Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows

For calculating dispersed particle-ladenflows in confined systems, the well-known Euler/Lagrange approach ismost suitable. Lagrangian tracking of non-spherical particles with certain shapes is mostly performed by addi-tionally solving for the orientation of particles in theflow and using resistance...

Full description

Autores:
Laín Beatove, Santiago
Sommerfeld, Martin
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11391
Acceso en línea:
http://hdl.handle.net/10614/11391
https://doi.org/10.1016/j.powtec.2018.03.026
Palabra clave:
Análisis espectral
Spectrum analysis
Aceleración de partículas
Particle acceleration
Non-spherical particles
Irregular shape
Statistical treatment
Euler/Lagrange approach
Fluid forces
Resistance coefficients
Lattice-Boltzmann method
Wall collision process
Velocity ratios
Experiments
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_13f84d7167a175bcca562cb435ee47a7
oai_identifier_str oai:red.uao.edu.co:10614/11391
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows
title Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows
spellingShingle Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows
Análisis espectral
Spectrum analysis
Aceleración de partículas
Particle acceleration
Non-spherical particles
Irregular shape
Statistical treatment
Euler/Lagrange approach
Fluid forces
Resistance coefficients
Lattice-Boltzmann method
Wall collision process
Velocity ratios
Experiments
title_short Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows
title_full Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows
title_fullStr Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows
title_full_unstemmed Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows
title_sort Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows
dc.creator.fl_str_mv Laín Beatove, Santiago
Sommerfeld, Martin
dc.contributor.author.none.fl_str_mv Laín Beatove, Santiago
Sommerfeld, Martin
dc.subject.lemb.spa.fl_str_mv Análisis espectral
topic Análisis espectral
Spectrum analysis
Aceleración de partículas
Particle acceleration
Non-spherical particles
Irregular shape
Statistical treatment
Euler/Lagrange approach
Fluid forces
Resistance coefficients
Lattice-Boltzmann method
Wall collision process
Velocity ratios
Experiments
dc.subject.lemb.eng.fl_str_mv Spectrum analysis
dc.subject.armarc.spa.fl_str_mv Aceleración de partículas
dc.subject.armarc.eng.fl_str_mv Particle acceleration
dc.subject.proposal.eng.fl_str_mv Non-spherical particles
Irregular shape
Statistical treatment
Euler/Lagrange approach
Fluid forces
Resistance coefficients
Lattice-Boltzmann method
Wall collision process
Velocity ratios
Experiments
description For calculating dispersed particle-ladenflows in confined systems, the well-known Euler/Lagrange approach ismost suitable. Lagrangian tracking of non-spherical particles with certain shapes is mostly performed by addi-tionally solving for the orientation of particles in theflow and using resistance coefficients (i.e. drag, lift andtorque) which depend on this orientation. For that in many cases theoretical results for Stokesflow aroundsuch particles are used. In practical situations where very often irregular shaped non-spherical particles aretransported in aflow, such an approach cannot be adopted since the particles have mostly a statistical distribu-tion of shape and hence it is difficult to define a major and minor axis of the particles. The novel approach devel-oped here is based on a statistical treatment of thefluid forces and moments acting on irregular-shaped particlesas well as the wall collision process in order to mimic their stochastic behaviour. The required probability distri-bution functions (PDF's) for the resistance coefficients were derived by applying direct numerical simulations(DNS) based on the Lattice-Boltzmann method (LBM). The PDF's for the wall normal and parallel restitution ra-tios were developed based on an experimental analysis of the wall collision of irregular-shaped particles usingstereoscopic high-speed imaging. Preliminary Euler/Lagrange calculations applying these statistical modelswere conducted for a horizontal channelflow laden with irregular-shaped particles and compared to measure-ments. The results revealed that the calculation of the particle phase assuming the standard models for sphericalparticles yields completely wrong cross-stream profiles of particle massflux, an under-prediction of the stream-wise particle mean velocity and an over-prediction of the associatedfluctuating component. The stochasticmodels for theflow resistance coefficients and the wall collision process on the other hand provided much betteragreement with the measurements
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-03-15
dc.date.accessioned.none.fl_str_mv 2019-11-01T20:57:55Z
dc.date.available.none.fl_str_mv 2019-11-01T20:57:55Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0032-5910
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11391
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.powtec.2018.03.026
identifier_str_mv 0032-5910
url http://hdl.handle.net/10614/11391
https://doi.org/10.1016/j.powtec.2018.03.026
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 264
dc.relation.citationissue.none.fl_str_mv 332
dc.relation.citationstartpage.none.fl_str_mv 253
dc.relation.cites.eng.fl_str_mv Sommerfeld, M., & Lain, S. (2018). Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows. Powder technology, 332, pp. 253-264
dc.relation.ispartofjournal.eng.fl_str_mv Powder technology
dc.relation.references.none.fl_str_mv [1] M. Sommerfeld, B. vanWachem, R. Oliemans, Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC (European Research Community on Flow, Turbulence and Combustion)(ISBN 978-91-633-3564-8) 2008.
