Design and analyses of a transdermal drug delivery device (TD3)†

In this paper, we introduce a novel type of transdermal drug delivery device (TD3) with a micro-electro-mechanical system (MEMS) design using computer-aided design (CAD) techniques as well as computational fluid dynamics (CFD) simulations regarding the fluid interaction inside the device during the...

Full description

Autores:
García, Jennifer
Ríos, Ismael
Fonthal Rico, Faruk
Tipo de recurso:
Article of investigation
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/15899
Acceso en línea:
https://hdl.handle.net/10614/15899
https://doi.org/10.3390/s19235090
https://red.uao.edu.co/
Palabra clave:
Transdermal drug delivery
Micro-electro-mechanical systems (MEMS)
Finite element analysis
Microstructures
Computational fluid dynamic
Rights
openAccess
License
Derechos reservados - MDPI, 2019
id REPOUAO2_12d27861285157a8d76280bdba0b767d
oai_identifier_str oai:red.uao.edu.co:10614/15899
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Design and analyses of a transdermal drug delivery device (TD3)†
title Design and analyses of a transdermal drug delivery device (TD3)†
spellingShingle Design and analyses of a transdermal drug delivery device (TD3)†
Transdermal drug delivery
Micro-electro-mechanical systems (MEMS)
Finite element analysis
Microstructures
Computational fluid dynamic
title_short Design and analyses of a transdermal drug delivery device (TD3)†
title_full Design and analyses of a transdermal drug delivery device (TD3)†
title_fullStr Design and analyses of a transdermal drug delivery device (TD3)†
title_full_unstemmed Design and analyses of a transdermal drug delivery device (TD3)†
title_sort Design and analyses of a transdermal drug delivery device (TD3)†
dc.creator.fl_str_mv García, Jennifer
Ríos, Ismael
Fonthal Rico, Faruk
dc.contributor.author.none.fl_str_mv García, Jennifer
Ríos, Ismael
Fonthal Rico, Faruk
dc.subject.proposal.eng.fl_str_mv Transdermal drug delivery
Micro-electro-mechanical systems (MEMS)
Finite element analysis
Microstructures
Computational fluid dynamic
topic Transdermal drug delivery
Micro-electro-mechanical systems (MEMS)
Finite element analysis
Microstructures
Computational fluid dynamic
description In this paper, we introduce a novel type of transdermal drug delivery device (TD3) with a micro-electro-mechanical system (MEMS) design using computer-aided design (CAD) techniques as well as computational fluid dynamics (CFD) simulations regarding the fluid interaction inside the device during the actuation process. For the actuation principles of the chamber and microvalve, both thermopneumatic and piezoelectric principles are employed respectively, originating that the design perfectly integrates those principles through two different components, such as a micropump with integrated microvalves and a microneedle array. The TD3 has shown to be capable of delivering a volumetric flow of 2.92 × 10−5 cm3/s with a 6.6 Hz membrane stroke frequency. The device only needs 116 Pa to complete the suction process and 2560 Pa to complete the discharge process. A 38-microneedle array with 450 µm in length fulfills the function of permeating skin, allowing that the fluid reaches the desired destination and avoiding any possible pain during the insertion
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2024-11-14T19:34:48Z
dc.date.available.none.fl_str_mv 2024-11-14T19:34:48Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv García, J.; Ríos, I. y k Fonthal Rico, F. (2019). Design and analyses of a transdermal drug device (TD3)†. Sensors 19(23). 11 p. https://doi.org/10.3390/s19235090
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15899
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.3390/s19235090
dc.identifier.eissn.spa.fl_str_mv 14248220
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv García, J.; Ríos, I. y k Fonthal Rico, F. (2019). Design and analyses of a transdermal drug device (TD3)†. Sensors 19(23). 11 p. https://doi.org/10.3390/s19235090
14248220
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/15899
https://doi.org/10.3390/s19235090
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationissue.spa.fl_str_mv 23
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 19
dc.relation.ispartofjournal.spa.fl_str_mv Sensors
dc.relation.references.none.fl_str_mv 1. Hood, R.R.; Kendall, E.L.; DeVoe, D.L.; Quezado, Z.; Junqueira, M.J.; Finkel, C.; Vreeland, W.N. Microfluidic formation of nanoscale liposomes for passive transdermal drug delivery. In Proceedings of the Microsystems for Measurement and Instrumentation (MAMNA), Gaithersburg, MD, USA, 14 May 2013; pp. 12–15. 2. Dol ˙zan, T.; Vrtaˇcnik, D.; Resnik, D.; Aljanˇciˇc, U.; Mo ˙zek, M.; Peˇcar, B.; Amon, S. Design of transdermal drug delivery system with PZT actuated micropump. In Proceedings of the 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 26–30 May 2014; pp. 96–99. 3. Lee, H.; Song, C.; Baik, S.; Kim, D.; Hyeon, T.; Kim, D.H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 2018, 127, 35–45. [CrossRef] [PubMed] 4. Mousoulis, C.; Ochoa, M.; Papageorgiou, D.; Ziaie, B. A Skin-Contact-Actuated Micropump for Transdermal Drug Delivery. IEEE Trans. Biomed. Eng. 2011, 58, 1492–1498. [CrossRef] [PubMed] 5. Camovi´c, M.; Bišˇcevi´c, A.; Brˇci´c, I.; Borˇcak, K.; Bušatli´c, S.; Cenanovi´c, N.; Mulali´c, A.; Osmanli´c, M.; ´ Sirbubalo, M.; Tucak, A.; et al. Coated 3d printed PLA microneedles as transdermal drug delivery systems. IFMBE Proc. 2020, 73, 735–742. [CrossRef] 6. Wang, W.; Soper, S.A. Bio-MEMS Technologies and Applications, 1st ed.; CRC Press: Boca Raton, NY, USA, 2006; pp. 7–237. ISBN 9780849335327. 7. Ashraf, M.W.; Tayyaba, S.; Afzulpurkr, N. Tapered tip hollow silicon microneedles for transdermal drug delivery. In Proceedings of the 2nd International Conference on Mechanical and Electronics Engineering (ICMEE), Kyoto, Japan, 1–3 August 2010. 8. Jurcicek, P.; Zou, H.; Zhang, S.; Liu, C. Design and fabrication of hollow out-of-plane silicon microneedles. IET Micro Nano Lett. 2013, 8, 78–81. [CrossRef] 9. Varadan, V.K.; Vinoy, K.J.; Gopalakrishnan, S. Smart Material Systems and MEMS: Design and Development Methodologies, 1st ed.; John Wiley & Sons: Chichester, UK, 2006; ISBN 9780470093610. 10. Cong, W.; Jin-seong, K.; Jungyul, P. Micro check valve integrated magnetically actuated micropump for implantable drug delivery. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 1711–1713. 11. Shoji, E. Fabrication of a diaphragm micropump system utilizing the ionomer-based polymer actuator. Sens. Actuators B Chem. 2016, 237, 660–665. [CrossRef] 12. Garcia, J.; Rios, I.; Fonthal, F. Structural and microfluidic analysis of microneedle array for drug delivery. In Proceedings of the 31st Symposium on Microelectronics Technology and Devices IEEE SBMicro 2016, Belo Horizonte, Brazil, 29 August–3 September 2016; pp. 1–4. 13. Kawun, P.; Leahy, S.; Lai, Y. A thin PDMS nozzle/diffuser micropump for biomedical applications. Sens. Actuators B Chem. 2016, 249, 149–154. [CrossRef] 14. Singh, S.; Kumar, N.; George, D.; Sen, A.K. Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump. Sens. Actuators B Chem. 2015, 225, 81–94. [CrossRef] 15. Nguyen, N.T.; Mousavi, S.A.; Kashaninejad, N.; Phan, D.T. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv. Drug Deliv. Rev. 2013, 65, 1403–1419. [CrossRef] [PubMed] 16. Davis, S.P.; Martanto, W.; Allen, M.G.; Prausnitz, M.R. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans. Biomed. Eng. 2005, 52, 909–915. [CrossRef] [PubMed] 17. Roxhed, N.T.; Gasser, C.; Griss, P.; Holzapfel, G.A.; Stemme, G. Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. J. Microelectromech. Syst. 2007, 16, 1429–1440. [CrossRef] 18. Sanjay, S.T.; Zhou, W.; Dou, M.; Tavakoli, H.; Ma, L.; Xu, F.; Li, X. Recent advances of controlled drug delivery using microfluidic platforms. Adv. Drug Deliv. Rev. 2018, 128, 3–28. [CrossRef] [PubMed] 19. Bao, S.J.; Xie, D.L.; Zhang, J.P.; Chang, W.R.; Liang, D.C. Crystal structure of desheptapeptide (B24–B30) insulin at 1.6 Å resolution: Implications for receptor binding. Proc. Natl. Acad. Sci. USA 1997, 94, 2975–2980. [CrossRef] [PubMed]
