguyen T-D. and Meftan, F., Behavior of hollow clay brick masonry walls during fire. Part 2: 3D finite element modeling and spalling assessment. Fire Safety Journal, 66, pp. 35-45, 2014. DOI: 10.1016/j.firesaf.2013.08.017
[3] Singh, S.B. and Munjal, P., Bond strength and compressive stress-strain characteristics of brick masonry. Journal of Building Engineering, 9, pp.10-16, 2017. DOI: 10.1016/j.jobe.2016.11.006
[4] Luciano, R. and Sacco, E., Homogenization technique and damage model for old masonry material. International Journal of Solids and Strcutures, 34(24), pp. 3191-3208, 1997. DOI: 10.1016/S0020-7683(96)00167-9
[5] Zhang, L., Production of bricks from waste materials – A review. Construction and Building Materials, 47, pp. 643-655, 2013. DOI: 10.1016/j.conbuildmat.2013.05.043
[6] Farag, L.M., Awad, H.M. and Ahmed C.R.A., Assessing the suitability of selected waste as additives to clay bodies in brick manufacture. ZI Int. [online]. 64(12), pp. 24-33, 2011. [date of reference may 18th of 2018] Available at: https://www.researchgate.net/profile/Reda_Gado/publication/263587765_Assessing_the_suitability_of_selected_wastes_as_additives_to_clay_bodies_in_brick_manufacture/links/0deec53c1078590a90000000/Assessing-the-suitability-of-selected-wastes-as-additives-to-clay-bodies-in-brick-manufacture.pdf
[7] Andrade, I., Production of residues in ceramics industry – Central Region 2003 (in portuguese), Central Region, Portugal: CCDRC, [online]. 2004. [Consulted: 10/18th de mayo de 2018] https://run.unl.pt/bitstream/10362/13509/1/RI17%20%20Matias%20et%20al_Manuscript_Lime%20mortars%20ceramic%20waste_type%20and%20mech_CBM14.pdf
[8] Li, H., Dong, L., Jiang, Z., Yang, X. and Yang, Z., Study on utilization of red brick waste powder in the production of cement-based red decorative plaster for walls. Journal of Cleaner Production, 133, pp. 1017-1026, 2016. DOI: 10.1016/j.jclepro.2016.05.149
[9] Villoria, S.P., Porras-Amores, C. and del Rio-Merino, M., New quantification proposal for construction waste generation in new residential constructions. Journal of Cleaner Production, 102, pp. 58-65, 2015. DOI: 10.1016/j.jclepro.2015.04.029
[10] Song, Q., Li, J. and Zeng, X., Minimizing the increasing solid waste through zero waste strategy. Journal of Cleaner Production, 104, pp. 199-210, 2015. DOI: 10.1016/j.jclepro.2014.08.027
[11] Reig, L., Tashima, M.M., Borrachero, M.V. and Monzo, J. and Cheeseman, C.R., Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, pp. 98-106, 2013. DOI: 10.1016/j.conbuildmat.2013.01.031
[12] Cortes, H. and Silva M., Infografía: ¿de dónde vienen y a dónde van a parar los escombros de Cali?. ElPais.com.co. [online]. [date of reference may 18th of 2018]. Available at: http://www.elpais.com.co/elpais/graficos/infografia-ruta-escombros-cali
[13] Schackow, A., Stringari, D., Senff, L., Correia, S.L. and Segadaes A.M., Influence of fired clay brick waste additions on the durability of mortars. Cement & Concrete Composites, 62, pp. 82-89, 2015. DOI: 10.1016/j.cemconcomp.2015.04.019
[14] El-Didamony, H., El-Rahman, E.A. and Osman, R.M., Fire resistance of fired clay bricks-fly ash composite cement pastes. Ceramics International, 38(1), pp. 201-209, 2012. DOI: 10.1016/j.ceramint.2011.06.050