[2] M. Sommerfeld, Modelling and numerical calculation of turbulent gas-solid flows with the Euler/Lagrange approach, (Powder and Particle), No. 16, KONA 1998, pp. 194–206.
[3] M. Sommerfeld, Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: part I. Particle transport, Int. J.Multiphase Flow 29 (2003) 675–699.
[4] C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji, Multiphase Flows with Droplets and Particles, 2nd ed. CRC Press, Boca Raton, U.S.A., 2012 (ISBN 978-1-4398-4050-4).
[5] M. Sommerfeld, Particle motion in fluids, VDI-Buch: VDI Heat Atlas, Springer Verlag Berlin, Heidelberg 2010, pp. 1181–1196 Part 11.
[6] M. Sommerfeld, Numerical methods for dispersed multiphase flows, in: T. Bodnár, G.P. Galdi, Š. Necčasová (Eds.), Particles in Flows, Springer, 2017.
[7] A. Haider, O. Levenspiel, Drag coefficient and terminal velocity of spherical and nonspherical particles, Powder Technol. 58 (1983) 63–70.
[8] B. van Wachem, M. Zastawny, F. Zhao, G. Mallouppas, Modelling of gas-solid turbulent channel flow with non-spherical particles with large stokes numbers, Int. J. Multiphase Flow 68 (2015) 80–92.
[9] A. Hölzer, M. Sommerfeld, Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles, Comput. Fluids 38 (2009) 572–589.
[10] M. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem, Derivation of drag and lift force and torque coefficients for non-spherical particles in flows, Int. J. Multiphase Flow 39 (2012) 227–239.
[11] R. Ouchene, M. Khalij, B. Acer, A. Taniere, A new set of correlations of drag, lift and torque coefficients for non-spherical particles at large Reynolds numbers, Powder Technol. 303 (2016) 33–43.
[12] D.O. Njobuenwu, M. Fairweather, Dynamics of single, non-spherical ellipsoidal particles in a turbulent channel flow, Chem. Eng. Sci. 123 (2015) 265–282.
[13] M. Sommerfeld, Kinetic simulations for analysing the wall collision of non-spherical particles, Joint US ASME/European Fluids Engineering Summer Conference, Montreal, Paper No. FEDSM 2002-31239, 2002.
[14] B. Quintero Arboleda, Z. Qadir, M. Sommerfeld, S. Lain, Modelling the wall collision of regular non-spherical particles and experimental validation, Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting; FEDSM2014; August 3-7, 2014, Chicago, Illinois, USA, 2014 (Paper No. FEDSM2014-21610).
[15] J. Kussin, Experimentelle Studien zur Partikelbewegung und Turbulenzmodifikation in einem horizontalen Kanal bei unterschiedlichen WandrauhigkeitenPhD Thesis Zentrum für Ingenieurwissenschaften, Martin-Luther Universität Halle-Wittenberg, 2003.
[16] M. Sommerfeld, S. Lain, Z. Qadir, Strategy in modelling irregular shaped particle behavior in confined turbulent flows, Proceedings of the COST Action FP1005 Final Conference and EUROMECH Colloquium 566 “Anisotropic Particle in Turbulence”, Trondheim Norway 2015, pp. 70–74 (June 9. – 12.).
[17] M. Dietzel, M. Sommerfeld, Numerical calculation of flow resistance for agglomerates with different morphology by the Lattice-Boltzmann Method, Powder Technol. 250 (2013) 122–137.
[18] M. Sommerfeld, Z. Qadir, Fluid Dynamic Forces Acting on Irregular Shaped Particles: Simulations by the Lattice-Boltzmann Method, Int. J. Multiphase Flow 101 (2018) 212–222.
[19] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94 (1954) 511–525.
[20] S. Laín, M. Sommerfeld, B. Quintero, Z. Qadir, Modelling and computation of irregular non-spherical particles transport in confined turbulent flow, 13th International Conference on Multiphase Flow in Industrial Plants, Sestri Levante (Genova), Italy, September 17–19, 2014.
[21] L. Schiller, A. Naumann, Über die grundlegende Berechnung bei der Schwerkraftaufbereitung, 44, Verein Deutscher Ingenieure, 1933 318–320.
[22] M. Sommerfeld, N. Huber, Experimental analysis and modelling of particle-wall collisions, Int. J. Multiphase Flow 25 (1999) 1457–1489.
[23] M. Sommerfeld, S. Lain, From elementary processes to the numerical prediction of industrial particle-laden flows, Multiph. Sci. Technol. 21 (2009) 123–140.
[24] M. Sommerfeld, C. Tropea, in: S.L. Soo (Ed.), Single-Point Laser Measurement. Chapter 7 in Instrumentation for Fluid-Particle Flow, Noyes Publications 1999, pp. 252–317.
[25] S. Lain, M. Sommerfeld, Euler/Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness, Powder Technol. 184 (2008) 76–88.
[26] S. Lain,M. Sommerfeld, Numerical calculation of pneumatic conveying in horizontal channels and pipes: detailed analysis of conveying behaviour, Int. J.Multiphase Flow 39 (2012) 105–120.
[27] W.P. Jones, P. Musonge, Closure of the Reynolds stress and scalar flux equations, Phys. Fluids 31 (1988) 3589–3604.
[28] S. Laín, M. Sommerfeld, Characterisation of pneumatic conveying systems using the Euler/Lagrange approach, Powder Technol. 235 (2013) 764–782.
[29] M.F. Göz, S. Laín, M. Sommerfeld, Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow, Comput. Chem. Eng. 28 (2004) 2727–2733.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.none.fl_str_mv 12 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Elsevier
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0032591018302171
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/66d19100-fe5c-472a-a545-ee0416f59b99/download
https://red.uao.edu.co/bitstreams/2ea12e0e-7206-4025-aca4-8a3f63d54951/download
https://red.uao.edu.co/bitstreams/97974eee-e3a1-41e7-a375-eed7b2809ac6/download
https://red.uao.edu.co/bitstreams/830adb8b-1251-42e9-a377-cbcae530f928/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
4dc5356c6395bb1ae92640ff036e10d4
f768bfcbd1b5d4bbad44fecb06e126a7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1828229986460368896
spelling Laín Beatove, Santiagovirtual::2532-1Sommerfeld, Martin584f85f313767d3025329c2e43274122Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-01T20:57:55Z2019-11-01T20:57:55Z2018-03-150032-5910http://hdl.handle.net/10614/11391https://doi.org/10.1016/j.powtec.2018.03.026For calculating dispersed particle-ladenflows in confined systems, the well-known Euler/Lagrange approach ismost suitable. Lagrangian tracking of non-spherical particles with certain shapes is mostly performed by addi-tionally solving for the orientation of particles in theflow and using resistance coefficients (i.e. drag, lift andtorque) which depend on this orientation. For that in many cases theoretical results for Stokesflow aroundsuch particles are used. In practical situations where very often irregular shaped non-spherical particles aretransported in aflow, such an approach cannot be adopted since the particles have mostly a statistical distribu-tion of shape and hence it is difficult to define a major and minor axis of the particles. The novel approach devel-oped here is based on a statistical treatment of thefluid forces and moments acting on irregular-shaped particlesas well as the wall collision process in order to mimic their stochastic behaviour. The required probability distri-bution functions (PDF's) for the resistance coefficients were derived by applying direct numerical simulations(DNS) based on the Lattice-Boltzmann method (LBM). The PDF's for the wall normal and parallel restitution ra-tios were developed based on an experimental analysis of the wall collision of irregular-shaped particles usingstereoscopic high-speed imaging. Preliminary Euler/Lagrange calculations applying these statistical modelswere conducted for a horizontal channelflow laden with irregular-shaped particles and compared to measure-ments. The results revealed that the calculation of the particle phase assuming the standard models for sphericalparticles yields completely wrong cross-stream profiles of particle massflux, an under-prediction of the stream-wise particle mean velocity and an over-prediction of the associatedfluctuating component. The stochasticmodels for theflow resistance coefficients and the wall collision process on the other hand provided much betteragreement with the measurementsapplication/pdf12 páginasengElsevierDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S0032591018302171Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flowsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Análisis espectralSpectrum analysisAceleración de partículasParticle accelerationNon-spherical particlesIrregular shapeStatistical treatmentEuler/Lagrange approachFluid forcesResistance coefficientsLattice-Boltzmann methodWall collision processVelocity ratiosExperiments264332253Sommerfeld, M., & Lain, S. (2018). Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows. Powder technology, 332, pp. 253-264Powder technology[1] M. Sommerfeld, B. vanWachem, R. Oliemans, Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC (European Research Community on Flow, Turbulence and Combustion)(ISBN 978-91-633-3564-8) 2008.[2] M. Sommerfeld, Modelling and numerical calculation of turbulent gas-solid flows with the Euler/Lagrange approach, (Powder and Particle), No. 16, KONA 1998, pp. 194–206.[3] M. Sommerfeld, Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: part I. Particle transport, Int. J.Multiphase Flow 29 (2003) 675–699.[4] C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji, Multiphase Flows with Droplets and Particles, 2nd ed. CRC Press, Boca Raton, U.S.A., 2012 (ISBN 978-1-4398-4050-4).[5] M. Sommerfeld, Particle motion in fluids, VDI-Buch: VDI Heat Atlas, Springer Verlag Berlin, Heidelberg 2010, pp. 1181–1196 Part 11.[6] M. Sommerfeld, Numerical methods for dispersed multiphase flows, in: T. Bodnár, G.P. Galdi, Š. Necčasová (Eds.), Particles in Flows, Springer, 2017.[7] A. Haider, O. Levenspiel, Drag coefficient and terminal velocity of spherical and nonspherical particles, Powder Technol. 58 (1983) 63–70.[8] B. van Wachem, M. Zastawny, F. Zhao, G. Mallouppas, Modelling of gas-solid turbulent channel flow with non-spherical particles with large stokes numbers, Int. J. Multiphase Flow 68 (2015) 80–92.[9] A. Hölzer, M. Sommerfeld, Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles, Comput. Fluids 38 (2009) 572–589.[10] M. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem, Derivation of drag and lift force and torque coefficients for non-spherical particles in flows, Int. J. Multiphase Flow 39 (2012) 227–239.[11] R. Ouchene, M. Khalij, B. Acer, A. Taniere, A new set of correlations of drag, lift and torque coefficients for non-spherical particles at large Reynolds numbers, Powder Technol. 303 (2016) 33–43.[12] D.O. Njobuenwu, M. Fairweather, Dynamics of single, non-spherical ellipsoidal particles in a turbulent channel flow, Chem. Eng. Sci. 123 (2015) 265–282.[13] M. Sommerfeld, Kinetic simulations for analysing the wall collision of non-spherical particles, Joint US ASME/European Fluids Engineering Summer Conference, Montreal, Paper No. FEDSM 2002-31239, 2002.