Additive manufacturing methods: techniques, materials, and closed-loop control applications
Additive manufacturing encompasses a set of low-cost and highly versatile tools used to prototype and fabricate threedimensional (3D) objects with ease. In most of the additive manufacturing techniques, materials are deposited layer by layer until a 3D object is reproduced. Several additive manufact...
- Autores:
-
Mercado Rivera , María José
Rojas Arciniegas, Álvaro José
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/13279
- Acceso en línea:
- https://hdl.handle.net/10614/13279
- Palabra clave:
- Impresión 3D
Fabricación de forma libre sólida
Manufactura integrada por computador
Three-dimensional printing
Solid freeform fabrication
Computer integrated manufacturing systems
Additive manufacturing
3D printing
Closed-loop control system
Rapid prototyping
- Rights
- openAccess
- License
- Derechos reservados Revista The International Journal of Advanced Manufacturing Technology
id |
REPOUAO2_0cddc4f1126322d542acea5cf1a4aa3d |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13279 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Additive manufacturing methods: techniques, materials, and closed-loop control applications |
title |
Additive manufacturing methods: techniques, materials, and closed-loop control applications |
spellingShingle |
Additive manufacturing methods: techniques, materials, and closed-loop control applications Impresión 3D Fabricación de forma libre sólida Manufactura integrada por computador Three-dimensional printing Solid freeform fabrication Computer integrated manufacturing systems Additive manufacturing 3D printing Closed-loop control system Rapid prototyping |
title_short |
Additive manufacturing methods: techniques, materials, and closed-loop control applications |
title_full |
Additive manufacturing methods: techniques, materials, and closed-loop control applications |
title_fullStr |
Additive manufacturing methods: techniques, materials, and closed-loop control applications |
title_full_unstemmed |
Additive manufacturing methods: techniques, materials, and closed-loop control applications |
title_sort |
Additive manufacturing methods: techniques, materials, and closed-loop control applications |
dc.creator.fl_str_mv |
Mercado Rivera , María José Rojas Arciniegas, Álvaro José |
dc.contributor.author.none.fl_str_mv |
Mercado Rivera , María José Rojas Arciniegas, Álvaro José |
dc.subject.armarc.spa.fl_str_mv |
Impresión 3D Fabricación de forma libre sólida Manufactura integrada por computador |
topic |
Impresión 3D Fabricación de forma libre sólida Manufactura integrada por computador Three-dimensional printing Solid freeform fabrication Computer integrated manufacturing systems Additive manufacturing 3D printing Closed-loop control system Rapid prototyping |
dc.subject.armarc.eng.fl_str_mv |
Three-dimensional printing Solid freeform fabrication Computer integrated manufacturing systems |
dc.subject.proposal.eng.fl_str_mv |
Additive manufacturing 3D printing Closed-loop control system Rapid prototyping |
description |
Additive manufacturing encompasses a set of low-cost and highly versatile tools used to prototype and fabricate threedimensional (3D) objects with ease. In most of the additive manufacturing techniques, materials are deposited layer by layer until a 3D object is reproduced. Several additive manufacturing techniques have been developed in the previous decade, and the application of additive manufacturing has increased in various industrial sectors. However, there are still drawbacks associated with additive manufacturing techniques, necessitating further study and development. In this study, we review the techniques and materials used in additive manufacturing. The vast majority of additive manufacturing processes are still based on open-loop control or implement some local controllers for specific variables (such as temperature), making them susceptible for errors. This study presents a review of the different additive manufacturing techniques, examples of academic and commercial efforts to improve the control systems for additive manufacturing, as well as the application of additive manufacturing in different fields such as aerospace, electronics, arts, and biomedical. The article ends highlighting the advantages of utilizing a closed-loop control system in additive manufacturing and discussing the work needed for further development |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-06-17 |
dc.date.accessioned.none.fl_str_mv |
2021-09-28T19:05:03Z |
dc.date.available.none.fl_str_mv |
2021-09-28T19:05:03Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
02683768 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13279 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s00170-020-05663-6 |
identifier_str_mv |
02683768 10.1007/s00170-020-05663-6 |
url |
https://hdl.handle.net/10614/13279 |
dc.language.iso.eng.fl_str_mv |
spa |
language |
spa |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 109 (2020) |
dc.relation.citationendpage.spa.fl_str_mv |
31 |
dc.relation.citationstartpage.spa.fl_str_mv |
17 |
dc.relation.citationvolume.spa.fl_str_mv |
109 |
dc.relation.cites.eng.fl_str_mv |
Mercado Rivera, F.J., Rojas Arciniegas, A.J. (2020). Additive manufacturing methods: techniques, materials, and closed-loop control applications. The International Journal of Advanced Manufacturing Technology. (Vol. 109), pp. 17–31. https://doi.org/10.1007/s00170-020-05663-6 |
dc.relation.ispartofjournal.eng.fl_str_mv |
The International Journal of Advanced Manufacturing Technology |
dc.relation.references.spa.fl_str_mv |
Kocovic P (2017) History of additive manufacturing. In: Advances in chemical and materials engineering. IGI Global, pp. 1–24. https://doi.org/10.4018/978-1-5225-2289-8.ch001 Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The role of additive manufacturing in the era of Industry 4.0. Procedia Manuf 11:545–554. https://doi.org/10.1016/j.promfg.2017.07.148 Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55:155–162. https://doi.org/10.1016/j.bushor.2011.11.003 Buchanan C, Gardner L (2019) Metal 3D printing in construction: a review of methods, research, applications, opportunities and challenges. Eng Struct 180:332–348. https://doi.org/10.1016/j.engstruct.2018.11.045 ibson I, Rosen D, Stucker B (2015) Additive manufacturing: technologies 3D printing, rapid prototyping, and direct digital manufacturing. Second, Springer, New York go TD, Kashani A, Imbalzano G, Nguyen KT, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012 Dolenc A (1994) An overview of rapid prototyping technologies in manufacturing. Helsinki University of Technology, pp 1–23 Khudyakov IV (2018) Fast photopolymerization of acrylate coatings: achievements and problems. Prog Org Coat 121:151–159. https://doi.org/10.1016/j.porgcoat.2018.04.030 Hull CW, Arcadia C (1984) Apparatus for production of three-dmensonal objects by stereolithography. United States Patent, Appl., No. 638905, Filed Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050 Kumbhar NN, Mulay AV (2018) Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J Inst Eng India Ser C 99:481–487. https://doi.org/10.1007/s40032-016-0340-z Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET, DeSimone JM (2015) Additive manufacturing. Continuous liquid interface production of 3D objects. Science 347:1349–1352. https://doi.org/10.1126/science.aaa2397 Wohlers report (2014) 3D printing and additive manufacturing state of the industry, annual worldwide progress report. Cary, NC Bai Y, Williams CB (2018) Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor. Mater Des 147:146–156. https://doi.org/10.1016/j.matdes.2018.03.027 Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3:42–53. https://doi.org/10.1007/s40436-014-0097-7 Sun J, Zhou W, Huang D, Fuh JY, Hong G (2015) An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol 8:1605–1615. https://doi.org/10.1007/s11947-015-1528-6 Mitchell A, Lafont U, Holynska M, Semprimoschnig C (2018) Additive construction: state-of-the-art, challenges and opportunities. Elsevier Enhanced Reader.pdf, 24. pp 606–626 Contuzzi N, Campanelli SL, Ludovico AD (2011) 3D finite element analysis in the selective laser melting process. Int J Simul Model 10:113–121. https://doi.org/10.2507/IJSIMM10(3)1.169 Li J, Monaghan T, Nguyen TT, Kay RW, Friel RJ, Harris RA (2017) Multifunctional metal matrix composites with embedded printed electrical materials fabricated by ultrasonic additive manufacturing. Compos B Eng 113:342–354. https://doi.org/10.1016/j.compositesb.2017.01.013 Mahamood RM, Akinlabi ET (2017) Scanning speed and powder flow rate influence on the properties of laser metal deposition of titanium alloy. Int J Adv Manuf Technol 91:2419–2426. https://doi.org/10.1007/s00170-016-9954-9 Kazemian A, Yuan X, Cochran E, Khoshnevis B (2017) Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr Build Mater 145:639–647. https://doi.org/10.1016/j.conbuildmat.2017.04.015 Mani M, Lane B, Donmez A, Donmez A, Moylan S, Fesperman R (2015) Measurement science needs for real-time control of additive manufacturing powder bed fusion processes 55:1400–1418 Domingo-espin M, Puigoriol-forcada JM, Garcia-granada A, Llumà J, Borros S, Reyes G (2015) Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts. Mater Des 83:670–677 Rojas Arciniegas AJ, Cerón Viveros M (2018) Development of a closed-loop control system for the movements of the extruder and platform of a FDM 3D printing system. NIP & Digital Fabrication Conf Printing Fabr:176–181 Everton SK, Hirsch M, Stavroulakis PI, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445 Sciaky | IRISS closed loop control for additive manufacturing. Available: https://www.sciaky.com/additive-manufacturing/iriss-closed-loop-control. Accessed 17 May 2020. Go J, Schiffres SN, Stevens AG, Hart AJ (2017) Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design. Addit Manuf 16:1–11. https://doi.org/10.1016/j.addma.2017.03.007 Yan Y, Moss J, Ngo KDT, Mei Y, Lu GQ (2017) Additive manufacturing of toroid inductor for power electronics applications. IEEE Trans Ind Appl 53:5709–5714. https://doi.org/10.1109/TIA.2017.2729504 Greeff GP, Schilling M (2017) Closed loop control of slippage during filament transport in molten material extrusion. Addit Manuf 14:31–38. https://doi.org/10.1016/j.addma.2016.12.005 |
dc.rights.spa.fl_str_mv |
Derechos reservados Revista The International Journal of Advanced Manufacturing Technology |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.eng.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados Revista The International Journal of Advanced Manufacturing Technology https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
15 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Springer-Verlag |
dc.publisher.place.spa.fl_str_mv |
Londres |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/0e5057df-9381-4e3f-9a3a-bd2607091eb1/download https://red.uao.edu.co/bitstreams/0d3c7db9-cd5a-461d-8dda-353c695d5029/download https://red.uao.edu.co/bitstreams/4f0a0985-cce6-4fc2-be1a-2fc256e0c47e/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 22c4abe9eef5303c6eeb1173bd35c389 e7a68246dd680467aa8e1631555de571 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260001286389760 |
spelling |
Mercado Rivera , María José64f98e67eef114045db203275622dc4eRojas Arciniegas, Álvaro Josévirtual::4449-12021-09-28T19:05:03Z2021-09-28T19:05:03Z2020-06-1702683768https://hdl.handle.net/10614/1327910.1007/s00170-020-05663-6Additive manufacturing encompasses a set of low-cost and highly versatile tools used to prototype and fabricate threedimensional (3D) objects with ease. In most of the additive manufacturing techniques, materials are deposited layer by layer until a 3D object is reproduced. Several additive manufacturing techniques have been developed in the previous decade, and the application of additive manufacturing has increased in various industrial sectors. However, there are still drawbacks associated with additive manufacturing techniques, necessitating further study and development. In this study, we review the techniques and materials used in additive manufacturing. The vast majority of additive manufacturing processes are still based on open-loop control or implement some local controllers for specific variables (such as temperature), making them susceptible for errors. This study presents a review of the different additive manufacturing techniques, examples of academic and commercial efforts to improve the control systems for additive manufacturing, as well as the application of additive manufacturing in different fields such as aerospace, electronics, arts, and biomedical. The article ends highlighting the advantages of utilizing a closed-loop control system in additive manufacturing and discussing the work needed for further development15 páginasapplication/pdfspaSpringer-VerlagLondresDerechos reservados Revista The International Journal of Advanced Manufacturing Technologyhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Additive manufacturing methods: techniques, materials, and closed-loop control applicationsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Impresión 3DFabricación de forma libre sólidaManufactura integrada por computadorThree-dimensional printingSolid freeform fabricationComputer integrated manufacturing systemsAdditive manufacturing3D printingClosed-loop control systemRapid prototypingVolumen 109 (2020)3117109Mercado Rivera, F.J., Rojas Arciniegas, A.J. (2020). Additive manufacturing methods: techniques, materials, and closed-loop control applications. The International Journal of Advanced Manufacturing Technology. (Vol. 109), pp. 17–31. https://doi.org/10.1007/s00170-020-05663-6The International Journal of Advanced Manufacturing TechnologyKocovic P (2017) History of additive manufacturing. In: Advances in chemical and materials engineering. IGI Global, pp. 1–24. https://doi.org/10.4018/978-1-5225-2289-8.ch001Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The role of additive manufacturing in the era of Industry 4.0. Procedia Manuf 11:545–554. https://doi.org/10.1016/j.promfg.2017.07.148Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55:155–162. https://doi.org/10.1016/j.bushor.2011.11.003Buchanan C, Gardner L (2019) Metal 3D printing in construction: a review of methods, research, applications, opportunities and challenges. Eng Struct 180:332–348. https://doi.org/10.1016/j.engstruct.2018.11.045ibson I, Rosen D, Stucker B (2015) Additive manufacturing: technologies 3D printing, rapid prototyping, and direct digital manufacturing. Second, Springer, New Yorkgo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012Dolenc A (1994) An overview of rapid prototyping technologies in manufacturing. Helsinki University of Technology, pp 1–23Khudyakov IV (2018) Fast photopolymerization of acrylate coatings: achievements and problems. Prog Org Coat 121:151–159. https://doi.org/10.1016/j.porgcoat.2018.04.030Hull CW, Arcadia C (1984) Apparatus for production of three-dmensonal objects by stereolithography. United States Patent, Appl., No. 638905, FiledMelchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050Kumbhar NN, Mulay AV (2018) Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J Inst Eng India Ser C 99:481–487. https://doi.org/10.1007/s40032-016-0340-zTumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET, DeSimone JM (2015) Additive manufacturing. Continuous liquid interface production of 3D objects. Science 347:1349–1352. https://doi.org/10.1126/science.aaa2397Wohlers report (2014) 3D printing and additive manufacturing state of the industry, annual worldwide progress report. Cary, NCBai Y, Williams CB (2018) Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor. Mater Des 147:146–156. https://doi.org/10.1016/j.matdes.2018.03.027Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3:42–53. https://doi.org/10.1007/s40436-014-0097-7Sun J, Zhou W, Huang D, Fuh JY, Hong G (2015) An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol 8:1605–1615. https://doi.org/10.1007/s11947-015-1528-6Mitchell A, Lafont U, Holynska M, Semprimoschnig C (2018) Additive construction: state-of-the-art, challenges and opportunities. Elsevier Enhanced Reader.pdf, 24. pp 606–626Contuzzi N, Campanelli SL, Ludovico AD (2011) 3D finite element analysis in the selective laser melting process. Int J Simul Model 10:113–121. https://doi.org/10.2507/IJSIMM10(3)1.169Li J, Monaghan T, Nguyen TT, Kay RW, Friel RJ, Harris RA (2017) Multifunctional metal matrix composites with embedded printed electrical materials fabricated by ultrasonic additive manufacturing. Compos B Eng 113:342–354. https://doi.org/10.1016/j.compositesb.2017.01.013Mahamood RM, Akinlabi ET (2017) Scanning speed and powder flow rate influence on the properties of laser metal deposition of titanium alloy. Int J Adv Manuf Technol 91:2419–2426. https://doi.org/10.1007/s00170-016-9954-9Kazemian A, Yuan X, Cochran E, Khoshnevis B (2017) Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr Build Mater 145:639–647. https://doi.org/10.1016/j.conbuildmat.2017.04.015Mani M, Lane B, Donmez A, Donmez A, Moylan S, Fesperman R (2015) Measurement science needs for real-time control of additive manufacturing powder bed fusion processes 55:1400–1418Domingo-espin M, Puigoriol-forcada JM, Garcia-granada A, Llumà J, Borros S, Reyes G (2015) Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts. Mater Des 83:670–677Rojas Arciniegas AJ, Cerón Viveros M (2018) Development of a closed-loop control system for the movements of the extruder and platform of a FDM 3D printing system. NIP & Digital Fabrication Conf Printing Fabr:176–181Everton SK, Hirsch M, Stavroulakis PI, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445Sciaky | IRISS closed loop control for additive manufacturing. Available: https://www.sciaky.com/additive-manufacturing/iriss-closed-loop-control. Accessed 17 May 2020.Go J, Schiffres SN, Stevens AG, Hart AJ (2017) Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design. Addit Manuf 16:1–11. https://doi.org/10.1016/j.addma.2017.03.007Yan Y, Moss J, Ngo KDT, Mei Y, Lu GQ (2017) Additive manufacturing of toroid inductor for power electronics applications. IEEE Trans Ind Appl 53:5709–5714. https://doi.org/10.1109/TIA.2017.2729504Greeff GP, Schilling M (2017) Closed loop control of slippage during filament transport in molten material extrusion. Addit Manuf 14:31–38. https://doi.org/10.1016/j.addma.2016.12.005Comunidad universitaria en generalPublication5d4f6e65-758a-44ee-be02-f12af232a478virtual::4449-15d4f6e65-758a-44ee-be02-f12af232a478virtual::4449-1https://scholar.google.com/citations?user=Jk__bOIAAAAJ&hl=envirtual::4449-10000-0001-9242-799Xvirtual::4449-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000657956virtual::4449-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/0e5057df-9381-4e3f-9a3a-bd2607091eb1/download20b5ba22b1117f71589c7318baa2c560MD52TEXTMercadoRivera-RojasArciniegas2020_Article_AdditiveManufacturingMethodsTe.pdf.txtMercadoRivera-RojasArciniegas2020_Article_AdditiveManufacturingMethodsTe.pdf.txtExtracted texttext/plain62175https://red.uao.edu.co/bitstreams/0d3c7db9-cd5a-461d-8dda-353c695d5029/download22c4abe9eef5303c6eeb1173bd35c389MD53THUMBNAILMercadoRivera-RojasArciniegas2020_Article_AdditiveManufacturingMethodsTe.pdf.jpgMercadoRivera-RojasArciniegas2020_Article_AdditiveManufacturingMethodsTe.pdf.jpgGenerated Thumbnailimage/jpeg14256https://red.uao.edu.co/bitstreams/4f0a0985-cce6-4fc2-be1a-2fc256e0c47e/downloade7a68246dd680467aa8e1631555de571MD5410614/13279oai:red.uao.edu.co:10614/132792024-03-14 10:10:48.792https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados Revista The International Journal of Advanced Manufacturing Technologymetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |