Three-bladed horizontal axis water turbine simulations with free surface effects

The water level above a hydrokinetic turbine is likely to vary throughout the season and even along the day. In this work, the influence of the free surface on the performance of a three bladed horizontal-axis turbine is explored by means of a three-dimensional, transient, two-phase flow computation...

Full description

Autores:
Rodríguez García, L.
Benavides-Morán, Aldo
Laín Beatove, Santiago
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13904
Acceso en línea:
https://hdl.handle.net/10614/13904
https://red.uao.edu.co/
Palabra clave:
Turbinas hidráulicas
Hydraulic turbines
Hydrokinetic turbine
VOF
Sliding mesh
Torque coefficient
Rights
openAccess
License
Derechos reservados - Sciendo, 2021
id REPOUAO2_0ad1b1febd94a36a6949fecdb91973db
oai_identifier_str oai:red.uao.edu.co:10614/13904
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Three-bladed horizontal axis water turbine simulations with free surface effects
title Three-bladed horizontal axis water turbine simulations with free surface effects
spellingShingle Three-bladed horizontal axis water turbine simulations with free surface effects
Turbinas hidráulicas
Hydraulic turbines
Hydrokinetic turbine
VOF
Sliding mesh
Torque coefficient
title_short Three-bladed horizontal axis water turbine simulations with free surface effects
title_full Three-bladed horizontal axis water turbine simulations with free surface effects
title_fullStr Three-bladed horizontal axis water turbine simulations with free surface effects
title_full_unstemmed Three-bladed horizontal axis water turbine simulations with free surface effects
title_sort Three-bladed horizontal axis water turbine simulations with free surface effects
dc.creator.fl_str_mv Rodríguez García, L.
Benavides-Morán, Aldo
Laín Beatove, Santiago
dc.contributor.author.none.fl_str_mv Rodríguez García, L.
Benavides-Morán, Aldo
Laín Beatove, Santiago
dc.subject.armarc.spa.fl_str_mv Turbinas hidráulicas
topic Turbinas hidráulicas
Hydraulic turbines
Hydrokinetic turbine
VOF
Sliding mesh
Torque coefficient
dc.subject.armarc.eng.fl_str_mv Hydraulic turbines
dc.subject.proposal.eng.fl_str_mv Hydrokinetic turbine
VOF
Sliding mesh
Torque coefficient
description The water level above a hydrokinetic turbine is likely to vary throughout the season and even along the day. In this work, the influence of the free surface on the performance of a three bladed horizontal-axis turbine is explored by means of a three-dimensional, transient, two-phase flow computational model implemented in the commercial CFD software ANSYS Fluent 19.0. The k − ω SST Transition turbulence model coupled with the Volume of Fluid (VOF) method is used to track the air-water interface. The rotor diameter is . D 0 8m = . Two operating conditions are analyzed: deep tip immersion (0.55D) and shallow tip immersion (0.19D). Three tip speed ratios are evaluated for each immersion. Simulation results show a good agreement with experimental data reported in the literature, although the computed torque and thrust coefficients are slightly underestimated. Details of the free surface dynamics, the flow past the turbine and the wake near the rotor are also discussed
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-08-25
dc.date.accessioned.none.fl_str_mv 2022-05-20T20:29:33Z
dc.date.available.none.fl_str_mv 2022-05-20T20:29:33Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 17344492
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13904
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 17344492
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/13904
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 197
dc.relation.citationissue.spa.fl_str_mv 3
dc.relation.citationstartpage.spa.fl_str_mv 187
dc.relation.citationvolume.spa.fl_str_mv 26
dc.relation.cites.spa.fl_str_mv Rodríguez García, L., Benavides Moran, A. G., Laín Behatove, S. (2021). Three-bladed horizontal axis water turbine simulations with free surface effects. International Journal of Applied Mechanics and Engineering. Vol. 26 (3), pp. 187-197.
dc.relation.ispartofjournal.eng.fl_str_mv International journal of applied mechanics and engineering
dc.relation.references.none.fl_str_mv [1] Laín S., Contreras L.T. and Lopez O.D. (2019): A review on computational fluid dynamics modeling and simulation of horizontal axis hydrokinetic turbines.– J. Brazilian Soc. Mech. Sci. and Eng, vol.41, paper 375.
[2] Ishak Yuce M. and Abdullah Muratoglu (2015): Hydrokinetic energy conversion systems: A technology status review.– Renewable and Sustainable Energy Reviews, vol.43, pp.72-82.
