Threaded pin efects analysis on forces in FSW

Tool geometry is a key parameter in welding by friction stir, as afect the material-tool interface and infuences the forces involved in the procedure. The forces are related to weld quality, efciency, machine capacity, and control of the process. However, the number of models proposed in the literat...

Full description

Autores:
Quintana, Karen J
Silveira, José Luis L.
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13922
Acceso en línea:
https://hdl.handle.net/10614/13922
https://red.uao.edu.co/
Palabra clave:
Fricción (Mecánica)
Friction
Threaded pin forces
Friction stir welding
Mechanistic models
Rights
openAccess
License
Derechos reservados - Springer Nature Switzerland, 2021
id REPOUAO2_0e5fa78561f1a9590c4809432edbe4d2
oai_identifier_str oai:red.uao.edu.co:10614/13922
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Threaded pin efects analysis on forces in FSW
title Threaded pin efects analysis on forces in FSW
spellingShingle Threaded pin efects analysis on forces in FSW
Fricción (Mecánica)
Friction
Threaded pin forces
Friction stir welding
Mechanistic models
title_short Threaded pin efects analysis on forces in FSW
title_full Threaded pin efects analysis on forces in FSW
title_fullStr Threaded pin efects analysis on forces in FSW
title_full_unstemmed Threaded pin efects analysis on forces in FSW
title_sort Threaded pin efects analysis on forces in FSW
dc.creator.fl_str_mv Quintana, Karen J
Silveira, José Luis L.
dc.contributor.author.none.fl_str_mv Quintana, Karen J
Silveira, José Luis L.
dc.subject.armarc.spa.fl_str_mv Fricción (Mecánica)
topic Fricción (Mecánica)
Friction
Threaded pin forces
Friction stir welding
Mechanistic models
dc.subject.armarc.eng.fl_str_mv Friction
dc.subject.proposal.eng.fl_str_mv Threaded pin forces
Friction stir welding
Mechanistic models
description Tool geometry is a key parameter in welding by friction stir, as afect the material-tool interface and infuences the forces involved in the procedure. The forces are related to weld quality, efciency, machine capacity, and control of the process. However, the number of models proposed in the literature to describe the forces, considering the infuence of one of the most common tool pin shape, is not enough. This paper studies the efects of the threaded tool pin on the forces, for diferent velocities of the process by modeling and experimental analysis. Mechanistic models are proposed to describe the axial force, in the plunging and welding phases, and the welding force for a threaded tool pin considering the process velocities. The inverse problem method is implemented to estimate unknown parameters and adjust the models. To determine the infuence of the threaded pin, the models and experimental results are compared with previously published models. The experimental data for the smooth pin was carried out for the same material, velocities, and tool geometry. The results show that the threaded pin increases around 10% the maximum axial force. Additionally, the threaded pin reduces the welding force for the most used rotational speed and the power consumption associated with the motion in the welding direction. The proposed models can be easily implemented in the industry and used for tool design and process planning
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-10-11
dc.date.accessioned.none.fl_str_mv 2022-05-27T16:23:28Z
dc.date.available.none.fl_str_mv 2022-05-27T16:23:28Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 16785878
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13922
dc.identifier.doi.none.fl_str_mv 10.1007/s40430-021-03217-9
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 16785878
10.1007/s40430-021-03217-9
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/13922
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 15
dc.relation.citationissue.spa.fl_str_mv 491
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 43
dc.relation.cites.eng.fl_str_mv Quintana, K. J., Silveira, J. L. L. (2021). Threaded pin efects analysis on forces in FSW. Journal of the Brazilian Society of Mechanical Sciences and Engineering. Vol. 43 (491), pp. 1-15. https://link.springer.com/article/10.1007/s40430-021-03217-9
dc.relation.ispartofjournal.eng.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering
dc.relation.references.none.fl_str_mv 1. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding-process, weldment structure and properties. Prog Mater Sci 53(6):980–1023. https://doi.org/10.1016/j. pmatsci.2008.05.001
2. Kumar R, Singh R, Ahuja IPS, Penna R, Feo L (2018) Weldability of thermoplastic materials for friction stir welding—a state of art review and future applications. Composites B 137:1–15. https:// doi.org/10.1016/j.compositesb.2017.10.039
3. Kumar R, Singh R, Ahuja IPS (2019) Mechanical, thermal and micrographic investigations of friction stir welded: 3D printed melt fow compatible dissimilar thermoplastics. J Manuf Process 38:387–395. https://doi.org/10.1016/j.jmapro.2019.01.043
4. Goyal A, Garg RK (2019) Establishing mathematical relationships to study tensile behavior of friction stir welded AA5086-H32 aluminium alloy joints. SILICON 11:51–65. https://doi.org/10.1007/ s12633-018-9858-4
5. Shrivastava A, Krones M, Pfeferkorn FE (2015) Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum. CIRP J Manuf Sci Technol 9:159–168. https://doi.org/10.1016/j.cirpj.2014.10. 001
6. Dialami N, Cervera M, Chiumenti M, Agelet de Saracibar C (2017) A fast and accurate two-stage strategy to evaluate the efect of the pin tool profle on metal fow, torque and forces in friction stir welding. Int J Mech Sci 122:215–227. https://doi.org/10. 1016/j.ijmecsci.2016.12.016
7. Wahab MA, Dewan MW, Huggett DJ, Okeil AM, Liao TW, Nunes AC (2019) Challenges in the detection of weld-defects in frictionstir-welding (FSW). Adv Mater Process Technol 5(2):258–278. https://doi.org/10.1080/2374068X.2019.1575713
8. Quintana KJ, Silveira JL (2018) Mechanistic models for the forces in FSW of aluminum alloy 5052–H34. Int J Adv Manuf Technol 96:3993–4008. https://doi.org/10.1007/s00170-018-1859-3
9. Mishra RS, Ma ZY (2005) Friction Stir Welding and Processing. Mater Sci Eng R 50(1–2):1–78. https://doi.org/10.1016/j.mser. 2005.07.001
10. Papahn H, Bahemmat P, Haghpanahi M, Aminaie IP (2015) Efect of friction stir welding tool on temperature, applied forces and weld quality. IET Sci Meas Technol 9(4):475–484. https://doi. org/10.1049/iet-smt.2014.0150
11. Hussein SA, Tahir ASM, Izamshah R (2015) Generated Forces and Heat During the Critical Stages of Friction Stir Welding and Processing. J Mech Sci Technol 29(10):4319–4328. https://doi. org/10.1007/s12206-015-0930-3
12. Jain R, Pal SK, Singh SB (2016) A study on the variation of forces and temperature in a friction stir welding process: a fnite element approach. J Manuf Proc 23:278–286. https://doi.org/10.1016/j. jmapro.2016.04.008
13. Zhao S, Bi Q, Wang Y (2016) An axial force controller with delay compensation for the friction stir welding process. Int J Adv Manuf Technol 85:2623–2638. https://doi.org/10.1007/ s00170-015-8096-9
14. Shiravastava A, Zinn M, Dufe NA, Ferrier NJ, Smith CB, Pfeferkorn FE (2017) Force measurement-based discontinuity detection during friction stir welding. J Manuf Process 26:113–121. https:// doi.org/10.1016/j.jmapro.2017.01.007
15. Reza-E-Rabby M, Tang W, Reynolds AP (2015) Efect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys. Sci Technol Weld Joining 20(5):425–432. https://doi.org/10.1179/1362171815Y.00000 00036
16. Das B, Pal S, Bag S (2017) Design and development of force and torque measurement setup for real time monitoring of friction stir welding process. Measurement 103:186–198. https://doi.org/10. 1016/j.measurement.2017.02.034
17. Trimble D, O’Donnell GE, Monaghan J (2015) Characterization of tool shape and rotational speed for increased speed during friction stir welding of AA2024-T3. J Manuf Process 17:141–150. https://doi.org/10.1016/j.jmapro.2014.08.007
18. Mohammadi J, Behnamian Y, Mostafaei A, Gerlich AP (2015) Tool geometry, rotation and travel speeds efects on the properties of dissimilar magnesium/aluminum friction stir welded lap joints. Mater Des 75:95–112. https://doi.org/10.1016/j.matdes.2015.03. 017
19. Rao CV, Reddy GM, Rao KS (2015) Infuence of tool pin profle on microstructure and corrosion behavior of AA2219 Al-Cu alloy friction stir weld nuggets. Def Technol 11:197–208. https://doi. org/10.1016/j.dt.2015.04.004
20. Chen G, Li H, Wang G, Guo Z, Zhang S et al (2018) Efects of pin thread on the in-process material fow behavior during friction stir welding: A computational fuid dynamics study. Int J Mach Tools and Manuf 124:12–21. https://doi.org/10.1016/j.ijmachtools.2017. 09.002
21. Jain R, Pal SK, Singh SB (2018) Finite element simulation of pin shape infuence on material fow, forces in friction stir welding. Int J Adv Manuf Technol 94:1781–1797. https://doi.org/10.1007/ s00170-017-0215-3
22. Shi L, Wu CS, Gao S (2018) Analysis of welding load reduction in ultrasonic vibration-enhanced friction stir welding. Int J Adv Manuf Technol 99:373–385. https://doi.org/10.1007/ s00170-018-2472-1
23. Quintana KJ, Silveira JL (2017) Analysis of torque in friction stir welding of aluminum alloy 5052 by inverse problem method. ASME J Manuf Sci Eng 139(4):041017. https://doi.org/10.1115/1. 4035719
24. Pew JW, Nelson TW, Sorensen CD (2007) Torque based weld power model for friction stir welding. Sci Technol Weld Join 12(4):341–347. https://doi.org/10.1179/174329307X197601
25. Mott RL (2004) Machine elements in mechanical design. Pearson Education, New Jersey
26. Yan J, Sutton MA, Reynolds AP (2005) Process–structure–property relationships for nugget and heat afected regions of AA2524- T351 friction stir welds. Sci Technol Weld Join 10:725–736. https://doi.org/10.1179/174329305X68778
27. Bufa G, Ingarao G, Campanella D, Di Lorenzo R, Micari F, Fratini L (2019) An insight into the electrical energy demand of friction stir welding processes: the role of process parameters, material and machine tool architecture. Int J Adv Manuf Technol 100:3013–3024. https://doi.org/10.1007/s00170-018-2896-7
28. Cui S, Chen ZW, Robson JD (2010) A model relating tool torque and its associated power and specifc energy to rotation and forward speeds during friction stir welding/processing. Int J Mach Tools Manuf 50:1023–1030. https://doi.org/10.1016/j.ijmachtools. 2010.09.005
dc.rights.spa.fl_str_mv Derechos reservados - Springer Nature Switzerland, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.eng.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Springer Nature Switzerland, 2021
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 15 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Springer
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/4176b958-ea40-472b-b619-3109c6baf2d3/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259963015462912
spelling Quintana, Karen J76d25608aa191445b0875b419b7e298aSilveira, José Luis L.212b35b646e2608e47f00375d2271e902022-05-27T16:23:28Z2022-05-27T16:23:28Z2021-10-1116785878https://hdl.handle.net/10614/1392210.1007/s40430-021-03217-9Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/Tool geometry is a key parameter in welding by friction stir, as afect the material-tool interface and infuences the forces involved in the procedure. The forces are related to weld quality, efciency, machine capacity, and control of the process. However, the number of models proposed in the literature to describe the forces, considering the infuence of one of the most common tool pin shape, is not enough. This paper studies the efects of the threaded tool pin on the forces, for diferent velocities of the process by modeling and experimental analysis. Mechanistic models are proposed to describe the axial force, in the plunging and welding phases, and the welding force for a threaded tool pin considering the process velocities. The inverse problem method is implemented to estimate unknown parameters and adjust the models. To determine the infuence of the threaded pin, the models and experimental results are compared with previously published models. The experimental data for the smooth pin was carried out for the same material, velocities, and tool geometry. The results show that the threaded pin increases around 10% the maximum axial force. Additionally, the threaded pin reduces the welding force for the most used rotational speed and the power consumption associated with the motion in the welding direction. The proposed models can be easily implemented in the industry and used for tool design and process planning15 páginasapplication/pdfengSpringerDerechos reservados - Springer Nature Switzerland, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Threaded pin efects analysis on forces in FSWArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Fricción (Mecánica)FrictionThreaded pin forcesFriction stir weldingMechanistic models15491143Quintana, K. J., Silveira, J. L. L. (2021). Threaded pin efects analysis on forces in FSW. Journal of the Brazilian Society of Mechanical Sciences and Engineering. Vol. 43 (491), pp. 1-15. https://link.springer.com/article/10.1007/s40430-021-03217-9Journal of the Brazilian Society of Mechanical Sciences and Engineering1. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding-process, weldment structure and properties. Prog Mater Sci 53(6):980–1023. https://doi.org/10.1016/j. pmatsci.2008.05.0012. Kumar R, Singh R, Ahuja IPS, Penna R, Feo L (2018) Weldability of thermoplastic materials for friction stir welding—a state of art review and future applications. Composites B 137:1–15. https:// doi.org/10.1016/j.compositesb.2017.10.0393. Kumar R, Singh R, Ahuja IPS (2019) Mechanical, thermal and micrographic investigations of friction stir welded: 3D printed melt fow compatible dissimilar thermoplastics. J Manuf Process 38:387–395. https://doi.org/10.1016/j.jmapro.2019.01.0434. Goyal A, Garg RK (2019) Establishing mathematical relationships to study tensile behavior of friction stir welded AA5086-H32 aluminium alloy joints. SILICON 11:51–65. https://doi.org/10.1007/ s12633-018-9858-45. Shrivastava A, Krones M, Pfeferkorn FE (2015) Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum. CIRP J Manuf Sci Technol 9:159–168. https://doi.org/10.1016/j.cirpj.2014.10. 0016. Dialami N, Cervera M, Chiumenti M, Agelet de Saracibar C (2017) A fast and accurate two-stage strategy to evaluate the efect of the pin tool profle on metal fow, torque and forces in friction stir welding. Int J Mech Sci 122:215–227. https://doi.org/10. 1016/j.ijmecsci.2016.12.0167. Wahab MA, Dewan MW, Huggett DJ, Okeil AM, Liao TW, Nunes AC (2019) Challenges in the detection of weld-defects in frictionstir-welding (FSW). Adv Mater Process Technol 5(2):258–278. https://doi.org/10.1080/2374068X.2019.15757138. Quintana KJ, Silveira JL (2018) Mechanistic models for the forces in FSW of aluminum alloy 5052–H34. Int J Adv Manuf Technol 96:3993–4008. https://doi.org/10.1007/s00170-018-1859-39. Mishra RS, Ma ZY (2005) Friction Stir Welding and Processing. Mater Sci Eng R 50(1–2):1–78. https://doi.org/10.1016/j.mser. 2005.07.00110. Papahn H, Bahemmat P, Haghpanahi M, Aminaie IP (2015) Efect of friction stir welding tool on temperature, applied forces and weld quality. IET Sci Meas Technol 9(4):475–484. https://doi. org/10.1049/iet-smt.2014.015011. Hussein SA, Tahir ASM, Izamshah R (2015) Generated Forces and Heat During the Critical Stages of Friction Stir Welding and Processing. J Mech Sci Technol 29(10):4319–4328. https://doi. org/10.1007/s12206-015-0930-312. Jain R, Pal SK, Singh SB (2016) A study on the variation of forces and temperature in a friction stir welding process: a fnite element approach. J Manuf Proc 23:278–286. https://doi.org/10.1016/j. jmapro.2016.04.00813. Zhao S, Bi Q, Wang Y (2016) An axial force controller with delay compensation for the friction stir welding process. Int J Adv Manuf Technol 85:2623–2638. https://doi.org/10.1007/ s00170-015-8096-914. Shiravastava A, Zinn M, Dufe NA, Ferrier NJ, Smith CB, Pfeferkorn FE (2017) Force measurement-based discontinuity detection during friction stir welding. J Manuf Process 26:113–121. https:// doi.org/10.1016/j.jmapro.2017.01.00715. Reza-E-Rabby M, Tang W, Reynolds AP (2015) Efect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys. Sci Technol Weld Joining 20(5):425–432. https://doi.org/10.1179/1362171815Y.00000 0003616. Das B, Pal S, Bag S (2017) Design and development of force and torque measurement setup for real time monitoring of friction stir welding process. Measurement 103:186–198. https://doi.org/10. 1016/j.measurement.2017.02.03417. Trimble D, O’Donnell GE, Monaghan J (2015) Characterization of tool shape and rotational speed for increased speed during friction stir welding of AA2024-T3. J Manuf Process 17:141–150. https://doi.org/10.1016/j.jmapro.2014.08.00718. Mohammadi J, Behnamian Y, Mostafaei A, Gerlich AP (2015) Tool geometry, rotation and travel speeds efects on the properties of dissimilar magnesium/aluminum friction stir welded lap joints. Mater Des 75:95–112. https://doi.org/10.1016/j.matdes.2015.03. 01719. Rao CV, Reddy GM, Rao KS (2015) Infuence of tool pin profle on microstructure and corrosion behavior of AA2219 Al-Cu alloy friction stir weld nuggets. Def Technol 11:197–208. https://doi. org/10.1016/j.dt.2015.04.00420. Chen G, Li H, Wang G, Guo Z, Zhang S et al (2018) Efects of pin thread on the in-process material fow behavior during friction stir welding: A computational fuid dynamics study. Int J Mach Tools and Manuf 124:12–21. https://doi.org/10.1016/j.ijmachtools.2017. 09.00221. Jain R, Pal SK, Singh SB (2018) Finite element simulation of pin shape infuence on material fow, forces in friction stir welding. Int J Adv Manuf Technol 94:1781–1797. https://doi.org/10.1007/ s00170-017-0215-322. Shi L, Wu CS, Gao S (2018) Analysis of welding load reduction in ultrasonic vibration-enhanced friction stir welding. Int J Adv Manuf Technol 99:373–385. https://doi.org/10.1007/ s00170-018-2472-123. Quintana KJ, Silveira JL (2017) Analysis of torque in friction stir welding of aluminum alloy 5052 by inverse problem method. ASME J Manuf Sci Eng 139(4):041017. https://doi.org/10.1115/1. 403571924. Pew JW, Nelson TW, Sorensen CD (2007) Torque based weld power model for friction stir welding. Sci Technol Weld Join 12(4):341–347. https://doi.org/10.1179/174329307X19760125. Mott RL (2004) Machine elements in mechanical design. Pearson Education, New Jersey26. Yan J, Sutton MA, Reynolds AP (2005) Process–structure–property relationships for nugget and heat afected regions of AA2524- T351 friction stir welds. Sci Technol Weld Join 10:725–736. https://doi.org/10.1179/174329305X6877827. Bufa G, Ingarao G, Campanella D, Di Lorenzo R, Micari F, Fratini L (2019) An insight into the electrical energy demand of friction stir welding processes: the role of process parameters, material and machine tool architecture. Int J Adv Manuf Technol 100:3013–3024. https://doi.org/10.1007/s00170-018-2896-728. Cui S, Chen ZW, Robson JD (2010) A model relating tool torque and its associated power and specifc energy to rotation and forward speeds during friction stir welding/processing. Int J Mach Tools Manuf 50:1023–1030. https://doi.org/10.1016/j.ijmachtools. 2010.09.005Comunidad generalPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/4176b958-ea40-472b-b619-3109c6baf2d3/download20b5ba22b1117f71589c7318baa2c560MD5210614/13922oai:dspace7-uao.metacatalogo.com:10614/139222024-01-19 16:24:32.762https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Springer Nature Switzerland, 2021metadata.onlyhttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K