Highly sensitive fiber ring laser sensor for curvature using a modal interferometer

A curvature sensing Ytterbium-doped fiber ring,using a Thin Core Fiber Modal Interferometer (TCFMI) was experimentally demonstrated in this work. The TCFMI was implemented by fusion splicing a segment of a thin-core fiber, with a small core diameter, between two single-mode fiber sections. The propo...

Full description

Autores:
Martin Vela, Javier Antonio
Sierra Hernández, Juan Manuel
Jauregui Vázquez, Daniel
Estudillo Ayala, Julián M.
Hernández García, Juan C.
Reyes Ayona, José Roberto
Garcia Mina, Diego Felipe
Rojas Laguna, Roberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13547
Acceso en línea:
https://hdl.handle.net/10614/13547
Palabra clave:
Optical sensors
Ytterbium
Ring lasers
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id REPOUAO2_139bcdc9f3f5c8d25f9abeb66d7415a2
oai_identifier_str oai:red.uao.edu.co:10614/13547
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Highly sensitive fiber ring laser sensor for curvature using a modal interferometer
title Highly sensitive fiber ring laser sensor for curvature using a modal interferometer
spellingShingle Highly sensitive fiber ring laser sensor for curvature using a modal interferometer
Optical sensors
Ytterbium
Ring lasers
title_short Highly sensitive fiber ring laser sensor for curvature using a modal interferometer
title_full Highly sensitive fiber ring laser sensor for curvature using a modal interferometer
title_fullStr Highly sensitive fiber ring laser sensor for curvature using a modal interferometer
title_full_unstemmed Highly sensitive fiber ring laser sensor for curvature using a modal interferometer
title_sort Highly sensitive fiber ring laser sensor for curvature using a modal interferometer
dc.creator.fl_str_mv Martin Vela, Javier Antonio
Sierra Hernández, Juan Manuel
Jauregui Vázquez, Daniel
Estudillo Ayala, Julián M.
Hernández García, Juan C.
Reyes Ayona, José Roberto
Garcia Mina, Diego Felipe
Rojas Laguna, Roberto
dc.contributor.author.none.fl_str_mv Martin Vela, Javier Antonio
Sierra Hernández, Juan Manuel
Jauregui Vázquez, Daniel
Estudillo Ayala, Julián M.
Hernández García, Juan C.
Reyes Ayona, José Roberto
Garcia Mina, Diego Felipe
Rojas Laguna, Roberto
dc.contributor.corporatename.spa.fl_str_mv IEEE Sensors Journal
dc.subject.proposal.eng.fl_str_mv Optical sensors
Ytterbium
Ring lasers
topic Optical sensors
Ytterbium
Ring lasers
description A curvature sensing Ytterbium-doped fiber ring,using a Thin Core Fiber Modal Interferometer (TCFMI) was experimentally demonstrated in this work. The TCFMI was implemented by fusion splicing a segment of a thin-core fiber, with a small core diameter, between two single-mode fiber sections. The proposed TCFMI functioned as a wavelengthselective filter in the fiber ring laser cavity. It was optimized to achieve a Side Mode Suppression Ratio (SMSR) of 35 dB; the laser emission produced a sensor resolution of 0.37 nm. The experimental results also showed a high curvature sensitivity close to −38.26 nm/m−1 from 0 m−1 to 0.399 m−1 curvature range. Here, the laser sensor exhibited a bandwidth of 16 nm in the 1072 nm to 1056 nm wavelength range. The fiber ring laser is a low-cost alternative for curvature sensing applications
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-09-01
dc.date.accessioned.none.fl_str_mv 2022-01-17T18:22:43Z
dc.date.available.none.fl_str_mv 2022-01-17T18:22:43Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 15581748
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13547
identifier_str_mv 15581748
url https://hdl.handle.net/10614/13547
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Volumen 20, número 17 (2020)
dc.relation.citationendpage.spa.fl_str_mv 9870
dc.relation.citationissue.spa.fl_str_mv 17
dc.relation.citationstartpage.spa.fl_str_mv 9864
dc.relation.citationvolume.spa.fl_str_mv 20
dc.relation.cites.spa.fl_str_mv Martin Vela, J. A., Sierra Hernández, J. M., Jauregui Vazquez, D., Estudillo Ayala, J. M., Hernández García, J. C., Reyes Ayona, J. R., García Mina, D. F., Rojas Laguna, R. (2020). Highly sensitive fiber ring laser sensor for curvature using a modal interferometer. IEEE Sensors Journal. (Vol. 20 (17), pp. 9864-9870. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9084143&tag=1
dc.relation.ispartofjournal.eng.fl_str_mv IEEE Sensors Journal
dc.relation.references.none.fl_str_mv [1] X.-L. Wang, D.-R. Chen, X.-W. Ma, H.-T. Li, and S.-J. Luo, “A switchable and tunable ytterbium-doped fiber ring laser with a sagnac loop mirror,” Optoelectron. Lett., vol. 12, no. 4, pp. 261–263, Jul. 2016.
[2] J. Cheng and S. Ruan, “Tunable and switchable multi-wavelength Erbium-doped photonic crystal fiber ring laser incorporating a length of highly nonlinear photonic crystal fiber,” Opt. Commun., vol. 284, no. 21, pp. 5185–5188, Oct. 2011.
[3] Z.-R. Tong, M.-Y. Liu, Y. Cao, W.-H. Zhang, and X. Hao, “Switchable dual-wavelength erbium-doped fiber laser with tunable wavelength,” Optoelectron. Lett., vol. 11, no. 5, pp. 325–328, Sep. 2015.
[4] H. Zou, S. Lou, G. Yin, and W. Su, “Switchable dual-wavelength PMEDF ring laser based on a novel filter,” IEEE Photon. Technol. Lett., vol. 25, no. 11, pp. 1003–1006, Jun. 2013.
[5] J. F. Zhao, T. Q. Liao, C. Zhang, R. X. Zhang, C. Y. Miao, and Z. R. Tong, “Double Brillouin frequency spaced multiwavelength brillouin-erbium fiber laser with 50 nm tuning range,” Laser Phys., vol. 22, no. 9, pp. 1415–1418, Sep. 2012.
[6] A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable ho-doped soliton fiber laser mode-locked by carbon nanotube saturable absorber,” Laser Phys. Lett., vol. 9, no. 8, pp. 602–606, Aug. 2012.
[7] S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys., vol. 17, no. 11, pp. 1323–1326, Nov. 2007.
[8] J. Liu, J. Yao, J. Yao, and T. Hin Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1020–1022, Apr. 2004.
[9] X. Liu, S. Lou, Z. Tang, Y. Zhou, H. Jia, and P. Sun, “Tunable dual-wavelength ytterbium-doped fiber ring laser based on a sagnac interferometer,” Opt. Laser Technol., vol. 116, pp. 37–42, Aug. 2019.
[10] J. A. Martin-Vela et al., “Curvature sensing setup based on a fiber laser and a long-period fiber grating,” IEEE Photon. Technol. Lett., vol. 31, no. 15, pp. 1265–1268, Aug. 1, 2019.
[11] M. A. Gonzalez-Reyna et al., “Laser temperature sensor based on a fiber Bragg grating,” IEEE Photon. Technol. Lett., vol. 27, no. 11, pp. 1141–1144, Jun. 2015.
[12] R. A. Perez-Herrera et al., “L-band multiwavelength single-longitudinal mode fiber laser for sensing applications,” J. Lightw. Technol., vol. 30, no. 8, pp. 1173–1177, Apr. 2012.
[13] H. Fu et al., “High-sensitivity Mach–Zehnder interferometric curvature fiber sensor based on thin-core fiber,” IEEE Sensors J., vol. 15, no. 1, pp. 520–525, Jan. 2015.
[14] A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightw. Technol., vol. 19, no. 10, pp. 1495–1501, Oct. 2001.
[15] D.W. Kim, F. Shen, X. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode longperiod grating and an intrinsic Fabry–Pérot interferometer sensor,” Opt. Lett., vol. 30, no. 22, p. 3000, Nov. 2005.
[16] B. Dong, J. Hao, and Z. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol., vol. 17, no. 3, pp. 233–235, May 2011.
[17] Y. Zhou et al., “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun., vol. 284, no. 24, pp. 5669–5672, Dec. 2011.
[18] T. Lozano-Hernandez et al., “Study of nonlinear liquid effects into ytterbium-doped fiber laser for multi-wavelength generation,” Proc. SPIE, vol. 10516, Feb. 2018, Art. no. 105161L.
[19] C. Li et al., “All-fiber multipath Machâ¬oeZehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A, Phys., vol. 248, pp. 148–154, Sep. 2016.
[20] Y. Zhao, L. Cai, and X.-G. Li, “Temperature-insensitive optical fiber curvature sensor based on SMF-MMF-TCSMF-MMF-SMF structure,” IEEE Trans. Instrum. Meas., vol. 66, no. 1, pp. 141–147, Jan. 2017.
[21] L. Ding, Y. Li, C. Zhou, M. Hu, Y. Xiong, and Z. Zeng, “In-fiber machzehnder interferometer based on three-core fiber for measurement of directional bending,” Sensors, vol. 19, no. 1, p. 205, 2019.
[22] Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express, vol. 21, no. 20, pp. 23812–23821, 2013.
[23] J.-J. Zhu, A. P. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic hightemperature sensor based on thin-core fiber modal interferometer,” IEEE Sensors J., vol. 10, no. 9, pp. 1415–1418, Sep. 2010.
[24] A. Bellemare et al., “A broadly tunable erbium-doped fiber ring laser: Experimentation and modeling,” IEEE J. Sel. Topics Quantum Electron., vol. 7, no. 1, pp. 22–29, Jan. 2001.
[25] H. Taylor, “Bending effects in optical fiber,” J. Lightw. Technol., vol. LT- 2, no. 5, pp. 617–628, Oct. 1984.
[26] S. Wang, W. G. Zhang, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photon. Technol. Lett., vol. 28, no. 19, pp. 2066–2069, Jun. 2016.
[27] G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez- Rios, A. Schülzgen, and R. A. Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett., vol. 40, no. 7, pp. 1468–1471, 2015.
[28] Y. Gong, T. Zhao, and Y. J. Rao, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 679–681, Mar. 2011.
[29] J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric vector bending sensor,” Opt. Lett., vol. 40, no. 13, pp. 3113–3116, Jul. 015.
[30] L. L. Shi, T. Zhu, F. Y. Chen, M. Deng, and W. Huang, “Tunable filter based on a pair of special long-period fiber gratings and its application in fiber ring laser,” Laser Phys., vol. 22, no. 3, pp. 575–578, Mar. 2012.
[31] A. G. Leal-Junior, L. M. Avellar, C. A. R. Diaz, A. Frizera, C. Marques, and M. J. Pontes, “Fabry–Pérot curvature sensor with cavities based on UV-curable resins: Design, analysis, and data integration approach,” IEEE Sensors J., vol. 19, no. 21, pp. 9798–9805, Nov. 2019.
[32] S. Zhang et al., “A miniature SMS-LPG bending sensor with high sensitivity based on multimode fiber embedded-LPG,” Sens. Actuators A, Phys., vol. 295, pp. 31–36, Aug. 2019.
[33] Y.-X. Zhang et al., “V-shaped long-period fiber grating high-sensitive bending vector sensor,” IEEE Photon. Technol. Lett., vol. 30, no. 17, pp. 1531–1534, Sep. 2018.
[34] J. M. Sierra-Hernandez et al., “Torsion sensing setup based on a three beam path mach-zehnder interferometer,” Microw. Opt. Technol. Lett., vol. 57, no. 8, pp. 1857–1860, Aug. 2015.
[35] N. A. D. Huri et al., “Temperature sensor based on fluorescence measurement of cerium ytterbium doped fiber,” Opt. Spectrosc., vol. 111, no. 2, pp. 312–314, Aug. 2011.
[36] S. Sidhishwari, M. Basu, and S. K. Ghorai, “A modal interference-based fiber optic sensor for dual parameter measurement using an artificial neural network,” Opt. Fiber Technol., vol. 50, pp. 216–224, Jul. 2019.
[37] A. J. Thompson, M. Power, and G.-Z. Yang, “Micro-scale fiber-optic force sensor fabricated using direct laser writing and calibrated using machine learning,” Opt. Express, vol. 26, no. 11, p. 14186, May 2018.
[38] X. Zhang, D. Liang, J. Zeng, and A. Asundi, “Genetic algorithm-support vector regression for high reliability SHM system based on FBG sensor network,” Opt. Lasers Eng., vol. 50, no. 2, pp. 148–153, Feb. 2012.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 7 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv IEEE Sensors Council
dc.source.eng.fl_str_mv https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9084143&tag=1
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/0ff4c8ea-b64e-4ae9-9b61-60efccd1bbaf/download
https://red.uao.edu.co/bitstreams/41658d1a-8785-47b5-9805-2b5b406c7874/download
https://red.uao.edu.co/bitstreams/581bc2fb-1280-460b-9452-b58843d27316/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
9b84868f9b7e526f3f93d1670779fedc
9ff681ae4fb79866e2eee0b6885f3210
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259890714050560
spelling Martin Vela, Javier Antonioac0b279facc5a8d16533caa6609921a3Sierra Hernández, Juan Manuel55e755f69134d7790d8a320d01720758Jauregui Vázquez, Danielc494c17e452c1a34df17211ac819bb05Estudillo Ayala, Julián M.7eeba217d3ab3ae19ce31b25b30bd178Hernández García, Juan C.9c0d9c5033006f873684bd0afd033d53Reyes Ayona, José Roberto85a6e82a3c4eb26f5f406924ea00f114Garcia Mina, Diego Felipec444e6cc93186e7c24a52a7b8e4a1f2dRojas Laguna, Roberto4213cb36bc1eaa42436b76ac9e2b4953IEEE Sensors Journal2022-01-17T18:22:43Z2022-01-17T18:22:43Z2020-09-0115581748https://hdl.handle.net/10614/13547A curvature sensing Ytterbium-doped fiber ring,using a Thin Core Fiber Modal Interferometer (TCFMI) was experimentally demonstrated in this work. The TCFMI was implemented by fusion splicing a segment of a thin-core fiber, with a small core diameter, between two single-mode fiber sections. The proposed TCFMI functioned as a wavelengthselective filter in the fiber ring laser cavity. It was optimized to achieve a Side Mode Suppression Ratio (SMSR) of 35 dB; the laser emission produced a sensor resolution of 0.37 nm. The experimental results also showed a high curvature sensitivity close to −38.26 nm/m−1 from 0 m−1 to 0.399 m−1 curvature range. Here, the laser sensor exhibited a bandwidth of 16 nm in the 1072 nm to 1056 nm wavelength range. The fiber ring laser is a low-cost alternative for curvature sensing applications7 páginasapplication/pdfengIEEE Sensors Councilhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9084143&tag=1Highly sensitive fiber ring laser sensor for curvature using a modal interferometerArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Volumen 20, número 17 (2020)987017986420Martin Vela, J. A., Sierra Hernández, J. M., Jauregui Vazquez, D., Estudillo Ayala, J. M., Hernández García, J. C., Reyes Ayona, J. R., García Mina, D. F., Rojas Laguna, R. (2020). Highly sensitive fiber ring laser sensor for curvature using a modal interferometer. IEEE Sensors Journal. (Vol. 20 (17), pp. 9864-9870. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9084143&tag=1IEEE Sensors Journal[1] X.-L. Wang, D.-R. Chen, X.-W. Ma, H.-T. Li, and S.-J. Luo, “A switchable and tunable ytterbium-doped fiber ring laser with a sagnac loop mirror,” Optoelectron. Lett., vol. 12, no. 4, pp. 261–263, Jul. 2016.[2] J. Cheng and S. Ruan, “Tunable and switchable multi-wavelength Erbium-doped photonic crystal fiber ring laser incorporating a length of highly nonlinear photonic crystal fiber,” Opt. Commun., vol. 284, no. 21, pp. 5185–5188, Oct. 2011.[3] Z.-R. Tong, M.-Y. Liu, Y. Cao, W.-H. Zhang, and X. Hao, “Switchable dual-wavelength erbium-doped fiber laser with tunable wavelength,” Optoelectron. Lett., vol. 11, no. 5, pp. 325–328, Sep. 2015.[4] H. Zou, S. Lou, G. Yin, and W. Su, “Switchable dual-wavelength PMEDF ring laser based on a novel filter,” IEEE Photon. Technol. Lett., vol. 25, no. 11, pp. 1003–1006, Jun. 2013.[5] J. F. Zhao, T. Q. Liao, C. Zhang, R. X. Zhang, C. Y. Miao, and Z. R. Tong, “Double Brillouin frequency spaced multiwavelength brillouin-erbium fiber laser with 50 nm tuning range,” Laser Phys., vol. 22, no. 9, pp. 1415–1418, Sep. 2012.[6] A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable ho-doped soliton fiber laser mode-locked by carbon nanotube saturable absorber,” Laser Phys. Lett., vol. 9, no. 8, pp. 602–606, Aug. 2012.[7] S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys., vol. 17, no. 11, pp. 1323–1326, Nov. 2007.[8] J. Liu, J. Yao, J. Yao, and T. Hin Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1020–1022, Apr. 2004.[9] X. Liu, S. Lou, Z. Tang, Y. Zhou, H. Jia, and P. Sun, “Tunable dual-wavelength ytterbium-doped fiber ring laser based on a sagnac interferometer,” Opt. Laser Technol., vol. 116, pp. 37–42, Aug. 2019.[10] J. A. Martin-Vela et al., “Curvature sensing setup based on a fiber laser and a long-period fiber grating,” IEEE Photon. Technol. Lett., vol. 31, no. 15, pp. 1265–1268, Aug. 1, 2019.[11] M. A. Gonzalez-Reyna et al., “Laser temperature sensor based on a fiber Bragg grating,” IEEE Photon. Technol. Lett., vol. 27, no. 11, pp. 1141–1144, Jun. 2015.[12] R. A. Perez-Herrera et al., “L-band multiwavelength single-longitudinal mode fiber laser for sensing applications,” J. Lightw. Technol., vol. 30, no. 8, pp. 1173–1177, Apr. 2012.[13] H. Fu et al., “High-sensitivity Mach–Zehnder interferometric curvature fiber sensor based on thin-core fiber,” IEEE Sensors J., vol. 15, no. 1, pp. 520–525, Jan. 2015.[14] A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightw. Technol., vol. 19, no. 10, pp. 1495–1501, Oct. 2001.[15] D.W. Kim, F. Shen, X. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode longperiod grating and an intrinsic Fabry–Pérot interferometer sensor,” Opt. Lett., vol. 30, no. 22, p. 3000, Nov. 2005.[16] B. Dong, J. Hao, and Z. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol., vol. 17, no. 3, pp. 233–235, May 2011.[17] Y. Zhou et al., “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun., vol. 284, no. 24, pp. 5669–5672, Dec. 2011.[18] T. Lozano-Hernandez et al., “Study of nonlinear liquid effects into ytterbium-doped fiber laser for multi-wavelength generation,” Proc. SPIE, vol. 10516, Feb. 2018, Art. no. 105161L.[19] C. Li et al., “All-fiber multipath Machâ¬oeZehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A, Phys., vol. 248, pp. 148–154, Sep. 2016.[20] Y. Zhao, L. Cai, and X.-G. Li, “Temperature-insensitive optical fiber curvature sensor based on SMF-MMF-TCSMF-MMF-SMF structure,” IEEE Trans. Instrum. Meas., vol. 66, no. 1, pp. 141–147, Jan. 2017.[21] L. Ding, Y. Li, C. Zhou, M. Hu, Y. Xiong, and Z. Zeng, “In-fiber machzehnder interferometer based on three-core fiber for measurement of directional bending,” Sensors, vol. 19, no. 1, p. 205, 2019.[22] Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express, vol. 21, no. 20, pp. 23812–23821, 2013.[23] J.-J. Zhu, A. P. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic hightemperature sensor based on thin-core fiber modal interferometer,” IEEE Sensors J., vol. 10, no. 9, pp. 1415–1418, Sep. 2010.[24] A. Bellemare et al., “A broadly tunable erbium-doped fiber ring laser: Experimentation and modeling,” IEEE J. Sel. Topics Quantum Electron., vol. 7, no. 1, pp. 22–29, Jan. 2001.[25] H. Taylor, “Bending effects in optical fiber,” J. Lightw. Technol., vol. LT- 2, no. 5, pp. 617–628, Oct. 1984.[26] S. Wang, W. G. Zhang, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photon. Technol. Lett., vol. 28, no. 19, pp. 2066–2069, Jun. 2016.[27] G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez- Rios, A. Schülzgen, and R. A. Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett., vol. 40, no. 7, pp. 1468–1471, 2015.[28] Y. Gong, T. Zhao, and Y. J. Rao, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 679–681, Mar. 2011.[29] J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric vector bending sensor,” Opt. Lett., vol. 40, no. 13, pp. 3113–3116, Jul. 015.[30] L. L. Shi, T. Zhu, F. Y. Chen, M. Deng, and W. Huang, “Tunable filter based on a pair of special long-period fiber gratings and its application in fiber ring laser,” Laser Phys., vol. 22, no. 3, pp. 575–578, Mar. 2012.[31] A. G. Leal-Junior, L. M. Avellar, C. A. R. Diaz, A. Frizera, C. Marques, and M. J. Pontes, “Fabry–Pérot curvature sensor with cavities based on UV-curable resins: Design, analysis, and data integration approach,” IEEE Sensors J., vol. 19, no. 21, pp. 9798–9805, Nov. 2019.[32] S. Zhang et al., “A miniature SMS-LPG bending sensor with high sensitivity based on multimode fiber embedded-LPG,” Sens. Actuators A, Phys., vol. 295, pp. 31–36, Aug. 2019.[33] Y.-X. Zhang et al., “V-shaped long-period fiber grating high-sensitive bending vector sensor,” IEEE Photon. Technol. Lett., vol. 30, no. 17, pp. 1531–1534, Sep. 2018.[34] J. M. Sierra-Hernandez et al., “Torsion sensing setup based on a three beam path mach-zehnder interferometer,” Microw. Opt. Technol. Lett., vol. 57, no. 8, pp. 1857–1860, Aug. 2015.[35] N. A. D. Huri et al., “Temperature sensor based on fluorescence measurement of cerium ytterbium doped fiber,” Opt. Spectrosc., vol. 111, no. 2, pp. 312–314, Aug. 2011.[36] S. Sidhishwari, M. Basu, and S. K. Ghorai, “A modal interference-based fiber optic sensor for dual parameter measurement using an artificial neural network,” Opt. Fiber Technol., vol. 50, pp. 216–224, Jul. 2019.[37] A. J. Thompson, M. Power, and G.-Z. Yang, “Micro-scale fiber-optic force sensor fabricated using direct laser writing and calibrated using machine learning,” Opt. Express, vol. 26, no. 11, p. 14186, May 2018.[38] X. Zhang, D. Liang, J. Zeng, and A. Asundi, “Genetic algorithm-support vector regression for high reliability SHM system based on FBG sensor network,” Opt. Lasers Eng., vol. 50, no. 2, pp. 148–153, Feb. 2012.Optical sensorsYtterbiumRing lasersComunidad en generalPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/0ff4c8ea-b64e-4ae9-9b61-60efccd1bbaf/download20b5ba22b1117f71589c7318baa2c560MD52TEXTHighly sensitive fiber ring laser sensor for curvature using a modal interferometer.pdf.txtHighly sensitive fiber ring laser sensor for curvature using a modal interferometer.pdf.txtExtracted texttext/plain31503https://red.uao.edu.co/bitstreams/41658d1a-8785-47b5-9805-2b5b406c7874/download9b84868f9b7e526f3f93d1670779fedcMD54THUMBNAILHighly sensitive fiber ring laser sensor for curvature using a modal interferometer.pdf.jpgHighly sensitive fiber ring laser sensor for curvature using a modal interferometer.pdf.jpgGenerated Thumbnailimage/jpeg19714https://red.uao.edu.co/bitstreams/581bc2fb-1280-460b-9452-b58843d27316/download9ff681ae4fb79866e2eee0b6885f3210MD5510614/13547oai:red.uao.edu.co:10614/135472024-01-30 09:08:52.716https://creativecommons.org/licenses/by-nc-nd/4.0/metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K