[3] Muratoglu A. and Yuce M.I. (2017): Design of a river hydrokinetic turbine using optimization and CFD Simulations.– J. Energy Eng, vol.143.
[4] Kirke B. and Lazauskas L. (2008): Variable pitch Darrieus water turbines.– J. Fluid Sci. Technol, vol.3, pp.430-438.
[5] Bahaj A.S., Molland A.F., Chaplin J.R. and Batten W.M.J. (2007): Power and thrust measurements of marine current turbines under various hydrodynamic flow condition in a cavitation tunnel and a towing tank.– Renewable Energy, vol.32, pp.407-423
[6] Yan J., Deng X., Korobenko A. and Bazilevs Y. (2017): Free-surface flow modeling and simulation of horizontalaxis tidal-stream turbines.– Computers and Fluids, vol.158, pp.157-166.
[7] Bahaj A.S., Batten W.M.J. and McCann G. (2007): Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines.– Renewable Energy, vol.32, pp.2479-2490.
[8] Contreras L.T., Lopez O.D. and Laín S. (2018): Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine.– Energies, vol.11, paper 3151.
[9] Batten W., Bahaj A.S., Molland A.F. and Chaplin J.R. (2007): Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines.– Ocean Engineering, vol.34, pp.1013-1020.
[10] Batten W., Bahaj A.S., Molland A.F. and Chaplin J.R. (2008): The prediction of hydrodynamic performance of marine current turbine.– Renewable Energy, vol.33, pp.1085-1096
[11] Danao L.A., Abuan B. and Howell R. (2016): Design Analysis of a Horizontal Axis Tidal Turbine.– Asian Wave and Tidal Conference.
[12] Abuan B. and Howell R. (2019): The performance and hydrodynamis in unsteady flow of a horizontal axis tidal turbine.– Renewable Energy, vol.133, pp.1338-1351.
[13] Bai X., Avital E.J., Munjiza A. and Williams J.J.R. (2014) Numerical simulation of a marine current turbine in free surface flow.– Renewable Energy, vol.63, pp.715-723.
[14] Benchikh Le Hocine A.E., Jay R.W. and Poncet S. (2019): Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine.– Renewable Energy, vol.143, pp.1890-1901.
[15] Nishi Y., Sato G., Shiohara D., Inagaki T. and Kikuchi N. (2017): Performance characteristics of axial flow hydraulic turbine with a collection device in free surface flow field.– Renew. Energy, vol.112, pp.53-62.
[16] Koshizuka S., Tamako H. and Oka Y. (1995): A particle method for incompressible viscous flow with fluid fragmentation.– J. Comput. Fluid Dyn., vol.4, No.1, pp.29-46.
[17] Kolekar N., Vinod A. and Banerjee A. (2019): On Blockage Effects for a Tidal Turbine in Free Surface Proximity.– Energies, vol.12, paper 3325.
[18] Daskiran C., Riglin J. and Oztekin A. (2016): Numerical Analysis of Blockage Ratio Effect on a Portable Hydrokinetic Turbine.– ASME International Mechanical Engineering Congress and Exposition, Phoenix, Arizona, USA
[19] Kolekar N. and Banerjee A. (2015): Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects.– Applied Energy, vol.148, pp.121-133.
[20] Menter F.R. (1993): Zonal two equation k-turbulence models for aerodynamic flows.– 23rd Fluid Dynamics, Plasmadynamics and Lasers Conference, Orlando, FL, USA.
[21] Langtry R.B. and Menter F.R. (2005): Transition Modeling for General CFD Applications in Aeronautics.– 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada.
[22] Rezaeiha A., Montazeri H. and Blocken B. (2019): On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines.– Energy, vol.180, pp.838-857.
[23] Waclawczyk T. and Koronowicz T. (2008): Comparison of CICSAM and HRIC high-resolution schemes for interface capturing.– Journal of Theoretical and Applied Mechanics, vol.46, No.2, pp.325-345.
[24] Marsh P., Ranmuthugala D., Penesis I. and Thomas G. (2017): The influence of turbulence model and two and threedimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines.– Renewable Energy, vol.105, pp.106-116.
[25] López O.D, Meneses D., Quintero B. and Laín S. (2016): Computational study of transient flow around Darrieus type cross flow water turbines.– J. Renewable and Sustainable Energy, vol.8, 014501.
[26] Myers L. and Bahaj A.S. (2009): Near wake properties of horizontal axis marine current turbines.– 8th European Wave and Tidal Energy Conference.
[27] Adamski S. (2013): Numerical Modeling of the Effects of a Free Surface on the Operating Characteristics of Marine Hydrokinetic Turbines.– Thesis for master degree, University of Washington
dc.rights.spa.fl_str_mv Derechos reservados - Sciendo, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Sciendo, 2021
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Sciendo
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/f4a54f68-4ba5-459b-b51b-e4e944a9f82a/download
https://red.uao.edu.co/bitstreams/002b036d-8eee-4c6d-ae02-e13d81851615/download
https://red.uao.edu.co/bitstreams/ea5a4a7f-2d23-4368-8461-8490e0212317/download
https://red.uao.edu.co/bitstreams/55fbfe4a-e89e-4123-a7c9-222131213cea/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
cd75158dc0e9f0c9fdddd067b6a519d1
64ba15d8dbe978bd130c973275ee9d74
9cf3c62fc48c6633b03e6918a9278aff
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259740063039488
spelling Rodríguez García, L.8bf5a7626bb694dc0e2071c5a38c0f7dBenavides-Morán, Aldofb5fa655f80444335529fba6046f7473Laín Beatove, Santiagovirtual::2540-12022-05-20T20:29:33Z2022-05-20T20:29:33Z2021-08-2517344492https://hdl.handle.net/10614/13904Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/The water level above a hydrokinetic turbine is likely to vary throughout the season and even along the day. In this work, the influence of the free surface on the performance of a three bladed horizontal-axis turbine is explored by means of a three-dimensional, transient, two-phase flow computational model implemented in the commercial CFD software ANSYS Fluent 19.0. The k − ω SST Transition turbulence model coupled with the Volume of Fluid (VOF) method is used to track the air-water interface. The rotor diameter is . D 0 8m = . Two operating conditions are analyzed: deep tip immersion (0.55D) and shallow tip immersion (0.19D). Three tip speed ratios are evaluated for each immersion. Simulation results show a good agreement with experimental data reported in the literature, although the computed torque and thrust coefficients are slightly underestimated. Details of the free surface dynamics, the flow past the turbine and the wake near the rotor are also discussed11 páginasapplication/pdfengSciendoDerechos reservados - Sciendo, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Three-bladed horizontal axis water turbine simulations with free surface effectsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Turbinas hidráulicasHydraulic turbinesHydrokinetic turbineVOFSliding meshTorque coefficient197318726Rodríguez García, L., Benavides Moran, A. G., Laín Behatove, S. (2021). Three-bladed horizontal axis water turbine simulations with free surface effects. International Journal of Applied Mechanics and Engineering. Vol. 26 (3), pp. 187-197.International journal of applied mechanics and engineering[1] Laín S., Contreras L.T. and Lopez O.D. (2019): A review on computational fluid dynamics modeling and simulation of horizontal axis hydrokinetic turbines.– J. Brazilian Soc. Mech. Sci. and Eng, vol.41, paper 375.[2] Ishak Yuce M. and Abdullah Muratoglu (2015): Hydrokinetic energy conversion systems: A technology status review.– Renewable and Sustainable Energy Reviews, vol.43, pp.72-82.[3] Muratoglu A. and Yuce M.I. (2017): Design of a river hydrokinetic turbine using optimization and CFD Simulations.– J. Energy Eng, vol.143.[4] Kirke B. and Lazauskas L. (2008): Variable pitch Darrieus water turbines.– J. Fluid Sci. Technol, vol.3, pp.430-438.[5] Bahaj A.S., Molland A.F., Chaplin J.R. and Batten W.M.J. (2007): Power and thrust measurements of marine current turbines under various hydrodynamic flow condition in a cavitation tunnel and a towing tank.– Renewable Energy, vol.32, pp.407-423[6] Yan J., Deng X., Korobenko A. and Bazilevs Y. (2017): Free-surface flow modeling and simulation of horizontalaxis tidal-stream turbines.– Computers and Fluids, vol.158, pp.157-166.[7] Bahaj A.S., Batten W.M.J. and McCann G. (2007): Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines.– Renewable Energy, vol.32, pp.2479-2490.[8] Contreras L.T., Lopez O.D. and Laín S. (2018): Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine.– Energies, vol.11, paper 3151.[9] Batten W., Bahaj A.S., Molland A.F. and Chaplin J.R. (2007): Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines.– Ocean Engineering, vol.34, pp.1013-1020.[10] Batten W., Bahaj A.S., Molland A.F. and Chaplin J.R. (2008): The prediction of hydrodynamic performance of marine current turbine.– Renewable Energy, vol.33, pp.1085-1096[11] Danao L.A., Abuan B. and Howell R. (2016): Design Analysis of a Horizontal Axis Tidal Turbine.– Asian Wave and Tidal Conference.[12] Abuan B. and Howell R. (2019): The performance and hydrodynamis in unsteady flow of a horizontal axis tidal turbine.– Renewable Energy, vol.133, pp.1338-1351.[13] Bai X., Avital E.J., Munjiza A. and Williams J.J.R. (2014) Numerical simulation of a marine current turbine in free surface flow.– Renewable Energy, vol.63, pp.715-723.[14] Benchikh Le Hocine A.E., Jay R.W. and Poncet S. (2019): Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine.– Renewable Energy, vol.143, pp.1890-1901.[15] Nishi Y., Sato G., Shiohara D., Inagaki T. and Kikuchi N. (2017): Performance characteristics of axial flow hydraulic turbine with a collection device in free surface flow field.– Renew. Energy, vol.112, pp.53-62.[16] Koshizuka S., Tamako H. and Oka Y. (1995): A particle method for incompressible viscous flow with fluid fragmentation.– J. Comput. Fluid Dyn., vol.4, No.1, pp.29-46.[17] Kolekar N., Vinod A. and Banerjee A. (2019): On Blockage Effects for a Tidal Turbine in Free Surface Proximity.– Energies, vol.12, paper 3325.[18] Daskiran C., Riglin J. and Oztekin A. (2016): Numerical Analysis of Blockage Ratio Effect on a Portable Hydrokinetic Turbine.– ASME International Mechanical Engineering Congress and Exposition, Phoenix, Arizona, USA[19] Kolekar N. and Banerjee A. (2015): Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects.– Applied Energy, vol.148, pp.121-133.[20] Menter F.R. (1993): Zonal two equation k-turbulence models for aerodynamic flows.– 23rd Fluid Dynamics, Plasmadynamics and Lasers Conference, Orlando, FL, USA.[21] Langtry R.B. and Menter F.R. (2005): Transition Modeling for General CFD Applications in Aeronautics.– 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada.[22] Rezaeiha A., Montazeri H. and Blocken B. (2019): On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines.– Energy, vol.180, pp.838-857.[23] Waclawczyk T. and Koronowicz T. (2008): Comparison of CICSAM and HRIC high-resolution schemes for interface capturing.– Journal of Theoretical and Applied Mechanics, vol.46, No.2, pp.325-345.[24] Marsh P., Ranmuthugala D., Penesis I. and Thomas G. (2017): The influence of turbulence model and two and threedimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines.– Renewable Energy, vol.105, pp.106-116.[25] López O.D, Meneses D., Quintero B. and Laín S. (2016): Computational study of transient flow around Darrieus type cross flow water turbines.– J. Renewable and Sustainable Energy, vol.8, 014501.[26] Myers L. and Bahaj A.S. (2009): Near wake properties of horizontal axis marine current turbines.– 8th European Wave and Tidal Energy Conference.[27] Adamski S. (2013): Numerical Modeling of the Effects of a Free Surface on the Operating Characteristics of Marine Hydrokinetic Turbines.– Thesis for master degree, University of WashingtonComunidad generalPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2540-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2540-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2540-10000-0002-0269-2608virtual::2540-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2540-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/f4a54f68-4ba5-459b-b51b-e4e944a9f82a/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALThree-bladed horizontal axis water turbine simulations with free surface effects.pdfThree-bladed horizontal axis water turbine simulations with free surface effects.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf522667https://red.uao.edu.co/bitstreams/002b036d-8eee-4c6d-ae02-e13d81851615/downloadcd75158dc0e9f0c9fdddd067b6a519d1MD53TEXTThree-bladed horizontal axis water turbine simulations with free surface effects.pdf.txtThree-bladed horizontal axis water turbine simulations with free surface effects.pdf.txtExtracted texttext/plain29086https://red.uao.edu.co/bitstreams/ea5a4a7f-2d23-4368-8461-8490e0212317/download64ba15d8dbe978bd130c973275ee9d74MD54THUMBNAILThree-bladed horizontal axis water turbine simulations with free surface effects.pdf.jpgThree-bladed horizontal axis water turbine simulations with free surface effects.pdf.jpgGenerated Thumbnailimage/jpeg13417https://red.uao.edu.co/bitstreams/55fbfe4a-e89e-4123-a7c9-222131213cea/download9cf3c62fc48c6633b03e6918a9278affMD5510614/13904oai:red.uao.edu.co:10614/139042024-03-06 16:15:07.73https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Sciendo, 2021open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K