Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante
El empleo de diferentes materiales cementicios suplementarios (MCS) en la elaboración de concretos autocompactantes (CACs) es una práctica cada vez más frecuente. En este artículo se presentan resultados de una investigación acerca de la utilización del residuo de mampostería (RM) como MCS. El mater...
- Autores:
-
Gordillo Suárez, Marisol
Delvasto, Silvio
Silva Urrego, Yimmy Fernando
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/11527
- Palabra clave:
- Cemento Portland
Portland cement
Resistencia a la compresión
Resistencia a la compresión
Concreto autocompactante
Material cementicio suplementario
Residuo de mampostería
Actividad puzolánica
Compressive strength
Self-compacting concrete
Supplementary cementitious material
Pozzolanic activity
Residue of masonry
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_157653d927882eefaa85148114118172 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11527 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante |
dc.title.alternative.eng.fl_str_mv |
Valorization and optimization of residue of masonry for the production of self-compacting concrete |
title |
Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante |
spellingShingle |
Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante Cemento Portland Portland cement Resistencia a la compresión Resistencia a la compresión Concreto autocompactante Material cementicio suplementario Residuo de mampostería Actividad puzolánica Compressive strength Self-compacting concrete Supplementary cementitious material Pozzolanic activity Residue of masonry |
title_short |
Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante |
title_full |
Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante |
title_fullStr |
Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante |
title_full_unstemmed |
Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante |
title_sort |
Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante |
dc.creator.fl_str_mv |
Gordillo Suárez, Marisol Delvasto, Silvio Silva Urrego, Yimmy Fernando |
dc.contributor.author.none.fl_str_mv |
Gordillo Suárez, Marisol Delvasto, Silvio Silva Urrego, Yimmy Fernando |
dc.subject.armarc.spa.fl_str_mv |
Cemento Portland |
topic |
Cemento Portland Portland cement Resistencia a la compresión Resistencia a la compresión Concreto autocompactante Material cementicio suplementario Residuo de mampostería Actividad puzolánica Compressive strength Self-compacting concrete Supplementary cementitious material Pozzolanic activity Residue of masonry |
dc.subject.armarc.eng.fl_str_mv |
Portland cement |
dc.subject.proposal.spa.fl_str_mv |
Resistencia a la compresión Resistencia a la compresión Concreto autocompactante Material cementicio suplementario Residuo de mampostería Actividad puzolánica |
dc.subject.proposal.eng.fl_str_mv |
Compressive strength Self-compacting concrete Supplementary cementitious material Pozzolanic activity Residue of masonry |
description |
El empleo de diferentes materiales cementicios suplementarios (MCS) en la elaboración de concretos autocompactantes (CACs) es una práctica cada vez más frecuente. En este artículo se presentan resultados de una investigación acerca de la utilización del residuo de mampostería (RM) como MCS. El material se caracterizó utilizando la prueba de Frattini, índice de actividad de resistencia y termogravimetría. La influencia del RM en las propiedades del CAC se evaluó reemplazando el cemento Portland en porcentajes de 0 a 50% en volumen. Las propiedades en estado fresco de los CAC se evaluaron mediante los ensayos de flujo de asentamiento con cono de Abrams, caja en L y embudo en V. Los resultados muestran que el RM presenta actividad puzolánica y puede ser empleado como MCS. El CAC elaborado con RM presentó buen comportamiento en términos de autocompactabilidad; sin embargo, el RM, al presentar baja reactividad a edades tempranas, mostró disminución en la resistencia a la compresión en forma directamente proporcional al porcentaje de reemplazo |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-19T16:45:17Z |
dc.date.available.none.fl_str_mv |
2019-11-19T16:45:17Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
2346-2183 (en línea) 0012-7353 (impresa) |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/10614/11527 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.15446/dyna.v86n208.73103 |
identifier_str_mv |
2346-2183 (en línea) 0012-7353 (impresa) |
url |
http://hdl.handle.net/10614/11527 https://doi.org/10.15446/dyna.v86n208.73103 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.citationendpage.none.fl_str_mv |
315 |
dc.relation.citationissue.none.fl_str_mv |
208 |
dc.relation.citationstartpage.none.fl_str_mv |
307 |
dc.relation.citationvolume.none.fl_str_mv |
86 |
dc.relation.cites.spa.fl_str_mv |
Silva Urrego, Y., Gordillo, M., & Delvasto, S. (2019). Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante. DYNA, 86(208), 307-315. doi:https://doi.org/10.15446/dyna.v86n208.73103 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Dyna |
dc.relation.references.none.fl_str_mv |
[1] Caporale, A., Parisi, F., Asprone, D., Luciano R. and Prota A., Comparative micromechanical assessment of adobe and clay brick masonry assemblages based on experimental data sets. Composite Structures, 120, pp. 208-220, 2015. DOI: 10.1016/j.compstruct.2014.09.046 [2] Nguyen T-D. and Meftan, F., Behavior of hollow clay brick masonry walls during fire. Part 2: 3D finite element modeling and spalling assessment. Fire Safety Journal, 66, pp. 35-45, 2014. DOI: 10.1016/j.firesaf.2013.08.017 [3] Singh, S.B. and Munjal, P., Bond strength and compressive stress-strain characteristics of brick masonry. Journal of Building Engineering, 9, pp.10-16, 2017. DOI: 10.1016/j.jobe.2016.11.006 [4] Luciano, R. and Sacco, E., Homogenization technique and damage model for old masonry material. International Journal of Solids and Strcutures, 34(24), pp. 3191-3208, 1997. DOI: 10.1016/S0020-7683(96)00167-9 [5] Zhang, L., Production of bricks from waste materials – A review. Construction and Building Materials, 47, pp. 643-655, 2013. DOI: 10.1016/j.conbuildmat.2013.05.043 [6] Farag, L.M., Awad, H.M. and Ahmed C.R.A., Assessing the suitability of selected waste as additives to clay bodies in brick manufacture. ZI Int. [online]. 64(12), pp. 24-33, 2011. [date of reference may 18th of 2018] Available at: https://www.researchgate.net/profile/Reda_Gado/publication/263587765_Assessing_the_suitability_of_selected_wastes_as_additives_to_clay_bodies_in_brick_manufacture/links/0deec53c1078590a90000000/Assessing-the-suitability-of-selected-wastes-as-additives-to-clay-bodies-in-brick-manufacture.pdf [7] Andrade, I., Production of residues in ceramics industry – Central Region 2003 (in portuguese), Central Region, Portugal: CCDRC, [online]. 2004. [Consulted: 10/18th de mayo de 2018] https://run.unl.pt/bitstream/10362/13509/1/RI17%20%20Matias%20et%20al_Manuscript_Lime%20mortars%20ceramic%20waste_type%20and%20mech_CBM14.pdf [8] Li, H., Dong, L., Jiang, Z., Yang, X. and Yang, Z., Study on utilization of red brick waste powder in the production of cement-based red decorative plaster for walls. Journal of Cleaner Production, 133, pp. 1017-1026, 2016. DOI: 10.1016/j.jclepro.2016.05.149 [9] Villoria, S.P., Porras-Amores, C. and del Rio-Merino, M., New quantification proposal for construction waste generation in new residential constructions. Journal of Cleaner Production, 102, pp. 58-65, 2015. DOI: 10.1016/j.jclepro.2015.04.029 [10] Song, Q., Li, J. and Zeng, X., Minimizing the increasing solid waste through zero waste strategy. Journal of Cleaner Production, 104, pp. 199-210, 2015. DOI: 10.1016/j.jclepro.2014.08.027 [11] Reig, L., Tashima, M.M., Borrachero, M.V. and Monzo, J. and Cheeseman, C.R., Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, pp. 98-106, 2013. DOI: 10.1016/j.conbuildmat.2013.01.031 [12] Cortes, H. and Silva M., Infografía: ¿de dónde vienen y a dónde van a parar los escombros de Cali?. ElPais.com.co. [online]. [date of reference may 18th of 2018]. Available at: http://www.elpais.com.co/elpais/graficos/infografia-ruta-escombros-cali [13] Schackow, A., Stringari, D., Senff, L., Correia, S.L. and Segadaes A.M., Influence of fired clay brick waste additions on the durability of mortars. Cement & Concrete Composites, 62, pp. 82-89, 2015. DOI: 10.1016/j.cemconcomp.2015.04.019 [14] El-Didamony, H., El-Rahman, E.A. and Osman, R.M., Fire resistance of fired clay bricks-fly ash composite cement pastes. Ceramics International, 38(1), pp. 201-209, 2012. DOI: 10.1016/j.ceramint.2011.06.050 [15] Kumar, S.K., Gopal K.M. and Sreenivasulu, G., Experimental investigation on the properties of concrete replacing cement with metakaolin, fly-ash & brick powder. International Journal of Advance Research in Science and Engineering, [online]. 5(8), pp. 333-341, 2016. [date of reference may 18th of 2018]. Available at: http://www.ijarse.com/images/fullpdf/1470905945_1117ijarse.pdf [16] Tironiv A., Trezzav M.A., Scianv A.N. and Irassar E.F., Assessment of pozzolanic activity of different calcined clays, Cement and Concrete Composites, 37, pp. 319-327, 2013. DOI: 10.1016/j.cemconcomp.2013.01.002 [17] Barger, G.S., Hansen, E.R., Wood, M.R., Nearly, T., Beech, D.J. and Jaquier, D., Production and use of calcined natural puzzolans in concrete. Cement, Concrete and Aggregates, 23(2), pp. 73-80, 2001. DOI: 10.1520/CCA10478J [18] Navrátilová E. and Rovnaníková P., Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. Construction and Building Materials, 120, pp. 530-539, 2016. DOI: 10.1016/j.conbuildmat.2016.05.062 [19] Ge, Z., Wang, Y., Wu, X. and Guan, Y., Influence of ground waste clay brick on properties of fresh and hardened concrete. Construction and Building Materials, 98, pp. 128-136, 2015. DOI: 10.1016/j.conbuildmat.2015.08.100 [20] Cachim, P., Mechanical properties of brick aggregate concrete. Construction and Building Materials, 23(3), pp. 1292-1297, 2009. DOI: 10.1016/j.conbuildmat.2008.07.023 [21] Poon, C.S. and Chan, D., Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. Construction and Building Materials, 20(8), pp. 578-585, 2006. DOI: 10.1016/j.conbuildmat.2005.01.045 [22] Liu, Q., Tong, T., Liu, S., Yang, D. and Yu, Q., Investigation of using hybrid recycled powder from demolished concrete solids and clay bricks as a pozzolanic supplement for cement. Construction and Building Materials, 73, pp. 754-763, 2014. DOI: 10.1016/j.conbuildmat.2014.09.066 [23] Aliabdo, A.A., Abd-Elmoaty, A-E. and Hassan, H.H., Utilization of cushed clay brick in concrete industry. Alexandria Engineering Journal, 53, pp. 151-168, 2014. DOI: 10.1016/j.aej.2013.12.003 [24] Izquierdo, S.R., Diaz, J.E., Mejia, R., Torres, J., Blended cement containing fluid catalytic cracking catalyst residue (FCC): hydration and paste microstructure. Revista Ingeniería de Construcción, 28(2), pp. 141-154, 2013. DOI: 10.4067/S0718-50732013000200003 [25] ASTM 331/C311M. Standard test methods for sampling and testing fly ash or natural pozzolans for use in portland-cement concrete, West Conshohocken PA, 2014., 2017. [26] ASTM C618-17. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken PA, 2017. [27] Ashteyata, A.M., Haddadb, R.H. and Obaidat, Y.T., Case study on production of self compacting concrete using white cement by pass dust. Case Studies in Construction Materials xxx, pp. 1-11, 2018. DOI: 10.1016/j.cscm.2018.e00190 [28] EFNARC. Specifications and guidelines for self-compacting concrete english ed., European Federation for Spec Constr Chem and Concr Syst. [date of reference May 19th of 2018]. Available at: http://www.efnarc.org/pdf/SandGforSCC.PDF [29] EPG (2005). European Project Group (BIBM; CEMBUREAU; EFCA; EFNARC). [online]. 2002. [date of reference May 19th of 2018]. Available at: http://www.efnarc.org/pdf/SCCGuidelinesMay2005.pdf [30] ASTM C39/C39M. Standard test method for compressive strength of cylindrical concrete specimens, West Conshohocken PA, 2014. [31] ASTM C642.Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken PA, 2013. [32] Silva, Y.F., Lange, D.A. and Delvasto, S., Effect of incorporation of masonry residue on the properties of self-compacting concretes. Construction and Building Materials, 196, pp. 277-283, 2019. DOI: 10.1016/j.conbuildmat.2018.11.132 [33] Donatello, S., Tyrer, F-P. and Cheeseman, C.R., Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash. Cement & Concrete Composites, 32 (1), pp. 54-61, 2010. DOI: 10.1016/j.cemconcomp.2009.09.002 [34] Payá, J., Monzó, J., Borrachero, M.V., Velásquez, S. and Bonilla, M., Determination of pozzolanic activity of fluid catalytic cracking residue: thermogravimetric analysis studies on FC3R-lime pastes. Cement and Concrete. Research, 33, pp. 1085-1091, 2003. DOI: 10.1016/S0008-8846(03)00014-0 [35] Tashima, M.M., Soriano, L., Payá, J., Monzó, J. and Borrachero, M.V., Assessment of pozzolanic/hydraulic reactivity of vitreous calcium aluminosilicate (VCAS). Materials and Design, 96, pp. 424-430, 2016. DOI: 10.1016/j.matdes.2016.02.036 [36] Sua-iam, G., Sokrai, P. and Makul, N., Novel ternary blends of Type 1 Portland cement, residual rice husk ash, and limestone powder to improve the properties of self-compacting concrete. Construction and Building Materials, 125, pp. 1028-1034, 2016. DOI: 10.1016/j.conbuildmat.2016.09.002 [37] Gettu, R. and Agulló, L., Estado del arte del hormigón autocompactable y su caracterización (Parte II). Cemento y Hormigón. [online]. 862, pp. 32-55, 2004b. [Date of reference May 19th of 2018]. Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=1176502 [38] Singh, G. and Siddique, R., Effect of iron slag as partial replacement of fine aggregates on the durability characteristics of self-compacting concrete. Construction and Building Materials, 128, pp. 88-95, 2016. DOI: 10.1016/j.conbuildmat.2016.10.074. [39] Elgalhud, A.A., Dhir, R.K. and Ghataora, G., Limestone addition effects on concrete porosity. Cement and Concrete Composites. 72, pp. 222-234, 2016. DOI: 10.1016/j.cemconcomp.2016.06.006 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia. Sede Medellín. Facultad de Minas |
dc.source.spa.fl_str_mv |
reponame:Repositorio Institucional UAO |
institution |
Universidad Autónoma de Occidente |
reponame_str |
Repositorio Institucional UAO |
collection |
Repositorio Institucional UAO |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/e723cdcc-f63c-44f3-85ec-7a43cedd77ab/download https://red.uao.edu.co/bitstreams/c250d0c5-530e-41c0-9c7f-eaa84d1da1d7/download https://red.uao.edu.co/bitstreams/072c0769-de02-4045-a0c2-389ace3c1b30/download https://red.uao.edu.co/bitstreams/dc71b3b5-5d86-405e-b9de-724b4fc2011f/download https://red.uao.edu.co/bitstreams/9ac7bf75-5e58-45d4-9284-ae268302f177/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 9a0a87573e37060cf3750636d52e338c 07efc2251e28d92a4beacbefdb67ff4b 418666e0cd5b23a95bfed7c1e312fe2c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260120495849472 |
spelling |
Gordillo Suárez, Marisolvirtual::2003-1Delvasto, Silviobc4ca1ba76dfa37e4e9c12fcae088ca0Silva Urrego, Yimmy Fernandob845fa87e7617cdfaf5669735dcc5a77Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-19T16:45:17Z2019-11-19T16:45:17Z20192346-2183 (en línea)0012-7353 (impresa)http://hdl.handle.net/10614/11527https://doi.org/10.15446/dyna.v86n208.73103El empleo de diferentes materiales cementicios suplementarios (MCS) en la elaboración de concretos autocompactantes (CACs) es una práctica cada vez más frecuente. En este artículo se presentan resultados de una investigación acerca de la utilización del residuo de mampostería (RM) como MCS. El material se caracterizó utilizando la prueba de Frattini, índice de actividad de resistencia y termogravimetría. La influencia del RM en las propiedades del CAC se evaluó reemplazando el cemento Portland en porcentajes de 0 a 50% en volumen. Las propiedades en estado fresco de los CAC se evaluaron mediante los ensayos de flujo de asentamiento con cono de Abrams, caja en L y embudo en V. Los resultados muestran que el RM presenta actividad puzolánica y puede ser empleado como MCS. El CAC elaborado con RM presentó buen comportamiento en términos de autocompactabilidad; sin embargo, el RM, al presentar baja reactividad a edades tempranas, mostró disminución en la resistencia a la compresión en forma directamente proporcional al porcentaje de reemplazoThe use of different supplementary cementitious materials (SCM) in the production of self-compacting concretes (SCCs) is an increasingly common practice. In this paper, results of a research about the use of residue of masonry (RM) as SCM are presented. Frattini test, resistance activity index and thermogravimetry testing were carried out. The influence of RM on the fresh and hardened properties of the SCC was studied by replacing the Portland cement in percentages of 0 to 50% by volume. The fresh properties of the SCCs were measured by slump flow test, L-box and V-funnel. The test results showed that the RM has pozzolanic activity and can be used as SCM. The SCC manufactured with RM presented good performance in terms of self-compactability; however, the RM, because of its low reactivity at early ages, showed a decrease in the compressive strength, that was directly proportional to the percentage of replacementapplication/pdf9 páginasspaUniversidad Nacional de Colombia. Sede Medellín. Facultad de MinasDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2reponame:Repositorio Institucional UAOValorización y optimización del residuo de mampostería para la elaboración de concreto autocompactanteValorization and optimization of residue of masonry for the production of self-compacting concreteArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Cemento PortlandPortland cementResistencia a la compresiónResistencia a la compresiónConcreto autocompactanteMaterial cementicio suplementarioResiduo de mamposteríaActividad puzolánicaCompressive strengthSelf-compacting concreteSupplementary cementitious materialPozzolanic activityResidue of masonry31520830786Silva Urrego, Y., Gordillo, M., & Delvasto, S. (2019). Valorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante. DYNA, 86(208), 307-315. doi:https://doi.org/10.15446/dyna.v86n208.73103Dyna[1] Caporale, A., Parisi, F., Asprone, D., Luciano R. and Prota A., Comparative micromechanical assessment of adobe and clay brick masonry assemblages based on experimental data sets. Composite Structures, 120, pp. 208-220, 2015. DOI: 10.1016/j.compstruct.2014.09.046[2] Nguyen T-D. and Meftan, F., Behavior of hollow clay brick masonry walls during fire. Part 2: 3D finite element modeling and spalling assessment. Fire Safety Journal, 66, pp. 35-45, 2014. DOI: 10.1016/j.firesaf.2013.08.017[3] Singh, S.B. and Munjal, P., Bond strength and compressive stress-strain characteristics of brick masonry. Journal of Building Engineering, 9, pp.10-16, 2017. DOI: 10.1016/j.jobe.2016.11.006[4] Luciano, R. and Sacco, E., Homogenization technique and damage model for old masonry material. International Journal of Solids and Strcutures, 34(24), pp. 3191-3208, 1997. DOI: 10.1016/S0020-7683(96)00167-9[5] Zhang, L., Production of bricks from waste materials – A review. Construction and Building Materials, 47, pp. 643-655, 2013. DOI: 10.1016/j.conbuildmat.2013.05.043[6] Farag, L.M., Awad, H.M. and Ahmed C.R.A., Assessing the suitability of selected waste as additives to clay bodies in brick manufacture. ZI Int. [online]. 64(12), pp. 24-33, 2011. [date of reference may 18th of 2018] Available at: https://www.researchgate.net/profile/Reda_Gado/publication/263587765_Assessing_the_suitability_of_selected_wastes_as_additives_to_clay_bodies_in_brick_manufacture/links/0deec53c1078590a90000000/Assessing-the-suitability-of-selected-wastes-as-additives-to-clay-bodies-in-brick-manufacture.pdf[7] Andrade, I., Production of residues in ceramics industry – Central Region 2003 (in portuguese), Central Region, Portugal: CCDRC, [online]. 2004. [Consulted: 10/18th de mayo de 2018] https://run.unl.pt/bitstream/10362/13509/1/RI17%20%20Matias%20et%20al_Manuscript_Lime%20mortars%20ceramic%20waste_type%20and%20mech_CBM14.pdf[8] Li, H., Dong, L., Jiang, Z., Yang, X. and Yang, Z., Study on utilization of red brick waste powder in the production of cement-based red decorative plaster for walls. Journal of Cleaner Production, 133, pp. 1017-1026, 2016. DOI: 10.1016/j.jclepro.2016.05.149[9] Villoria, S.P., Porras-Amores, C. and del Rio-Merino, M., New quantification proposal for construction waste generation in new residential constructions. Journal of Cleaner Production, 102, pp. 58-65, 2015. DOI: 10.1016/j.jclepro.2015.04.029[10] Song, Q., Li, J. and Zeng, X., Minimizing the increasing solid waste through zero waste strategy. Journal of Cleaner Production, 104, pp. 199-210, 2015. DOI: 10.1016/j.jclepro.2014.08.027[11] Reig, L., Tashima, M.M., Borrachero, M.V. and Monzo, J. and Cheeseman, C.R., Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, pp. 98-106, 2013. DOI: 10.1016/j.conbuildmat.2013.01.031[12] Cortes, H. and Silva M., Infografía: ¿de dónde vienen y a dónde van a parar los escombros de Cali?. ElPais.com.co. [online]. [date of reference may 18th of 2018]. Available at: http://www.elpais.com.co/elpais/graficos/infografia-ruta-escombros-cali[13] Schackow, A., Stringari, D., Senff, L., Correia, S.L. and Segadaes A.M., Influence of fired clay brick waste additions on the durability of mortars. Cement & Concrete Composites, 62, pp. 82-89, 2015. DOI: 10.1016/j.cemconcomp.2015.04.019[14] El-Didamony, H., El-Rahman, E.A. and Osman, R.M., Fire resistance of fired clay bricks-fly ash composite cement pastes. Ceramics International, 38(1), pp. 201-209, 2012. DOI: 10.1016/j.ceramint.2011.06.050[15] Kumar, S.K., Gopal K.M. and Sreenivasulu, G., Experimental investigation on the properties of concrete replacing cement with metakaolin, fly-ash & brick powder. International Journal of Advance Research in Science and Engineering, [online]. 5(8), pp. 333-341, 2016. [date of reference may 18th of 2018]. Available at: http://www.ijarse.com/images/fullpdf/1470905945_1117ijarse.pdf[16] Tironiv A., Trezzav M.A., Scianv A.N. and Irassar E.F., Assessment of pozzolanic activity of different calcined clays, Cement and Concrete Composites, 37, pp. 319-327, 2013. DOI: 10.1016/j.cemconcomp.2013.01.002[17] Barger, G.S., Hansen, E.R., Wood, M.R., Nearly, T., Beech, D.J. and Jaquier, D., Production and use of calcined natural puzzolans in concrete. Cement, Concrete and Aggregates, 23(2), pp. 73-80, 2001. DOI: 10.1520/CCA10478J[18] Navrátilová E. and Rovnaníková P., Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. Construction and Building Materials, 120, pp. 530-539, 2016. DOI: 10.1016/j.conbuildmat.2016.05.062[19] Ge, Z., Wang, Y., Wu, X. and Guan, Y., Influence of ground waste clay brick on properties of fresh and hardened concrete. Construction and Building Materials, 98, pp. 128-136, 2015. DOI: 10.1016/j.conbuildmat.2015.08.100[20] Cachim, P., Mechanical properties of brick aggregate concrete. Construction and Building Materials, 23(3), pp. 1292-1297, 2009. DOI: 10.1016/j.conbuildmat.2008.07.023[21] Poon, C.S. and Chan, D., Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. Construction and Building Materials, 20(8), pp. 578-585, 2006. DOI: 10.1016/j.conbuildmat.2005.01.045[22] Liu, Q., Tong, T., Liu, S., Yang, D. and Yu, Q., Investigation of using hybrid recycled powder from demolished concrete solids and clay bricks as a pozzolanic supplement for cement. Construction and Building Materials, 73, pp. 754-763, 2014. DOI: 10.1016/j.conbuildmat.2014.09.066[23] Aliabdo, A.A., Abd-Elmoaty, A-E. and Hassan, H.H., Utilization of cushed clay brick in concrete industry. Alexandria Engineering Journal, 53, pp. 151-168, 2014. DOI: 10.1016/j.aej.2013.12.003[24] Izquierdo, S.R., Diaz, J.E., Mejia, R., Torres, J., Blended cement containing fluid catalytic cracking catalyst residue (FCC): hydration and paste microstructure. Revista Ingeniería de Construcción, 28(2), pp. 141-154, 2013. DOI: 10.4067/S0718-50732013000200003[25] ASTM 331/C311M. Standard test methods for sampling and testing fly ash or natural pozzolans for use in portland-cement concrete, West Conshohocken PA, 2014., 2017.[26] ASTM C618-17. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken PA, 2017.[27] Ashteyata, A.M., Haddadb, R.H. and Obaidat, Y.T., Case study on production of self compacting concrete using white cement by pass dust. Case Studies in Construction Materials xxx, pp. 1-11, 2018. DOI: 10.1016/j.cscm.2018.e00190[28] EFNARC. Specifications and guidelines for self-compacting concrete english ed., European Federation for Spec Constr Chem and Concr Syst. [date of reference May 19th of 2018]. Available at: http://www.efnarc.org/pdf/SandGforSCC.PDF[29] EPG (2005). European Project Group (BIBM; CEMBUREAU; EFCA; EFNARC). [online]. 2002. [date of reference May 19th of 2018]. Available at: http://www.efnarc.org/pdf/SCCGuidelinesMay2005.pdf[30] ASTM C39/C39M. Standard test method for compressive strength of cylindrical concrete specimens, West Conshohocken PA, 2014.[31] ASTM C642.Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken PA, 2013.[32] Silva, Y.F., Lange, D.A. and Delvasto, S., Effect of incorporation of masonry residue on the properties of self-compacting concretes. Construction and Building Materials, 196, pp. 277-283, 2019. DOI: 10.1016/j.conbuildmat.2018.11.132[33] Donatello, S., Tyrer, F-P. and Cheeseman, C.R., Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash. Cement & Concrete Composites, 32 (1), pp. 54-61, 2010. DOI: 10.1016/j.cemconcomp.2009.09.002[34] Payá, J., Monzó, J., Borrachero, M.V., Velásquez, S. and Bonilla, M., Determination of pozzolanic activity of fluid catalytic cracking residue: thermogravimetric analysis studies on FC3R-lime pastes. Cement and Concrete. Research, 33, pp. 1085-1091, 2003. DOI: 10.1016/S0008-8846(03)00014-0[35] Tashima, M.M., Soriano, L., Payá, J., Monzó, J. and Borrachero, M.V., Assessment of pozzolanic/hydraulic reactivity of vitreous calcium aluminosilicate (VCAS). Materials and Design, 96, pp. 424-430, 2016. DOI: 10.1016/j.matdes.2016.02.036[36] Sua-iam, G., Sokrai, P. and Makul, N., Novel ternary blends of Type 1 Portland cement, residual rice husk ash, and limestone powder to improve the properties of self-compacting concrete. Construction and Building Materials, 125, pp. 1028-1034, 2016. DOI: 10.1016/j.conbuildmat.2016.09.002[37] Gettu, R. and Agulló, L., Estado del arte del hormigón autocompactable y su caracterización (Parte II). Cemento y Hormigón. [online]. 862, pp. 32-55, 2004b. [Date of reference May 19th of 2018]. Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=1176502[38] Singh, G. and Siddique, R., Effect of iron slag as partial replacement of fine aggregates on the durability characteristics of self-compacting concrete. Construction and Building Materials, 128, pp. 88-95, 2016. DOI: 10.1016/j.conbuildmat.2016.10.074.[39] Elgalhud, A.A., Dhir, R.K. and Ghataora, G., Limestone addition effects on concrete porosity. Cement and Concrete Composites. 72, pp. 222-234, 2016. DOI: 10.1016/j.cemconcomp.2016.06.006Publicationef737148-ed0f-4f64-af7e-d275f09fb3ebvirtual::2003-1ef737148-ed0f-4f64-af7e-d275f09fb3ebvirtual::2003-1https://scholar.google.com/citations?user=lj0tkLsAAAAJ&hl=es&oi=sravirtual::2003-10000-0003-1602-5547virtual::2003-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000472255virtual::2003-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/e723cdcc-f63c-44f3-85ec-7a43cedd77ab/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/c250d0c5-530e-41c0-9c7f-eaa84d1da1d7/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALValorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante.pdfValorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf820169https://red.uao.edu.co/bitstreams/072c0769-de02-4045-a0c2-389ace3c1b30/download9a0a87573e37060cf3750636d52e338cMD54TEXTValorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante.pdf.txtValorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante.pdf.txtExtracted texttext/plain46690https://red.uao.edu.co/bitstreams/dc71b3b5-5d86-405e-b9de-724b4fc2011f/download07efc2251e28d92a4beacbefdb67ff4bMD55THUMBNAILValorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante.pdf.jpgValorización y optimización del residuo de mampostería para la elaboración de concreto autocompactante.pdf.jpgGenerated Thumbnailimage/jpeg16171https://red.uao.edu.co/bitstreams/9ac7bf75-5e58-45d4-9284-ae268302f177/download418666e0cd5b23a95bfed7c1e312fe2cMD5610614/11527oai:red.uao.edu.co:10614/115272024-03-05 15:59:01.865https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |