Optimal control for a discrete time influenza model

We formulated a discrete time model in order to study optimal control strategies for a single influenza outbreak. In our model, we divided the population into four classes: susceptible, infectious, treated, and recovered individuals. The total population was divided into subgroups according to activ...

Full description

Autores:
González Parra, Paula Andrea
Ceberio, Martine
Lee, Sunmi
Castillo-Chavez, Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11551
Acceso en línea:
http://hdl.handle.net/10614/11551
Palabra clave:
Control óptimo
Gripe
Epidemiología
Influenza
Optimal Control
Epidemiology
Interior-Point methods
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_0d27114466e9a6acca2fd72d63573f6b
oai_identifier_str oai:red.uao.edu.co:10614/11551
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Optimal control for a discrete time influenza model
title Optimal control for a discrete time influenza model
spellingShingle Optimal control for a discrete time influenza model
Control óptimo
Gripe
Epidemiología
Influenza
Optimal Control
Epidemiology
Interior-Point methods
title_short Optimal control for a discrete time influenza model
title_full Optimal control for a discrete time influenza model
title_fullStr Optimal control for a discrete time influenza model
title_full_unstemmed Optimal control for a discrete time influenza model
title_sort Optimal control for a discrete time influenza model
dc.creator.fl_str_mv González Parra, Paula Andrea
Ceberio, Martine
Lee, Sunmi
Castillo-Chavez, Carlos
dc.contributor.author.none.fl_str_mv González Parra, Paula Andrea
Ceberio, Martine
Lee, Sunmi
Castillo-Chavez, Carlos
dc.subject.spa.fl_str_mv Control óptimo
topic Control óptimo
Gripe
Epidemiología
Influenza
Optimal Control
Epidemiology
Interior-Point methods
dc.subject.armarc.spa.fl_str_mv Gripe
Epidemiología
dc.subject.proposal.eng.fl_str_mv Influenza
Optimal Control
Epidemiology
dc.subject.proposal.none.fl_str_mv Interior-Point methods
description We formulated a discrete time model in order to study optimal control strategies for a single influenza outbreak. In our model, we divided the population into four classes: susceptible, infectious, treated, and recovered individuals. The total population was divided into subgroups according to activity or susceptibility levels. The goal was to determine how treatment doses should be distributed in each group in order to reduce the final epidemic size. The case of limited resources is considered by including an isoperimetric constraint. We found that the use of antiviral treatment resulted in reductions in the cumulative number of infected individuals. We proposed to solve the problem by using the primal-dual interior-point method that enforces epidemiological constraints explicitly
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2019-11-20T14:40:53Z
dc.date.available.none.fl_str_mv 2019-11-20T14:40:53Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.eng.fl_str_mv Parra P.A.G., Ceberio M., Lee S., Castillo-Chavez C. (2014) Optimal Control for a Discrete Time Influenza Model. In: Castillo L., Cristancho M., Isaza G., Pinzón A., Rodríguez J. (eds) Advances in Computational Biology. Advances in Intelligent Systems and Computing, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-01568-2_33
dc.identifier.isbn.spa.fl_str_mv 9783319015675 (impreso)
9783319015682 (en línea)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11551
dc.identifier.doi.spa.fl_str_mv 10.1007/978-3-319-01568-2_33
identifier_str_mv Parra P.A.G., Ceberio M., Lee S., Castillo-Chavez C. (2014) Optimal Control for a Discrete Time Influenza Model. In: Castillo L., Cristancho M., Isaza G., Pinzón A., Rodríguez J. (eds) Advances in Computational Biology. Advances in Intelligent Systems and Computing, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-01568-2_33
9783319015675 (impreso)
9783319015682 (en línea)
10.1007/978-3-319-01568-2_33
url http://hdl.handle.net/10614/11551
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.eng.fl_str_mv Castillo L., Cristancho M., Isaza G., Pinzón A., Rodríguez J. (eds) Advances in Computational Biology. Advances in Intelligent Systems and Computing, vol 232. Springer, Cham
dc.relation.citationendpage.none.fl_str_mv 237
dc.relation.citationstartpage.none.fl_str_mv 231
dc.relation.ispartofbook.spa.fl_str_mv Avances en Biología Computacional. Avances en Sistemas Inteligentes y Computación
dc.relation.ispartofbook.eng.fl_str_mv Advances in Computational Biology. Advances in Intelligent Systems and Computing
dc.relation.references.none.fl_str_mv Brauer, F.: Epidemic models with heterogeneous mixing and treatment. Bull. of Math. Bio. 70, 1869–1885 (2008)
Brauer, F., Feng, Z., Castillo-Chavez, C.: Discrete Epidemic Models. Math. Biosc. & Eng. 7, 1–15 (2010)
Castillo-Chavez, C., Hethcote, H.W.: Epidemiological models with age structure, proportionate mixing, and cross immunity. J. of Math. Bio. 27, 233–258 (1989)
Chowell, G., Ammon, C.E., Hengartner, N.W., Hyman, J.M.: Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions. J. Theor. Biol. 241, 193–204 (2006)
Del Valle, S.Y., Hyman, J.M., Hethcote, H.W., Eubank, S.G.: Mixing patterns between age groups in social networks. Social Networks 29, 539–554 (2007)
El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the primal-dual newton interior-point method for nonlinear programming. J. of Optim. Theo. and App. 89(3), 507–541 (1996)
González-Parra, P., Lee, S., Velazquez, L., Castillo-Chavez, C.: A note on the use of optimal control on a discrete time model of influenza dynamics. Math. Biosc. & Eng. 8(8), 183–197 (2011)
González-Parra, P.: Constraint optimal control for a multi-group discrete time influenza model. PhD. dissertation, The University of Texas at El Paso, El Paso, TX (2012)
Herrera-Valdez, M.A., Cruz-Aponte, M., Castillo-Chavez, C.: Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different “waves” of A-H1N1pdm cases observed in Mxico during 2009. Math. Biosc. & Eng. 8(8), 21–48 (2011)
Hethcote, H.W.: An age-structured model for pertussis transmission. Math. Biosc. 145, 89–136 (1997)
Lee, S., Chowell, G., Castillo-Chavez, C.: Optimal control for pandemic influenza: the role of limited antiviral treatment and isolation. J. Theor. Biol. 265, 136–150 (2010)
Lee, S., Morales, R., Castillo-Chavez, C.: A note on the use of influenza vaccination strategies when supply is limited. Math. Biosc. & Eng. 8(8), 171–182 (2011)
Lenhart, S., Workman, J.: Optimal control applied to biological models. Chapman & Hall, CRC Mathematical and Computational Biology series (2007)
Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer (2006)
Rios-Soto, K., Song, B., Castillo-Chavez, C.: Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Math. Biosc. & Eng. 8(8), 199–222 (2011)
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 7 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Springer
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/0746c326-466b-433e-847c-e7eb4b7b9cb2/download
https://red.uao.edu.co/bitstreams/107337ab-10af-4f05-b7e8-675b2d042777/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259788452724736
spelling González Parra, Paula Andreavirtual::2001-1Ceberio, Martine708c11ae06aeaf13f1263417f6ce4f71Lee, Sunmiab51c6e66c8e2b1bbd8a8c2b44929a99Castillo-Chavez, Carloscdf48edadfb5abd20797e6d0c9763ca6Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-20T14:40:53Z2019-11-20T14:40:53Z2014Parra P.A.G., Ceberio M., Lee S., Castillo-Chavez C. (2014) Optimal Control for a Discrete Time Influenza Model. In: Castillo L., Cristancho M., Isaza G., Pinzón A., Rodríguez J. (eds) Advances in Computational Biology. Advances in Intelligent Systems and Computing, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-01568-2_339783319015675 (impreso)9783319015682 (en línea)http://hdl.handle.net/10614/1155110.1007/978-3-319-01568-2_33We formulated a discrete time model in order to study optimal control strategies for a single influenza outbreak. In our model, we divided the population into four classes: susceptible, infectious, treated, and recovered individuals. The total population was divided into subgroups according to activity or susceptibility levels. The goal was to determine how treatment doses should be distributed in each group in order to reduce the final epidemic size. The case of limited resources is considered by including an isoperimetric constraint. We found that the use of antiviral treatment resulted in reductions in the cumulative number of infected individuals. We proposed to solve the problem by using the primal-dual interior-point method that enforces epidemiological constraints explicitlyapplication/pdf7 páginasengSpringerCastillo L., Cristancho M., Isaza G., Pinzón A., Rodríguez J. (eds) Advances in Computational Biology. Advances in Intelligent Systems and Computing, vol 232. Springer, Cham237231Avances en Biología Computacional. Avances en Sistemas Inteligentes y ComputaciónAdvances in Computational Biology. Advances in Intelligent Systems and ComputingBrauer, F.: Epidemic models with heterogeneous mixing and treatment. Bull. of Math. Bio. 70, 1869–1885 (2008)Brauer, F., Feng, Z., Castillo-Chavez, C.: Discrete Epidemic Models. Math. Biosc. & Eng. 7, 1–15 (2010)Castillo-Chavez, C., Hethcote, H.W.: Epidemiological models with age structure, proportionate mixing, and cross immunity. J. of Math. Bio. 27, 233–258 (1989)Chowell, G., Ammon, C.E., Hengartner, N.W., Hyman, J.M.: Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions. J. Theor. Biol. 241, 193–204 (2006)Del Valle, S.Y., Hyman, J.M., Hethcote, H.W., Eubank, S.G.: Mixing patterns between age groups in social networks. Social Networks 29, 539–554 (2007)El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the primal-dual newton interior-point method for nonlinear programming. J. of Optim. Theo. and App. 89(3), 507–541 (1996)González-Parra, P., Lee, S., Velazquez, L., Castillo-Chavez, C.: A note on the use of optimal control on a discrete time model of influenza dynamics. Math. Biosc. & Eng. 8(8), 183–197 (2011)González-Parra, P.: Constraint optimal control for a multi-group discrete time influenza model. PhD. dissertation, The University of Texas at El Paso, El Paso, TX (2012)Herrera-Valdez, M.A., Cruz-Aponte, M., Castillo-Chavez, C.: Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different “waves” of A-H1N1pdm cases observed in Mxico during 2009. Math. Biosc. & Eng. 8(8), 21–48 (2011)Hethcote, H.W.: An age-structured model for pertussis transmission. Math. Biosc. 145, 89–136 (1997)Lee, S., Chowell, G., Castillo-Chavez, C.: Optimal control for pandemic influenza: the role of limited antiviral treatment and isolation. J. Theor. Biol. 265, 136–150 (2010)Lee, S., Morales, R., Castillo-Chavez, C.: A note on the use of influenza vaccination strategies when supply is limited. Math. Biosc. & Eng. 8(8), 171–182 (2011)Lenhart, S., Workman, J.: Optimal control applied to biological models. Chapman & Hall, CRC Mathematical and Computational Biology series (2007)Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer (2006)Rios-Soto, K., Song, B., Castillo-Chavez, C.: Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Math. Biosc. & Eng. 8(8), 199–222 (2011)Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Control óptimoGripeEpidemiologíaInfluenzaOptimal ControlEpidemiologyInterior-Point methodsOptimal control for a discrete time influenza modelArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Publication8da9707c-13a8-4a6f-995e-283af50e1d65virtual::2001-18da9707c-13a8-4a6f-995e-283af50e1d65virtual::2001-10000-0001-5208-6326virtual::2001-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001071882virtual::2001-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/0746c326-466b-433e-847c-e7eb4b7b9cb2/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/107337ab-10af-4f05-b7e8-675b2d042777/download20b5ba22b1117f71589c7318baa2c560MD5310614/11551oai:red.uao.edu.co:10614/115512024-03-05 15:49:35.017https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K