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 2019
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv MDPI
dc.publisher.place.eng.fl_str_mv Basel, Switzerland
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/e0607123-cdd8-4f1a-b8b9-8720bfae4ca0/download
https://red.uao.edu.co/bitstreams/2828a503-1786-4c55-922e-6b20d1f02789/download
https://red.uao.edu.co/bitstreams/a154ebd9-67a3-4fb3-a314-0d5076974ddd/download
https://red.uao.edu.co/bitstreams/9dcad206-030a-4b4b-8998-187380f12eed/download
bitstream.checksum.fl_str_mv 3141ec24b4a6bfd6abfc140851520b24
6987b791264a2b5525252450f99b10d1
e0ec9065505ba7d1f3764d3d51f92a7b
d39bf9c006ddf9bf20063fda7f60e4ee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1834110996099104768
spelling García, JenniferRíos, IsmaelFonthal Rico, Farukvirtual::5768-12024-11-14T19:34:48Z2024-11-14T19:34:48Z2019García, J.; Ríos, I. y k Fonthal Rico, F. (2019). Design and analyses of a transdermal drug device (TD3)†. Sensors 19(23). 11 p. https://doi.org/10.3390/s19235090https://hdl.handle.net/10614/15899https://doi.org/10.3390/s1923509014248220Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/In this paper, we introduce a novel type of transdermal drug delivery device (TD3) with a micro-electro-mechanical system (MEMS) design using computer-aided design (CAD) techniques as well as computational fluid dynamics (CFD) simulations regarding the fluid interaction inside the device during the actuation process. For the actuation principles of the chamber and microvalve, both thermopneumatic and piezoelectric principles are employed respectively, originating that the design perfectly integrates those principles through two different components, such as a micropump with integrated microvalves and a microneedle array. The TD3 has shown to be capable of delivering a volumetric flow of 2.92 × 10−5 cm3/s with a 6.6 Hz membrane stroke frequency. The device only needs 116 Pa to complete the suction process and 2560 Pa to complete the discharge process. A 38-microneedle array with 450 µm in length fulfills the function of permeating skin, allowing that the fluid reaches the desired destination and avoiding any possible pain during the insertion11 páginasapplication/pdfspaMDPIBasel, SwitzerlandDerechos reservados - MDPI, 2019https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Design and analyses of a transdermal drug delivery device (TD3)†Artículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a851123119Sensors1. Hood, R.R.; Kendall, E.L.; DeVoe, D.L.; Quezado, Z.; Junqueira, M.J.; Finkel, C.; Vreeland, W.N. Microfluidic formation of nanoscale liposomes for passive transdermal drug delivery. In Proceedings of the Microsystems for Measurement and Instrumentation (MAMNA), Gaithersburg, MD, USA, 14 May 2013; pp. 12–15. 2. Dol ˙zan, T.; Vrtaˇcnik, D.; Resnik, D.; Aljanˇciˇc, U.; Mo ˙zek, M.; Peˇcar, B.; Amon, S. Design of transdermal drug delivery system with PZT actuated micropump. In Proceedings of the 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 26–30 May 2014; pp. 96–99. 3. Lee, H.; Song, C.; Baik, S.; Kim, D.; Hyeon, T.; Kim, D.H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 2018, 127, 35–45. [CrossRef] [PubMed] 4. Mousoulis, C.; Ochoa, M.; Papageorgiou, D.; Ziaie, B. A Skin-Contact-Actuated Micropump for Transdermal Drug Delivery. IEEE Trans. Biomed. Eng. 2011, 58, 1492–1498. [CrossRef] [PubMed] 5. Camovi´c, M.; Bišˇcevi´c, A.; Brˇci´c, I.; Borˇcak, K.; Bušatli´c, S.; Cenanovi´c, N.; Mulali´c, A.; Osmanli´c, M.; ´ Sirbubalo, M.; Tucak, A.; et al. Coated 3d printed PLA microneedles as transdermal drug delivery systems. IFMBE Proc. 2020, 73, 735–742. [CrossRef] 6. Wang, W.; Soper, S.A. Bio-MEMS Technologies and Applications, 1st ed.; CRC Press: Boca Raton, NY, USA, 2006; pp. 7–237. ISBN 9780849335327. 7. Ashraf, M.W.; Tayyaba, S.; Afzulpurkr, N. Tapered tip hollow silicon microneedles for transdermal drug delivery. In Proceedings of the 2nd International Conference on Mechanical and Electronics Engineering (ICMEE), Kyoto, Japan, 1–3 August 2010. 