Threaded pin efects analysis on forces in FSW
Tool geometry is a key parameter in welding by friction stir, as afect the material-tool interface and infuences the forces involved in the procedure. The forces are related to weld quality, efciency, machine capacity, and control of the process. However, the number of models proposed in the literat...
- Autores:
-
Quintana, Karen J
Silveira, José Luis L.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13922
- Acceso en línea:
- https://hdl.handle.net/10614/13922
https://red.uao.edu.co/
- Palabra clave:
- Fricción (Mecánica)
Friction
Threaded pin forces
Friction stir welding
Mechanistic models
- Rights
- openAccess
- License
- Derechos reservados - Springer Nature Switzerland, 2021
id |
REPOUAO2_0e5fa78561f1a9590c4809432edbe4d2 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13922 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Threaded pin efects analysis on forces in FSW |
title |
Threaded pin efects analysis on forces in FSW |
spellingShingle |
Threaded pin efects analysis on forces in FSW Fricción (Mecánica) Friction Threaded pin forces Friction stir welding Mechanistic models |
title_short |
Threaded pin efects analysis on forces in FSW |
title_full |
Threaded pin efects analysis on forces in FSW |
title_fullStr |
Threaded pin efects analysis on forces in FSW |
title_full_unstemmed |
Threaded pin efects analysis on forces in FSW |
title_sort |
Threaded pin efects analysis on forces in FSW |
dc.creator.fl_str_mv |
Quintana, Karen J Silveira, José Luis L. |
dc.contributor.author.none.fl_str_mv |
Quintana, Karen J Silveira, José Luis L. |
dc.subject.armarc.spa.fl_str_mv |
Fricción (Mecánica) |
topic |
Fricción (Mecánica) Friction Threaded pin forces Friction stir welding Mechanistic models |
dc.subject.armarc.eng.fl_str_mv |
Friction |
dc.subject.proposal.eng.fl_str_mv |
Threaded pin forces Friction stir welding Mechanistic models |
description |
Tool geometry is a key parameter in welding by friction stir, as afect the material-tool interface and infuences the forces involved in the procedure. The forces are related to weld quality, efciency, machine capacity, and control of the process. However, the number of models proposed in the literature to describe the forces, considering the infuence of one of the most common tool pin shape, is not enough. This paper studies the efects of the threaded tool pin on the forces, for diferent velocities of the process by modeling and experimental analysis. Mechanistic models are proposed to describe the axial force, in the plunging and welding phases, and the welding force for a threaded tool pin considering the process velocities. The inverse problem method is implemented to estimate unknown parameters and adjust the models. To determine the infuence of the threaded pin, the models and experimental results are compared with previously published models. The experimental data for the smooth pin was carried out for the same material, velocities, and tool geometry. The results show that the threaded pin increases around 10% the maximum axial force. Additionally, the threaded pin reduces the welding force for the most used rotational speed and the power consumption associated with the motion in the welding direction. The proposed models can be easily implemented in the industry and used for tool design and process planning |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-10-11 |
dc.date.accessioned.none.fl_str_mv |
2022-05-27T16:23:28Z |
dc.date.available.none.fl_str_mv |
2022-05-27T16:23:28Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
16785878 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13922 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s40430-021-03217-9 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
16785878 10.1007/s40430-021-03217-9 Universidad Autónoma de Occidente Repositorio Educativo Digital |
url |
https://hdl.handle.net/10614/13922 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
15 |
dc.relation.citationissue.spa.fl_str_mv |
491 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
43 |
dc.relation.cites.eng.fl_str_mv |
Quintana, K. J., Silveira, J. L. L. (2021). Threaded pin efects analysis on forces in FSW. Journal of the Brazilian Society of Mechanical Sciences and Engineering. Vol. 43 (491), pp. 1-15. https://link.springer.com/article/10.1007/s40430-021-03217-9 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering |
dc.relation.references.none.fl_str_mv |
1. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding-process, weldment structure and properties. Prog Mater Sci 53(6):980–1023. https://doi.org/10.1016/j. pmatsci.2008.05.001 2. Kumar R, Singh R, Ahuja IPS, Penna R, Feo L (2018) Weldability of thermoplastic materials for friction stir welding—a state of art review and future applications. Composites B 137:1–15. https:// doi.org/10.1016/j.compositesb.2017.10.039 3. Kumar R, Singh R, Ahuja IPS (2019) Mechanical, thermal and micrographic investigations of friction stir welded: 3D printed melt fow compatible dissimilar thermoplastics. J Manuf Process 38:387–395. https://doi.org/10.1016/j.jmapro.2019.01.043 4. Goyal A, Garg RK (2019) Establishing mathematical relationships to study tensile behavior of friction stir welded AA5086-H32 aluminium alloy joints. SILICON 11:51–65. https://doi.org/10.1007/ s12633-018-9858-4 5. Shrivastava A, Krones M, Pfeferkorn FE (2015) Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum. CIRP J Manuf Sci Technol 9:159–168. https://doi.org/10.1016/j.cirpj.2014.10. 001 6. Dialami N, Cervera M, Chiumenti M, Agelet de Saracibar C (2017) A fast and accurate two-stage strategy to evaluate the efect of the pin tool profle on metal fow, torque and forces in friction stir welding. Int J Mech Sci 122:215–227. https://doi.org/10. 1016/j.ijmecsci.2016.12.016 7. Wahab MA, Dewan MW, Huggett DJ, Okeil AM, Liao TW, Nunes AC (2019) Challenges in the detection of weld-defects in frictionstir-welding (FSW). Adv Mater Process Technol 5(2):258–278. https://doi.org/10.1080/2374068X.2019.1575713 8. Quintana KJ, Silveira JL (2018) Mechanistic models for the forces in FSW of aluminum alloy 5052–H34. Int J Adv Manuf Technol 96:3993–4008. https://doi.org/10.1007/s00170-018-1859-3 9. Mishra RS, Ma ZY (2005) Friction Stir Welding and Processing. Mater Sci Eng R 50(1–2):1–78. https://doi.org/10.1016/j.mser. 2005.07.001 10. Papahn H, Bahemmat P, Haghpanahi M, Aminaie IP (2015) Efect of friction stir welding tool on temperature, applied forces and weld quality. IET Sci Meas Technol 9(4):475–484. https://doi. org/10.1049/iet-smt.2014.0150 11. Hussein SA, Tahir ASM, Izamshah R (2015) Generated Forces and Heat During the Critical Stages of Friction Stir Welding and Processing. J Mech Sci Technol 29(10):4319–4328. https://doi. org/10.1007/s12206-015-0930-3 12. Jain R, Pal SK, Singh SB (2016) A study on the variation of forces and temperature in a friction stir welding process: a fnite element approach. J Manuf Proc 23:278–286. https://doi.org/10.1016/j. jmapro.2016.04.008 13. Zhao S, Bi Q, Wang Y (2016) An axial force controller with delay compensation for the friction stir welding process. Int J Adv Manuf Technol 85:2623–2638. https://doi.org/10.1007/ s00170-015-8096-9 14. Shiravastava A, Zinn M, Dufe NA, Ferrier NJ, Smith CB, Pfeferkorn FE (2017) Force measurement-based discontinuity detection during friction stir welding. J Manuf Process 26:113–121. https:// doi.org/10.1016/j.jmapro.2017.01.007 15. Reza-E-Rabby M, Tang W, Reynolds AP (2015) Efect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys. Sci Technol Weld Joining 20(5):425–432. https://doi.org/10.1179/1362171815Y.00000 00036 16. Das B, Pal S, Bag S (2017) Design and development of force and torque measurement setup for real time monitoring of friction stir welding process. Measurement 103:186–198. https://doi.org/10. 1016/j.measurement.2017.02.034 17. Trimble D, O’Donnell GE, Monaghan J (2015) Characterization of tool shape and rotational speed for increased speed during friction stir welding of AA2024-T3. J Manuf Process 17:141–150. https://doi.org/10.1016/j.jmapro.2014.08.007 18. Mohammadi J, Behnamian Y, Mostafaei A, Gerlich AP (2015) Tool geometry, rotation and travel speeds efects on the properties of dissimilar magnesium/aluminum friction stir welded lap joints. Mater Des 75:95–112. https://doi.org/10.1016/j.matdes.2015.03. 017 19. Rao CV, Reddy GM, Rao KS (2015) Infuence of tool pin profle on microstructure and corrosion behavior of AA2219 Al-Cu alloy friction stir weld nuggets. Def Technol 11:197–208. https://doi. org/10.1016/j.dt.2015.04.004 20. Chen G, Li H, Wang G, Guo Z, Zhang S et al (2018) Efects of pin thread on the in-process material fow behavior during friction stir welding: A computational fuid dynamics study. Int J Mach Tools and Manuf 124:12–21. https://doi.org/10.1016/j.ijmachtools.2017. 09.002 21. Jain R, Pal SK, Singh SB (2018) Finite element simulation of pin shape infuence on material fow, forces in friction stir welding. Int J Adv Manuf Technol 94:1781–1797. https://doi.org/10.1007/ s00170-017-0215-3 22. Shi L, Wu CS, Gao S (2018) Analysis of welding load reduction in ultrasonic vibration-enhanced friction stir welding. Int J Adv Manuf Technol 99:373–385. https://doi.org/10.1007/ s00170-018-2472-1 23. Quintana KJ, Silveira JL (2017) Analysis of torque in friction stir welding of aluminum alloy 5052 by inverse problem method. ASME J Manuf Sci Eng 139(4):041017. https://doi.org/10.1115/1. 4035719 24. Pew JW, Nelson TW, Sorensen CD (2007) Torque based weld power model for friction stir welding. Sci Technol Weld Join 12(4):341–347. https://doi.org/10.1179/174329307X197601 25. Mott RL (2004) Machine elements in mechanical design. Pearson Education, New Jersey 26. Yan J, Sutton MA, Reynolds AP (2005) Process–structure–property relationships for nugget and heat afected regions of AA2524- T351 friction stir welds. Sci Technol Weld Join 10:725–736. https://doi.org/10.1179/174329305X68778 27. Bufa G, Ingarao G, Campanella D, Di Lorenzo R, Micari F, Fratini L (2019) An insight into the electrical energy demand of friction stir welding processes: the role of process parameters, material and machine tool architecture. Int J Adv Manuf Technol 100:3013–3024. https://doi.org/10.1007/s00170-018-2896-7 28. Cui S, Chen ZW, Robson JD (2010) A model relating tool torque and its associated power and specifc energy to rotation and forward speeds during friction stir welding/processing. Int J Mach Tools Manuf 50:1023–1030. https://doi.org/10.1016/j.ijmachtools. 2010.09.005 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Springer Nature Switzerland, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.eng.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Springer Nature Switzerland, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
15 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Springer |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/4176b958-ea40-472b-b619-3109c6baf2d3/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259963015462912 |
spelling |
Quintana, Karen J76d25608aa191445b0875b419b7e298aSilveira, José Luis L.212b35b646e2608e47f00375d2271e902022-05-27T16:23:28Z2022-05-27T16:23:28Z2021-10-1116785878https://hdl.handle.net/10614/1392210.1007/s40430-021-03217-9Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/Tool geometry is a key parameter in welding by friction stir, as afect the material-tool interface and infuences the forces involved in the procedure. The forces are related to weld quality, efciency, machine capacity, and control of the process. However, the number of models proposed in the literature to describe the forces, considering the infuence of one of the most common tool pin shape, is not enough. This paper studies the efects of the threaded tool pin on the forces, for diferent velocities of the process by modeling and experimental analysis. Mechanistic models are proposed to describe the axial force, in the plunging and welding phases, and the welding force for a threaded tool pin considering the process velocities. The inverse problem method is implemented to estimate unknown parameters and adjust the models. To determine the infuence of the threaded pin, the models and experimental results are compared with previously published models. The experimental data for the smooth pin was carried out for the same material, velocities, and tool geometry. The results show that the threaded pin increases around 10% the maximum axial force. Additionally, the threaded pin reduces the welding force for the most used rotational speed and the power consumption associated with the motion in the welding direction. The proposed models can be easily implemented in the industry and used for tool design and process planning15 páginasapplication/pdfengSpringerDerechos reservados - Springer Nature Switzerland, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Threaded pin efects analysis on forces in FSWArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Fricción (Mecánica)FrictionThreaded pin forcesFriction stir weldingMechanistic models15491143Quintana, K. J., Silveira, J. L. L. (2021). Threaded pin efects analysis on forces in FSW. Journal of the Brazilian Society of Mechanical Sciences and Engineering. Vol. 43 (491), pp. 1-15. https://link.springer.com/article/10.1007/s40430-021-03217-9Journal of the Brazilian Society of Mechanical Sciences and Engineering1. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding-process, weldment structure and properties. Prog Mater Sci 53(6):980–1023. https://doi.org/10.1016/j. pmatsci.2008.05.0012. Kumar R, Singh R, Ahuja IPS, Penna R, Feo L (2018) Weldability of thermoplastic materials for friction stir welding—a state of art review and future applications. Composites B 137:1–15. https:// doi.org/10.1016/j.compositesb.2017.10.0393. Kumar R, Singh R, Ahuja IPS (2019) Mechanical, thermal and micrographic investigations of friction stir welded: 3D printed melt fow compatible dissimilar thermoplastics. J Manuf Process 38:387–395. https://doi.org/10.1016/j.jmapro.2019.01.0434. Goyal A, Garg RK (2019) Establishing mathematical relationships to study tensile behavior of friction stir welded AA5086-H32 aluminium alloy joints. SILICON 11:51–65. https://doi.org/10.1007/ s12633-018-9858-45. Shrivastava A, Krones M, Pfeferkorn FE (2015) Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum. CIRP J Manuf Sci Technol 9:159–168. https://doi.org/10.1016/j.cirpj.2014.10. 0016. Dialami N, Cervera M, Chiumenti M, Agelet de Saracibar C (2017) A fast and accurate two-stage strategy to evaluate the efect of the pin tool profle on metal fow, torque and forces in friction stir welding. Int J Mech Sci 122:215–227. https://doi.org/10. 1016/j.ijmecsci.2016.12.0167. Wahab MA, Dewan MW, Huggett DJ, Okeil AM, Liao TW, Nunes AC (2019) Challenges in the detection of weld-defects in frictionstir-welding (FSW). Adv Mater Process Technol 5(2):258–278. https://doi.org/10.1080/2374068X.2019.15757138. Quintana KJ, Silveira JL (2018) Mechanistic models for the forces in FSW of aluminum alloy 5052–H34. Int J Adv Manuf Technol 96:3993–4008. https://doi.org/10.1007/s00170-018-1859-39. Mishra RS, Ma ZY (2005) Friction Stir Welding and Processing. Mater Sci Eng R 50(1–2):1–78. https://doi.org/10.1016/j.mser. 2005.07.00110. Papahn H, Bahemmat P, Haghpanahi M, Aminaie IP (2015) Efect of friction stir welding tool on temperature, applied forces and weld quality. IET Sci Meas Technol 9(4):475–484. https://doi. org/10.1049/iet-smt.2014.015011. Hussein SA, Tahir ASM, Izamshah R (2015) Generated Forces and Heat During the Critical Stages of Friction Stir Welding and Processing. J Mech Sci Technol 29(10):4319–4328. https://doi. org/10.1007/s12206-015-0930-312. Jain R, Pal SK, Singh SB (2016) A study on the variation of forces and temperature in a friction stir welding process: a fnite element approach. J Manuf Proc 23:278–286. https://doi.org/10.1016/j. jmapro.2016.04.00813. Zhao S, Bi Q, Wang Y (2016) An axial force controller with delay compensation for the friction stir welding process. Int J Adv Manuf Technol 85:2623–2638. https://doi.org/10.1007/ s00170-015-8096-914. Shiravastava A, Zinn M, Dufe NA, Ferrier NJ, Smith CB, Pfeferkorn FE (2017) Force measurement-based discontinuity detection during friction stir welding. J Manuf Process 26:113–121. https:// doi.org/10.1016/j.jmapro.2017.01.00715. Reza-E-Rabby M, Tang W, Reynolds AP (2015) Efect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys. Sci Technol Weld Joining 20(5):425–432. https://doi.org/10.1179/1362171815Y.00000 0003616. Das B, Pal S, Bag S (2017) Design and development of force and torque measurement setup for real time monitoring of friction stir welding process. Measurement 103:186–198. https://doi.org/10. 1016/j.measurement.2017.02.03417. Trimble D, O’Donnell GE, Monaghan J (2015) Characterization of tool shape and rotational speed for increased speed during friction stir welding of AA2024-T3. J Manuf Process 17:141–150. https://doi.org/10.1016/j.jmapro.2014.08.00718. Mohammadi J, Behnamian Y, Mostafaei A, Gerlich AP (2015) Tool geometry, rotation and travel speeds efects on the properties of dissimilar magnesium/aluminum friction stir welded lap joints. Mater Des 75:95–112. https://doi.org/10.1016/j.matdes.2015.03. 01719. Rao CV, Reddy GM, Rao KS (2015) Infuence of tool pin profle on microstructure and corrosion behavior of AA2219 Al-Cu alloy friction stir weld nuggets. Def Technol 11:197–208. https://doi. org/10.1016/j.dt.2015.04.00420. Chen G, Li H, Wang G, Guo Z, Zhang S et al (2018) Efects of pin thread on the in-process material fow behavior during friction stir welding: A computational fuid dynamics study. Int J Mach Tools and Manuf 124:12–21. https://doi.org/10.1016/j.ijmachtools.2017. 09.00221. Jain R, Pal SK, Singh SB (2018) Finite element simulation of pin shape infuence on material fow, forces in friction stir welding. Int J Adv Manuf Technol 94:1781–1797. https://doi.org/10.1007/ s00170-017-0215-322. Shi L, Wu CS, Gao S (2018) Analysis of welding load reduction in ultrasonic vibration-enhanced friction stir welding. Int J Adv Manuf Technol 99:373–385. https://doi.org/10.1007/ s00170-018-2472-123. Quintana KJ, Silveira JL (2017) Analysis of torque in friction stir welding of aluminum alloy 5052 by inverse problem method. ASME J Manuf Sci Eng 139(4):041017. https://doi.org/10.1115/1. 403571924. Pew JW, Nelson TW, Sorensen CD (2007) Torque based weld power model for friction stir welding. Sci Technol Weld Join 12(4):341–347. https://doi.org/10.1179/174329307X19760125. Mott RL (2004) Machine elements in mechanical design. Pearson Education, New Jersey26. Yan J, Sutton MA, Reynolds AP (2005) Process–structure–property relationships for nugget and heat afected regions of AA2524- T351 friction stir welds. Sci Technol Weld Join 10:725–736. https://doi.org/10.1179/174329305X6877827. Bufa G, Ingarao G, Campanella D, Di Lorenzo R, Micari F, Fratini L (2019) An insight into the electrical energy demand of friction stir welding processes: the role of process parameters, material and machine tool architecture. Int J Adv Manuf Technol 100:3013–3024. https://doi.org/10.1007/s00170-018-2896-728. Cui S, Chen ZW, Robson JD (2010) A model relating tool torque and its associated power and specifc energy to rotation and forward speeds during friction stir welding/processing. Int J Mach Tools Manuf 50:1023–1030. https://doi.org/10.1016/j.ijmachtools. 2010.09.005Comunidad generalPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/4176b958-ea40-472b-b619-3109c6baf2d3/download20b5ba22b1117f71589c7318baa2c560MD5210614/13922oai:dspace7-uao.metacatalogo.com:10614/139222024-01-19 16:24:32.762https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Springer Nature Switzerland, 2021metadata.onlyhttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |