Additive manufacturing methods: techniques, materials, and closed-loop control applications

Additive manufacturing encompasses a set of low-cost and highly versatile tools used to prototype and fabricate threedimensional (3D) objects with ease. In most of the additive manufacturing techniques, materials are deposited layer by layer until a 3D object is reproduced. Several additive manufact...

Full description

Autores:
Mercado Rivera , María José
Rojas Arciniegas, Álvaro José
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/13279
Acceso en línea:
https://hdl.handle.net/10614/13279
Palabra clave:
Impresión 3D
Fabricación de forma libre sólida
Manufactura integrada por computador
Three-dimensional printing
Solid freeform fabrication
Computer integrated manufacturing systems
Additive manufacturing
3D printing
Closed-loop control system
Rapid prototyping
Rights
openAccess
License
Derechos reservados Revista The International Journal of Advanced Manufacturing Technology
id REPOUAO2_0cddc4f1126322d542acea5cf1a4aa3d
oai_identifier_str oai:red.uao.edu.co:10614/13279
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Additive manufacturing methods: techniques, materials, and closed-loop control applications
title Additive manufacturing methods: techniques, materials, and closed-loop control applications
spellingShingle Additive manufacturing methods: techniques, materials, and closed-loop control applications
Impresión 3D
Fabricación de forma libre sólida
Manufactura integrada por computador
Three-dimensional printing
Solid freeform fabrication
Computer integrated manufacturing systems
Additive manufacturing
3D printing
Closed-loop control system
Rapid prototyping
title_short Additive manufacturing methods: techniques, materials, and closed-loop control applications
title_full Additive manufacturing methods: techniques, materials, and closed-loop control applications
title_fullStr Additive manufacturing methods: techniques, materials, and closed-loop control applications
title_full_unstemmed Additive manufacturing methods: techniques, materials, and closed-loop control applications
title_sort Additive manufacturing methods: techniques, materials, and closed-loop control applications
dc.creator.fl_str_mv Mercado Rivera , María José
Rojas Arciniegas, Álvaro José
dc.contributor.author.none.fl_str_mv Mercado Rivera , María José
Rojas Arciniegas, Álvaro José
dc.subject.armarc.spa.fl_str_mv Impresión 3D
Fabricación de forma libre sólida
Manufactura integrada por computador
topic Impresión 3D
Fabricación de forma libre sólida
Manufactura integrada por computador
Three-dimensional printing
Solid freeform fabrication
Computer integrated manufacturing systems
Additive manufacturing
3D printing
Closed-loop control system
Rapid prototyping
dc.subject.armarc.eng.fl_str_mv Three-dimensional printing
Solid freeform fabrication
Computer integrated manufacturing systems
dc.subject.proposal.eng.fl_str_mv Additive manufacturing
3D printing
Closed-loop control system
Rapid prototyping
description Additive manufacturing encompasses a set of low-cost and highly versatile tools used to prototype and fabricate threedimensional (3D) objects with ease. In most of the additive manufacturing techniques, materials are deposited layer by layer until a 3D object is reproduced. Several additive manufacturing techniques have been developed in the previous decade, and the application of additive manufacturing has increased in various industrial sectors. However, there are still drawbacks associated with additive manufacturing techniques, necessitating further study and development. In this study, we review the techniques and materials used in additive manufacturing. The vast majority of additive manufacturing processes are still based on open-loop control or implement some local controllers for specific variables (such as temperature), making them susceptible for errors. This study presents a review of the different additive manufacturing techniques, examples of academic and commercial efforts to improve the control systems for additive manufacturing, as well as the application of additive manufacturing in different fields such as aerospace, electronics, arts, and biomedical. The article ends highlighting the advantages of utilizing a closed-loop control system in additive manufacturing and discussing the work needed for further development
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-06-17
dc.date.accessioned.none.fl_str_mv 2021-09-28T19:05:03Z
dc.date.available.none.fl_str_mv 2021-09-28T19:05:03Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 02683768
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13279
dc.identifier.doi.none.fl_str_mv 10.1007/s00170-020-05663-6
identifier_str_mv 02683768
10.1007/s00170-020-05663-6
url https://hdl.handle.net/10614/13279
dc.language.iso.eng.fl_str_mv spa