8. Jurcicek, P.; Zou, H.; Zhang, S.; Liu, C. Design and fabrication of hollow out-of-plane silicon microneedles. IET Micro Nano Lett. 2013, 8, 78–81. [CrossRef] 9. Varadan, V.K.; Vinoy, K.J.; Gopalakrishnan, S. Smart Material Systems and MEMS: Design and Development Methodologies, 1st ed.; John Wiley & Sons: Chichester, UK, 2006; ISBN 9780470093610. 10. Cong, W.; Jin-seong, K.; Jungyul, P. Micro check valve integrated magnetically actuated micropump for implantable drug delivery. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 1711–1713. 11. Shoji, E. Fabrication of a diaphragm micropump system utilizing the ionomer-based polymer actuator. Sens. Actuators B Chem. 2016, 237, 660–665. [CrossRef] 12. Garcia, J.; Rios, I.; Fonthal, F. Structural and microfluidic analysis of microneedle array for drug delivery. In Proceedings of the 31st Symposium on Microelectronics Technology and Devices IEEE SBMicro 2016, Belo Horizonte, Brazil, 29 August–3 September 2016; pp. 1–4. 13. Kawun, P.; Leahy, S.; Lai, Y. A thin PDMS nozzle/diffuser micropump for biomedical applications. Sens. Actuators B Chem. 2016, 249, 149–154. [CrossRef] 14. Singh, S.; Kumar, N.; George, D.; Sen, A.K. Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump. Sens. Actuators B Chem. 2015, 225, 81–94. [CrossRef] 15. Nguyen, N.T.; Mousavi, S.A.; Kashaninejad, N.; Phan, D.T. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv. Drug Deliv. Rev. 2013, 65, 1403–1419. [CrossRef] [PubMed] 16. Davis, S.P.; Martanto, W.; Allen, M.G.; Prausnitz, M.R. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans. Biomed. Eng. 2005, 52, 909–915. [CrossRef] [PubMed] 17. Roxhed, N.T.; Gasser, C.; Griss, P.; Holzapfel, G.A.; Stemme, G. Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. J. Microelectromech. Syst. 2007, 16, 1429–1440. [CrossRef] 18. Sanjay, S.T.; Zhou, W.; Dou, M.; Tavakoli, H.; Ma, L.; Xu, F.; Li, X. Recent advances of controlled drug delivery using microfluidic platforms. Adv. Drug Deliv. Rev. 2018, 128, 3–28. [CrossRef] [PubMed] 19. Bao, S.J.; Xie, D.L.; Zhang, J.P.; Chang, W.R.; Liang, D.C. Crystal structure of desheptapeptide (B24–B30) insulin at 1.6 Å resolution: Implications for receptor binding. Proc. Natl. Acad. Sci. USA 1997, 94, 2975–2980. [CrossRef] [PubMed]Transdermal drug deliveryMicro-electro-mechanical systems (MEMS)Finite element analysisMicrostructuresComputational fluid dynamicComunidad generalPublication2bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::5768-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::5768-1https://scholar.google.com/citations?user=zxVYtU0AAAAJ&hl=envirtual::5768-10000-0002-9331-0491virtual::5768-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000895857virtual::5768-1ORIGINALDesign_and_analyses_of_a_transdermal_drug_delivery_device_(TD3).pdfDesign_and_analyses_of_a_transdermal_drug_delivery_device_(TD3).pdfArchivo texto completo del artículo de revista, PDFapplication/pdf5208751https://red.uao.edu.co/bitstreams/e0607123-cdd8-4f1a-b8b9-8720bfae4ca0/download3141ec24b4a6bfd6abfc140851520b24MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/2828a503-1786-4c55-922e-6b20d1f02789/download6987b791264a2b5525252450f99b10d1MD52TEXTDesign_and_analyses_of_a_transdermal_drug_delivery_device_(TD3).pdf.txtDesign_and_analyses_of_a_transdermal_drug_delivery_device_(TD3).pdf.txtExtracted texttext/plain38293https://red.uao.edu.co/bitstreams/a154ebd9-67a3-4fb3-a314-0d5076974ddd/downloade0ec9065505ba7d1f3764d3d51f92a7bMD53THUMBNAILDesign_and_analyses_of_a_transdermal_drug_delivery_device_(TD3).pdf.jpgDesign_and_analyses_of_a_transdermal_drug_delivery_device_(TD3).pdf.jpgGenerated Thumbnailimage/jpeg14682https://red.uao.edu.co/bitstreams/9dcad206-030a-4b4b-8998-187380f12eed/downloadd39bf9c006ddf9bf20063fda7f60e4eeMD5410614/15899oai:red.uao.edu.co:10614/158992024-11-16 03:00:26.513https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2019open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==