[14] B. Quintero Arboleda, Z. Qadir, M. Sommerfeld, S. Lain, Modelling the wall collision of regular non-spherical particles and experimental validation, Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting; FEDSM2014; August 3-7, 2014, Chicago, Illinois, USA, 2014 (Paper No. FEDSM2014-21610).[15] J. Kussin, Experimentelle Studien zur Partikelbewegung und Turbulenzmodifikation in einem horizontalen Kanal bei unterschiedlichen WandrauhigkeitenPhD Thesis Zentrum für Ingenieurwissenschaften, Martin-Luther Universität Halle-Wittenberg, 2003.[16] M. Sommerfeld, S. Lain, Z. Qadir, Strategy in modelling irregular shaped particle behavior in confined turbulent flows, Proceedings of the COST Action FP1005 Final Conference and EUROMECH Colloquium 566 “Anisotropic Particle in Turbulence”, Trondheim Norway 2015, pp. 70–74 (June 9. – 12.).[17] M. Dietzel, M. Sommerfeld, Numerical calculation of flow resistance for agglomerates with different morphology by the Lattice-Boltzmann Method, Powder Technol. 250 (2013) 122–137.[18] M. Sommerfeld, Z. Qadir, Fluid Dynamic Forces Acting on Irregular Shaped Particles: Simulations by the Lattice-Boltzmann Method, Int. J. Multiphase Flow 101 (2018) 212–222.[19] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94 (1954) 511–525.[20] S. Laín, M. Sommerfeld, B. Quintero, Z. Qadir, Modelling and computation of irregular non-spherical particles transport in confined turbulent flow, 13th International Conference on Multiphase Flow in Industrial Plants, Sestri Levante (Genova), Italy, September 17–19, 2014.[21] L. Schiller, A. Naumann, Über die grundlegende Berechnung bei der Schwerkraftaufbereitung, 44, Verein Deutscher Ingenieure, 1933 318–320.[22] M. Sommerfeld, N. Huber, Experimental analysis and modelling of particle-wall collisions, Int. J. Multiphase Flow 25 (1999) 1457–1489.[23] M. Sommerfeld, S. Lain, From elementary processes to the numerical prediction of industrial particle-laden flows, Multiph. Sci. Technol. 21 (2009) 123–140.[24] M. Sommerfeld, C. Tropea, in: S.L. Soo (Ed.), Single-Point Laser Measurement. Chapter 7 in Instrumentation for Fluid-Particle Flow, Noyes Publications 1999, pp. 252–317.[25] S. Lain, M. Sommerfeld, Euler/Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness, Powder Technol. 184 (2008) 76–88.[26] S. Lain,M. Sommerfeld, Numerical calculation of pneumatic conveying in horizontal channels and pipes: detailed analysis of conveying behaviour, Int. J.Multiphase Flow 39 (2012) 105–120.[27] W.P. Jones, P. Musonge, Closure of the Reynolds stress and scalar flux equations, Phys. Fluids 31 (1988) 3589–3604.[28] S. Laín, M. Sommerfeld, Characterisation of pneumatic conveying systems using the Euler/Lagrange approach, Powder Technol. 235 (2013) 764–782.[29] M.F. Göz, S. Laín, M. Sommerfeld, Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow, Comput. Chem. Eng. 28 (2004) 2727–2733.Publication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2532-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2532-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2532-10000-0002-0269-2608virtual::2532-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2532-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/66d19100-fe5c-472a-a545-ee0416f59b99/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/2ea12e0e-7206-4025-aca4-8a3f63d54951/download20b5ba22b1117f71589c7318baa2c560MD53TEXTStochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows.pdf.txtStochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows.pdf.txtExtracted texttext/plain60746https://red.uao.edu.co/bitstreams/97974eee-e3a1-41e7-a375-eed7b2809ac6/download4dc5356c6395bb1ae92640ff036e10d4MD55THUMBNAILStochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows.pdf.jpgStochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows.pdf.jpgGenerated Thumbnailimage/jpeg14048https://red.uao.edu.co/bitstreams/830adb8b-1251-42e9-a377-cbcae530f928/downloadf768bfcbd1b5d4bbad44fecb06e126a7MD5610614/11391oai:red.uao.edu.co:10614/113912024-03-06 16:02:50.487https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K