[15] Kumar, S.K., Gopal K.M. and Sreenivasulu, G., Experimental investigation on the properties of concrete replacing cement with metakaolin, fly-ash & brick powder. International Journal of Advance Research in Science and Engineering, [online]. 5(8), pp. 333-341, 2016. [date of reference may 18th of 2018]. Available at: http://www.ijarse.com/images/fullpdf/1470905945_1117ijarse.pdf
[16] Tironiv A., Trezzav M.A., Scianv A.N. and Irassar E.F., Assessment of pozzolanic activity of different calcined clays, Cement and Concrete Composites, 37, pp. 319-327, 2013. DOI: 10.1016/j.cemconcomp.2013.01.002
[17] Barger, G.S., Hansen, E.R., Wood, M.R., Nearly, T., Beech, D.J. and Jaquier, D., Production and use of calcined natural puzzolans in concrete. Cement, Concrete and Aggregates, 23(2), pp. 73-80, 2001. DOI: 10.1520/CCA10478J
[18] Navrátilová E. and Rovnaníková P., Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. Construction and Building Materials, 120, pp. 530-539, 2016. DOI: 10.1016/j.conbuildmat.2016.05.062
[19] Ge, Z., Wang, Y., Wu, X. and Guan, Y., Influence of ground waste clay brick on properties of fresh and hardened concrete. Construction and Building Materials, 98, pp. 128-136, 2015. DOI: 10.1016/j.conbuildmat.2015.08.100
[20] Cachim, P., Mechanical properties of brick aggregate concrete. Construction and Building Materials, 23(3), pp. 1292-1297, 2009. DOI: 10.1016/j.conbuildmat.2008.07.023
[21] Poon, C.S. and Chan, D., Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. Construction and Building Materials, 20(8), pp. 578-585, 2006. DOI: 10.1016/j.conbuildmat.2005.01.045
[22] Liu, Q., Tong, T., Liu, S., Yang, D. and Yu, Q., Investigation of using hybrid recycled powder from demolished concrete solids and clay bricks as a pozzolanic supplement for cement. Construction and Building Materials, 73, pp. 754-763, 2014. DOI: 10.1016/j.conbuildmat.2014.09.066
[23] Aliabdo, A.A., Abd-Elmoaty, A-E. and Hassan, H.H., Utilization of cushed clay brick in concrete industry. Alexandria Engineering Journal, 53, pp. 151-168, 2014. DOI: 10.1016/j.aej.2013.12.003
[24] Izquierdo, S.R., Diaz, J.E., Mejia, R., Torres, J., Blended cement containing fluid catalytic cracking catalyst residue (FCC): hydration and paste microstructure. Revista Ingeniería de Construcción, 28(2), pp. 141-154, 2013. DOI: 10.4067/S0718-50732013000200003
[25] ASTM 331/C311M. Standard test methods for sampling and testing fly ash or natural pozzolans for use in portland-cement concrete, West Conshohocken PA, 2014., 2017.
[26] ASTM C618-17. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken PA, 2017.
[27] Ashteyata, A.M., Haddadb, R.H. and Obaidat, Y.T., Case study on production of self compacting concrete using white cement by pass dust. Case Studies in Construction Materials xxx, pp. 1-11, 2018. DOI: 10.1016/j.cscm.2018.e00190
[28] EFNARC. Specifications and guidelines for self-compacting concrete english ed., European Federation for Spec Constr Chem and Concr Syst. [date of reference May 19th of 2018]. Available at: http://www.efnarc.org/pdf/SandGforSCC.PDF
[29] EPG (2005). European Project Group (BIBM; CEMBUREAU; EFCA; EFNARC). [online]. 2002. [date of reference May 19th of 2018]. Available at: http://www.efnarc.org/pdf/SCCGuidelinesMay2005.pdf
[30] ASTM C39/C39M. Standard test method for compressive strength of cylindrical concrete specimens, West Conshohocken PA, 2014.
[31] ASTM C642.Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken PA, 2013.
[32] Silva, Y.F., Lange, D.A. and Delvasto, S., Effect of incorporation of masonry residue on the properties of self-compacting concretes. Construction and Building Materials, 196, pp. 277-283, 2019. DOI: 10.1016/j.conbuildmat.2018.11.132
[33] Donatello, S., Tyrer, F-P. and Cheeseman, C.R., Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash. Cement & Concrete Composites, 32 (1), pp. 54-61, 2010. DOI: 10.1016/j.cemconcomp.2009.09.002
[34] Payá, J., Monzó, J., Borrachero, M.V., Velásquez, S. and Bonilla, M., Determination of pozzolanic activity of fluid catalytic cracking residue: thermogravimetric analysis studies on FC3R-lime pastes. Cement and Concrete. Research, 33, pp. 1085-1091, 2003. DOI: 10.1016/S0008-8846(03)00014-0
[35] Tashima, M.M., Soriano, L., Payá, J., Monzó, J. and Borrachero, M.V., Assessment of pozzolanic/hydraulic reactivity of vitreous calcium aluminosilicate (VCAS). Materials and Design, 96, pp. 424-430, 2016. DOI: 10.1016/j.matdes.2016.02.036
[36] Sua-iam, G., Sokrai, P. and Makul, N., Novel ternary blends of Type 1 Portland cement, residual rice husk ash, and limestone powder to improve the properties of self-compacting concrete. Construction and Building Materials, 125, pp. 1028-1034, 2016. DOI: 10.1016/j.conbuildmat.2016.09.002
[37] Gettu, R. and Agulló, L., Estado del arte del hormigón autocompactable y su caracterización (Parte II). Cemento y Hormigón. [online]. 862, pp. 32-55, 2004b. [Date of reference May 19th of 2018]. Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=1176502
[38] Singh, G. and Siddique, R., Effect of iron slag as partial replacement of fine aggregates on the durability characteristics of self-compacting concrete. Construction and Building Materials, 128, pp. 88-95, 2016. DOI: 10.1016/j.conbuildmat.2016.10.074.
[39] Elgalhud, A.A., Dhir, R.K. and Ghataora, G., Limestone addition effects on concrete porosity. Cement and Concrete Composites. 72, pp. 222-234, 2016. DOI: 10.1016/j.cemconcomp.2016.06.006
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 9 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia. Sede Medellín. Facultad de Minas
dc.source.spa.fl_str_mv reponame:Repositorio Institucional UAO
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/e723cdcc-f63c-44f3-85ec-7a43cedd77ab/download
https://red.uao.edu.co/bitstreams/c250d0c5-530e-41c0-9c7f-eaa84d1da1d7/download
https://red.uao.edu.co/bitstreams/072c0769-de02-4045-a0c2-389ace3c1b30/download
https://red.uao.edu.co/bitstreams/dc71b3b5-5d86-405e-b9de-724b4fc2011f/download
https://red.uao.edu.co/bitstreams/9ac7bf75-5e58-45d4-9284-ae268302f177/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
9a0a87573e37060cf3750636d52e338c
07efc2251e28d92a4beacbefdb67ff4b
418666e0cd5b23a95bfed7c1e312fe2c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260120495849472
spelling Gordillo Suárez, Marisolvirtual::2003-1Delvasto, Silviobc4ca1ba76dfa37e4e9c12fcae088ca0Silva Urrego, Yimmy Fernandob845fa87e7617cdfaf5669735dcc5a77Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-19T16:45:17Z2019-11-19T16:45:17Z20192346-2183 (en línea)0012-7353 (impresa)http://hdl.handle.net/10614/11527https://doi.org/10.15446/dyna.v86n208.73103El empleo de diferentes materiales cementicios suplementarios (MCS) en la elaboración de concretos autocompactantes (CACs) es una práctica cada vez más frecuente. En este artículo se presentan resultados de una investigación acerca de la utilización del residuo de mampostería (RM) como MCS. El material se caracterizó utilizando la prueba de Frattini, índice de actividad de resistencia y termogravimetría. La influencia del RM en las propiedades del CAC se evaluó reemplazando el cemento Portland en porcentajes de 0 a 50% en volumen. Las propiedades en estado fresco de los CAC se evaluaron mediante los ensayos de flujo de asentamiento con cono de Abrams, caja en L y embudo en V. Los resultados muestran que el RM presenta actividad puzolánica y puede ser empleado como MCS. El CAC elaborado con RM presentó buen comportamiento en términos de autocompactabilidad; sin embargo, el RM, al presentar baja reactividad a edades tempranas, mostró disminución en la resistencia a la compresión en forma directamente proporcional al porcentaje de reemplazoThe use of different supplementary cementitious materials (SCM) in the production of self-compacting concretes (SCCs) is an increasingly common practice. In this paper, results of a research about the use of residue of masonry (RM) as SCM are presented. Frattini test, resistance activity index and thermogravimetry testing were carried out. The influence of RM on the fresh and hardened properties of the SCC was studied by replacing the Portland cement in percentages of 0 to 50% by volume. The fresh properties of the SCCs were measured by slump flow test, L-box and V-funnel. The test results showed that the RM has pozzolanic activity and can be used as SCM. The SCC manufactured with RM presented good performance in terms of self-compactability; however, the RM, because of its low reactivity at early ages, showed a decrease in the compressive strength, that was directly proportional to the percentage of replacementapplication/pdf9 páginasspaUniversidad Nacional de Colombia. Sede Medellín. Facultad de MinasDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2reponame:Repositorio Institucional UAOValorización y optimización del residuo de mampostería para la elaboración de concreto autocompactanteValorization and optimization of residue of masonry for the production of self-compacting concreteArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Cemento PortlandPortland cementResistencia a la compresiónResistencia a la compresiónConcreto autocompactanteMaterial cementicio suplementarioResiduo de mamposteríaActividad puzolánicaCompressive strengthSelf-compacting concreteSupplementary cementitious materialPozzolanic activityResidue of masonry31520830786Silva Urrego, Y., Gordillo, M., & Delvasto, S. (2019). Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante. DYNA, 86(208), 307-315. doi:https://doi.org/10.15446/dyna.v86n208.73103Dyna[1] Caporale, A., Parisi, F., Asprone, D., Luciano R. and Prota A., Comparative micromechanical assessment of adobe and clay brick masonry assemblages based on experimental data sets. Composite Structures, 120, pp. 208-220, 2015. DOI: 10.1016/j.compstruct.2014.09.046[2] Nguyen T-D. and Meftan, F., Behavior of hollow clay brick masonry walls during fire. Part 2: 3D finite element modeling and spalling assessment. Fire Safety Journal, 66, pp. 35-45, 2014. DOI: 10.1016/j.firesaf.2013.08.017[3] Singh, S.B. and Munjal, P., Bond strength and compressive stress-strain characteristics of brick masonry. Journal of Building Engineering, 9, pp.10-16, 2017. DOI: 10.1016/j.jobe.2016.11.006[4] Luciano, R. and Sacco, E., Homogenization technique and damage model for old masonry material. International Journal of Solids and Strcutures, 34(24), pp. 3191-3208, 1997. DOI: 10.1016/S0020-7683(96)00167-9[5] Zhang, L., Production of bricks from waste materials – A review. Construction and Building Materials, 47, pp. 643-655, 2013. DOI: 10.1016/j.conbuildmat.2013.05.043[6] Farag, L.M., Awad, H.M. and Ahmed C.R.A., Assessing the suitability of selected waste as additives to clay bodies in brick manufacture. ZI Int. [online]. 64(12), pp. 24-33, 2011. [date of reference may 18th of 2018] Available at: https://www.researchgate.net/profile/Reda_Gado/publication/263587765_Assessing_the_suitability_of_selected_wastes_as_additives_to_clay_bodies_in_brick_manufacture/links/0deec53c1078590a90000000/Assessing-the-suitability-of-selected-wastes-as-additives-to-clay-bodies-in-brick-manufacture.pdf[7] Andrade, I., Production of residues in ceramics industry – Central Region 2003 (in portuguese), Central Region, Portugal: CCDRC, [online]. 2004. [Consulted: 10/18th de mayo de 2018] https://run.unl.pt/bitstream/10362/13509/1/RI17%20%20Matias%20et%20al_Manuscript_Lime%20mortars%20ceramic%20waste_type%20and%20mech_CBM14.pdf[8] Li, H., Dong, L., Jiang, Z., Yang, X. and Yang, Z., Study on utilization of red brick waste powder in the production of cement-based red decorative plaster for walls. Journal of Cleaner Production, 133, pp. 1017-1026, 2016. DOI: 10.1016/j.jclepro.2016.05.149[9] Villoria, S.P., Porras-Amores, C. and del Rio-Merino, M., New quantification proposal for construction waste generation in new residential constructions. Journal of Cleaner Production, 102, pp. 58-65, 2015. DOI: 10.1016/j.jclepro.2015.04.029[10] Song, Q., Li, J. and Zeng, X., Minimizing the increasing solid waste through zero waste strategy. Journal of Cleaner Production, 104, pp. 199-210, 2015. DOI: 10.1016/j.jclepro.2014.08.027[11] Reig, L., Tashima, M.M., Borrachero, M.V. and Monzo, J. and Cheeseman, C.R., Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, pp. 98-106, 2013. DOI: 10.1016/j.conbuildmat.2013.01.031[12] Cortes, H. and Silva M., Infografía: ¿de dónde vienen y a dónde van a parar los escombros de Cali?. ElPais.com.co. [online]. [date of reference may 18th of 2018]. Available at: http://www.elpais.com.co/elpais/graficos/infografia-ruta-escombros-cali[13] Schackow, A., Stringari, D., Senff, L., Correia, S.L. and Segadaes A.M., Influence of fired clay brick waste additions on the durability of mortars. Cement & Concrete Composites, 62, pp. 82-89, 2015. DOI: 10.1016/j.cemconcomp.2015.04.019[14] El-Didamony, H., El-Rahman, E.A. and Osman, R.M., Fire resistance of fired clay bricks-fly ash composite cement pastes. Ceramics International, 38(1), pp. 201-209, 2012. DOI: 10.1016/j.ceramint.2011.06.050[15] Kumar, S.K., Gopal K.M. and Sreenivasulu, G., Experimental investigation on the properties of concrete replacing cement with metakaolin, fly-ash & brick powder. International Journal of Advance Research in Science and Engineering, [online]. 5(8), pp. 333-341, 2016. [date of reference may 18th of 2018]. Available at: http://www.ijarse.com/images/fullpdf/1470905945_1117ijarse.pdf[16] Tironiv A., Trezzav M.A., Scianv A.N. and Irassar E.F., Assessment of pozzolanic activity of different calcined clays, Cement and Concrete Composites, 37, pp. 319-327, 2013. DOI: 10.1016/j.cemconcomp.2013.01.002[17] Barger, G.S., Hansen, E.R., Wood, M.R., Nearly, T., Beech, D.J. and Jaquier, D., Production and use of calcined natural puzzolans in concrete. Cement, Concrete and Aggregates, 23(2), pp. 73-80, 2001. DOI: 10.1520/CCA10478J[18] Navrátilová E. and Rovnaníková P., Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. Construction and Building Materials, 120, pp. 530-539, 2016. DOI: 10.1016/j.conbuildmat.2016.05.062[19] Ge, Z., Wang, Y., Wu, X. and Guan, Y., Influence of ground waste clay brick on properties of fresh and hardened concrete. Construction and Building Materials, 98, pp. 128-136, 2015. DOI: 10.1016/j.conbuildmat.2015.08.100[20] Cachim, P., Mechanical properties of brick aggregate concrete. Construction and Building Materials, 23(3), pp. 1292-1297, 2009. DOI: 10.1016/j.conbuildmat.2008.07.023[21] Poon, C.S. and Chan, D., Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. Construction and Building Materials, 20(8), pp. 578-585, 2006. DOI: 10.1016/j.conbuildmat.2005.01.045[22] Liu, Q., Tong, T., Liu, S., Yang, D. and Yu, Q., Investigation of using hybrid recycled powder from demolished concrete solids and clay bricks as a pozzolanic supplement for cement. Construction and Building Materials, 73, pp. 754-763, 2014. DOI: 10.1016/j.conbuildmat.2014.09.066[23] Aliabdo, A.A., Abd-Elmoaty, A-E. and Hassan, H.H., Utilization of cushed clay brick in concrete industry. Alexandria Engineering Journal, 53, pp. 151-168, 2014. DOI: 10.1016/j.aej.2013.12.003[24] Izquierdo, S.R., Diaz, J.E., Mejia, R., Torres, J., Blended cement containing fluid catalytic cracking catalyst residue (FCC): hydration and paste microstructure. Revista Ingeniería de Construcción, 28(2), pp. 141-154, 2013. DOI: 10.4067/S0718-50732013000200003[25] ASTM 331/C311M. Standard test methods for sampling and testing fly ash or natural pozzolans for use in portland-cement concrete, West Conshohocken PA, 2014., 2017.[26] ASTM C618-17. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken PA, 2017.[27] Ashteyata, A.M., Haddadb, R.H. and Obaidat, Y.T., Case study on production of self compacting concrete using white cement by pass dust. Case Studies in Construction Materials xxx, pp. 1-11, 2018. DOI: 10.1016/j.cscm.2018.e00190[28] EFNARC. Specifications and guidelines for self-compacting concrete english ed., European Federation for Spec Constr Chem and Concr Syst. [date of reference May 19th of 2018]. Available at: http://www.efnarc.org/pdf/SandGforSCC.PDF[29] EPG (2005). European Project Group (BIBM; CEMBUREAU; EFCA; EFNARC). [online]. 2002. [date of reference May 19th of 2018]. Available at: http://www.efnarc.org/pdf/SCCGuidelinesMay2005.pdf[30] ASTM C39/C39M. Standard test method for compressive strength of cylindrical concrete specimens, West Conshohocken PA, 2014.[31] ASTM C642.Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken PA, 2013.[32] Silva, Y.F., Lange, D.A. and Delvasto, S., Effect of incorporation of masonry residue on the properties of self-compacting concretes. Construction and Building Materials, 196, pp. 277-283, 2019. DOI: 10.1016/j.conbuildmat.2018.11.132[33] Donatello, S., Tyrer, F-P. and Cheeseman, C.R., Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash. Cement & Concrete Composites, 32 (1), pp. 54-61, 2010. DOI: 10.1016/j.cemconcomp.2009.09.002[34] Payá, J., Monzó, J., Borrachero, M.V., Velásquez, S. and Bonilla, M., Determination of pozzolanic activity of fluid catalytic cracking residue: thermogravimetric analysis studies on FC3R-lime pastes. Cement and Concrete. Research, 33, pp. 1085-1091, 2003. DOI: 10.1016/S0008-8846(03)00014-0[35] Tashima, M.M., Soriano, L., Payá, J., Monzó, J. and Borrachero, M.V., Assessment of pozzolanic/hydraulic reactivity of vitreous calcium aluminosilicate (VCAS). Materials and Design, 96, pp. 424-430, 2016. DOI: 10.1016/j.matdes.2016.02.036[36] Sua-iam, G., Sokrai, P. and Makul, N., Novel ternary blends of Type 1 Portland cement, residual rice husk ash, and limestone powder to improve the properties of self-compacting concrete. Construction and Building Materials, 125, pp. 1028-1034, 2016. DOI: 10.1016/j.conbuildmat.2016.09.002[37] Gettu, R. and Agulló, L., Estado del arte del hormigón autocompactable y su caracterización (Parte II). Cemento y Hormigón. [online]. 862, pp. 32-55, 2004b. [Date of reference May 19th of 2018]. Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=1176502[38] Singh, G. and Siddique, R., Effect of iron slag as partial replacement of fine aggregates on the durability characteristics of self-compacting concrete. Construction and Building Materials, 128, pp. 88-95, 2016. DOI: 10.1016/j.conbuildmat.2016.10.074.[39] Elgalhud, A.A., Dhir, R.K. and Ghataora, G., Limestone addition effects on concrete porosity. Cement and Concrete Composites. 72, pp. 222-234, 2016. DOI: 10.1016/j.cemconcomp.2016.06.006Publicationef737148-ed0f-4f64-af7e-d275f09fb3ebvirtual::2003-1ef737148-ed0f-4f64-af7e-d275f09fb3ebvirtual::2003-1https://scholar.google.com/citations?user=lj0tkLsAAAAJ&hl=es&oi=sravirtual::2003-10000-0003-1602-5547virtual::2003-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000472255virtual::2003-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/e723cdcc-f63c-44f3-85ec-7a43cedd77ab/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/c250d0c5-530e-41c0-9c7f-eaa84d1da1d7/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALValorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante.pdfValorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf820169https://red.uao.edu.co/bitstreams/072c0769-de02-4045-a0c2-389ace3c1b30/download9a0a87573e37060cf3750636d52e338cMD54TEXTValorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante.pdf.txtValorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante.pdf.txtExtracted texttext/plain46690https://red.uao.edu.co/bitstreams/dc71b3b5-5d86-405e-b9de-724b4fc2011f/download07efc2251e28d92a4beacbefdb67ff4bMD55THUMBNAILValorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante.pdf.jpgValorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante.pdf.jpgGenerated Thumbnailimage/jpeg16171https://red.uao.edu.co/bitstreams/9ac7bf75-5e58-45d4-9284-ae268302f177/download418666e0cd5b23a95bfed7c1e312fe2cMD5610614/11527oai:red.uao.edu.co:10614/115272024-03-05 15:59:01.865https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K