language spa
dc.relation.citationedition.spa.fl_str_mv Volumen 109 (2020)
dc.relation.citationendpage.spa.fl_str_mv 31
dc.relation.citationstartpage.spa.fl_str_mv 17
dc.relation.citationvolume.spa.fl_str_mv 109
dc.relation.cites.eng.fl_str_mv Mercado Rivera, F.J., Rojas Arciniegas, A.J. (2020). Additive manufacturing methods: techniques, materials, and closed-loop control applications. The International Journal of Advanced Manufacturing Technology. (Vol. 109), pp. 17–31. https://doi.org/10.1007/s00170-020-05663-6
dc.relation.ispartofjournal.eng.fl_str_mv The International Journal of Advanced Manufacturing Technology
dc.relation.references.spa.fl_str_mv Kocovic P (2017) History of additive manufacturing. In: Advances in chemical and materials engineering. IGI Global, pp. 1–24. https://doi.org/10.4018/978-1-5225-2289-8.ch001
Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The role of additive manufacturing in the era of Industry 4.0. Procedia Manuf 11:545–554. https://doi.org/10.1016/j.promfg.2017.07.148
Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55:155–162. https://doi.org/10.1016/j.bushor.2011.11.003
Buchanan C, Gardner L (2019) Metal 3D printing in construction: a review of methods, research, applications, opportunities and challenges. Eng Struct 180:332–348. https://doi.org/10.1016/j.engstruct.2018.11.045
ibson I, Rosen D, Stucker B (2015) Additive manufacturing: technologies 3D printing, rapid prototyping, and direct digital manufacturing. Second, Springer, New York
go TD, Kashani A, Imbalzano G, Nguyen KT, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
Dolenc A (1994) An overview of rapid prototyping technologies in manufacturing. Helsinki University of Technology, pp 1–23
Khudyakov IV (2018) Fast photopolymerization of acrylate coatings: achievements and problems. Prog Org Coat 121:151–159. https://doi.org/10.1016/j.porgcoat.2018.04.030
Hull CW, Arcadia C (1984) Apparatus for production of three-dmensonal objects by stereolithography. United States Patent, Appl., No. 638905, Filed
Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050
Kumbhar NN, Mulay AV (2018) Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J Inst Eng India Ser C 99:481–487. https://doi.org/10.1007/s40032-016-0340-z
Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET, DeSimone JM (2015) Additive manufacturing. Continuous liquid interface production of 3D objects. Science 347:1349–1352. https://doi.org/10.1126/science.aaa2397
Wohlers report (2014) 3D printing and additive manufacturing state of the industry, annual worldwide progress report. Cary, NC
Bai Y, Williams CB (2018) Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor. Mater Des 147:146–156. https://doi.org/10.1016/j.matdes.2018.03.027
Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3:42–53. https://doi.org/10.1007/s40436-014-0097-7
Sun J, Zhou W, Huang D, Fuh JY, Hong G (2015) An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol 8:1605–1615. https://doi.org/10.1007/s11947-015-1528-6
Mitchell A, Lafont U, Holynska M, Semprimoschnig C (2018) Additive construction: state-of-the-art, challenges and opportunities. Elsevier Enhanced Reader.pdf, 24. pp 606–626
Contuzzi N, Campanelli SL, Ludovico AD (2011) 3D finite element analysis in the selective laser melting process. Int J Simul Model 10:113–121. https://doi.org/10.2507/IJSIMM10(3)1.169
Li J, Monaghan T, Nguyen TT, Kay RW, Friel RJ, Harris RA (2017) Multifunctional metal matrix composites with embedded printed electrical materials fabricated by ultrasonic additive manufacturing. Compos B Eng 113:342–354. https://doi.org/10.1016/j.compositesb.2017.01.013
Mahamood RM, Akinlabi ET (2017) Scanning speed and powder flow rate influence on the properties of laser metal deposition of titanium alloy. Int J Adv Manuf Technol 91:2419–2426. https://doi.org/10.1007/s00170-016-9954-9
Kazemian A, Yuan X, Cochran E, Khoshnevis B (2017) Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr Build Mater 145:639–647. https://doi.org/10.1016/j.conbuildmat.2017.04.015
Mani M, Lane B, Donmez A, Donmez A, Moylan S, Fesperman R (2015) Measurement science needs for real-time control of additive manufacturing powder bed fusion processes 55:1400–1418
Domingo-espin M, Puigoriol-forcada JM, Garcia-granada A, Llumà J, Borros S, Reyes G (2015) Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts. Mater Des 83:670–677
Rojas Arciniegas AJ, Cerón Viveros M (2018) Development of a closed-loop control system for the movements of the extruder and platform of a FDM 3D printing system. NIP & Digital Fabrication Conf Printing Fabr:176–181
Everton SK, Hirsch M, Stavroulakis PI, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445
Sciaky | IRISS closed loop control for additive manufacturing. Available: https://www.sciaky.com/additive-manufacturing/iriss-closed-loop-control. Accessed 17 May 2020.
Go J, Schiffres SN, Stevens AG, Hart AJ (2017) Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design. Addit Manuf 16:1–11. https://doi.org/10.1016/j.addma.2017.03.007
Yan Y, Moss J, Ngo KDT, Mei Y, Lu GQ (2017) Additive manufacturing of toroid inductor for power electronics applications. IEEE Trans Ind Appl 53:5709–5714. https://doi.org/10.1109/TIA.2017.2729504
Greeff GP, Schilling M (2017) Closed loop control of slippage during filament transport in molten material extrusion. Addit Manuf 14:31–38. https://doi.org/10.1016/j.addma.2016.12.005
dc.rights.spa.fl_str_mv Derechos reservados Revista The International Journal of Advanced Manufacturing Technology
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.eng.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados Revista The International Journal of Advanced Manufacturing Technology
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Springer-Verlag
dc.publisher.place.spa.fl_str_mv Londres
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/0e5057df-9381-4e3f-9a3a-bd2607091eb1/download
https://red.uao.edu.co/bitstreams/0d3c7db9-cd5a-461d-8dda-353c695d5029/download
https://red.uao.edu.co/bitstreams/4f0a0985-cce6-4fc2-be1a-2fc256e0c47e/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
22c4abe9eef5303c6eeb1173bd35c389
e7a68246dd680467aa8e1631555de571
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260001286389760
spelling Mercado Rivera , María José64f98e67eef114045db203275622dc4eRojas Arciniegas, Álvaro Josévirtual::4449-12021-09-28T19:05:03Z2021-09-28T19:05:03Z2020-06-1702683768https://hdl.handle.net/10614/1327910.1007/s00170-020-05663-6Additive manufacturing encompasses a set of low-cost and highly versatile tools used to prototype and fabricate threedimensional (3D) objects with ease. In most of the additive manufacturing techniques, materials are deposited layer by layer until a 3D object is reproduced. Several additive manufacturing techniques have been developed in the previous decade, and the application of additive manufacturing has increased in various industrial sectors. However, there are still drawbacks associated with additive manufacturing techniques, necessitating further study and development. In this study, we review the techniques and materials used in additive manufacturing. The vast majority of additive manufacturing processes are still based on open-loop control or implement some local controllers for specific variables (such as temperature), making them susceptible for errors. This study presents a review of the different additive manufacturing techniques, examples of academic and commercial efforts to improve the control systems for additive manufacturing, as well as the application of additive manufacturing in different fields such as aerospace, electronics, arts, and biomedical. The article ends highlighting the advantages of utilizing a closed-loop control system in additive manufacturing and discussing the work needed for further development15 páginasapplication/pdfspaSpringer-VerlagLondresDerechos reservados Revista The International Journal of Advanced Manufacturing Technologyhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Additive manufacturing methods: techniques, materials, and closed-loop control applicationsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Impresión 3DFabricación de forma libre sólidaManufactura integrada por computadorThree-dimensional printingSolid freeform fabricationComputer integrated manufacturing systemsAdditive manufacturing3D printingClosed-loop control systemRapid prototypingVolumen 109 (2020)3117109Mercado Rivera, F.J., Rojas Arciniegas, A.J. (2020). Additive manufacturing methods: techniques, materials, and closed-loop control applications. The International Journal of Advanced Manufacturing Technology. (Vol. 109), pp. 17–31. https://doi.org/10.1007/s00170-020-05663-6The International Journal of Advanced Manufacturing TechnologyKocovic P (2017) History of additive manufacturing. In: Advances in chemical and materials engineering. IGI Global, pp. 1–24. https://doi.org/10.4018/978-1-5225-2289-8.ch001Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The role of additive manufacturing in the era of Industry 4.0. Procedia Manuf 11:545–554. https://doi.org/10.1016/j.promfg.2017.07.148Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55:155–162. https://doi.org/10.1016/j.bushor.2011.11.003Buchanan C, Gardner L (2019) Metal 3D printing in construction: a review of methods, research, applications, opportunities and challenges. Eng Struct 180:332–348. https://doi.org/10.1016/j.engstruct.2018.11.045ibson I, Rosen D, Stucker B (2015) Additive manufacturing: technologies 3D printing, rapid prototyping, and direct digital manufacturing. Second, Springer, New Yorkgo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012Dolenc A (1994) An overview of rapid prototyping technologies in manufacturing. Helsinki University of Technology, pp 1–23Khudyakov IV (2018) Fast photopolymerization of acrylate coatings: achievements and problems. Prog Org Coat 121:151–159. https://doi.org/10.1016/j.porgcoat.2018.04.030Hull CW, Arcadia C (1984) Apparatus for production of three-dmensonal objects by stereolithography. United States Patent, Appl., No. 638905, FiledMelchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050Kumbhar NN, Mulay AV (2018) Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J Inst Eng India Ser C 99:481–487. https://doi.org/10.1007/s40032-016-0340-zTumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET, DeSimone JM (2015) Additive manufacturing. Continuous liquid interface production of 3D objects. Science 347:1349–1352. https://doi.org/10.1126/science.aaa2397Wohlers report (2014) 3D printing and additive manufacturing state of the industry, annual worldwide progress report. Cary, NCBai Y, Williams CB (2018) Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor. Mater Des 147:146–156. https://doi.org/10.1016/j.matdes.2018.03.027Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3:42–53. https://doi.org/10.1007/s40436-014-0097-7Sun J, Zhou W, Huang D, Fuh JY, Hong G (2015) An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol 8:1605–1615. https://doi.org/10.1007/s11947-015-1528-6Mitchell A, Lafont U, Holynska M, Semprimoschnig C (2018) Additive construction: state-of-the-art, challenges and opportunities. Elsevier Enhanced Reader.pdf, 24. pp 606–626Contuzzi N, Campanelli SL, Ludovico AD (2011) 3D finite element analysis in the selective laser melting process. Int J Simul Model 10:113–121. https://doi.org/10.2507/IJSIMM10(3)1.169Li J, Monaghan T, Nguyen TT, Kay RW, Friel RJ, Harris RA (2017) Multifunctional metal matrix composites with embedded printed electrical materials fabricated by ultrasonic additive manufacturing. Compos B Eng 113:342–354. https://doi.org/10.1016/j.compositesb.2017.01.013Mahamood RM, Akinlabi ET (2017) Scanning speed and powder flow rate influence on the properties of laser metal deposition of titanium alloy. Int J Adv Manuf Technol 91:2419–2426. https://doi.org/10.1007/s00170-016-9954-9Kazemian A, Yuan X, Cochran E, Khoshnevis B (2017) Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr Build Mater 145:639–647. https://doi.org/10.1016/j.conbuildmat.2017.04.015Mani M, Lane B, Donmez A, Donmez A, Moylan S, Fesperman R (2015) Measurement science needs for real-time control of additive manufacturing powder bed fusion processes 55:1400–1418Domingo-espin M, Puigoriol-forcada JM, Garcia-granada A, Llumà J, Borros S, Reyes G (2015) Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts. Mater Des 83:670–677Rojas Arciniegas AJ, Cerón Viveros M (2018) Development of a closed-loop control system for the movements of the extruder and platform of a FDM 3D printing system. NIP & Digital Fabrication Conf Printing Fabr:176–181Everton SK, Hirsch M, Stavroulakis PI, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445Sciaky | IRISS closed loop control for additive manufacturing. Available: https://www.sciaky.com/additive-manufacturing/iriss-closed-loop-control. Accessed 17 May 2020.Go J, Schiffres SN, Stevens AG, Hart AJ (2017) Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design. Addit Manuf 16:1–11. https://doi.org/10.1016/j.addma.2017.03.007Yan Y, Moss J, Ngo KDT, Mei Y, Lu GQ (2017) Additive manufacturing of toroid inductor for power electronics applications. IEEE Trans Ind Appl 53:5709–5714. https://doi.org/10.1109/TIA.2017.2729504Greeff GP, Schilling M (2017) Closed loop control of slippage during filament transport in molten material extrusion. Addit Manuf 14:31–38. https://doi.org/10.1016/j.addma.2016.12.005Comunidad universitaria en generalPublication5d4f6e65-758a-44ee-be02-f12af232a478virtual::4449-15d4f6e65-758a-44ee-be02-f12af232a478virtual::4449-1https://scholar.google.com/citations?user=Jk__bOIAAAAJ&hl=envirtual::4449-10000-0001-9242-799Xvirtual::4449-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000657956virtual::4449-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/0e5057df-9381-4e3f-9a3a-bd2607091eb1/download20b5ba22b1117f71589c7318baa2c560MD52TEXTMercadoRivera-RojasArciniegas2020_Article_AdditiveManufacturingMethodsTe.pdf.txtMercadoRivera-RojasArciniegas2020_Article_AdditiveManufacturingMethodsTe.pdf.txtExtracted texttext/plain62175https://red.uao.edu.co/bitstreams/0d3c7db9-cd5a-461d-8dda-353c695d5029/download22c4abe9eef5303c6eeb1173bd35c389MD53THUMBNAILMercadoRivera-RojasArciniegas2020_Article_AdditiveManufacturingMethodsTe.pdf.jpgMercadoRivera-RojasArciniegas2020_Article_AdditiveManufacturingMethodsTe.pdf.jpgGenerated Thumbnailimage/jpeg14256https://red.uao.edu.co/bitstreams/4f0a0985-cce6-4fc2-be1a-2fc256e0c47e/downloade7a68246dd680467aa8e1631555de571MD5410614/13279oai:red.uao.edu.co:10614/132792024-03-14 10:10:48.792https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados Revista The International Journal of Advanced Manufacturing Technologymetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K