Diseño de un reactor biológico de electrohidrogénesis para la reducción de materia orgánica y producción de hidrógeno a partir de lixiviados generados en sitios de disposición final de residuos sólidos municipales

Vinculado a la tendencia de disposición de residuos sólidos municipales en sitios de disposición final, se relaciona la generación de lixiviados; que, en consideración con una emisión al medio ambiente, indica una contaminación hídrica y edáfica, la cual afecta las condiciones socioambientales en la...

Full description

Autores:
Giraldo Isaza, Laura Vanessa
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/11595
Acceso en línea:
http://red.uao.edu.co//handle/10614/11595
Palabra clave:
Ingenieria Ambiental
Lixiviación de suelos
Bioreactores
Hidrógeno
Electrohidrogénesis
Residuos sólidos municipales
Soil leaching
Bioreactors
Hydrogen
Electrohydrogenesis reactor
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_071d9e991f91a45e1be485cd3a1c72ea
oai_identifier_str oai:red.uao.edu.co:10614/11595
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.spa.fl_str_mv Diseño de un reactor biológico de electrohidrogénesis para la reducción de materia orgánica y producción de hidrógeno a partir de lixiviados generados en sitios de disposición final de residuos sólidos municipales
title Diseño de un reactor biológico de electrohidrogénesis para la reducción de materia orgánica y producción de hidrógeno a partir de lixiviados generados en sitios de disposición final de residuos sólidos municipales
spellingShingle Diseño de un reactor biológico de electrohidrogénesis para la reducción de materia orgánica y producción de hidrógeno a partir de lixiviados generados en sitios de disposición final de residuos sólidos municipales
Ingenieria Ambiental
Lixiviación de suelos
Bioreactores
Hidrógeno
Electrohidrogénesis
Residuos sólidos municipales
Soil leaching
Bioreactors
Hydrogen
Electrohydrogenesis reactor
title_short Diseño de un reactor biológico de electrohidrogénesis para la reducción de materia orgánica y producción de hidrógeno a partir de lixiviados generados en sitios de disposición final de residuos sólidos municipales
title_full Diseño de un reactor biológico de electrohidrogénesis para la reducción de materia orgánica y producción de hidrógeno a partir de lixiviados generados en sitios de disposición final de residuos sólidos municipales
title_fullStr Diseño de un reactor biológico de electrohidrogénesis para la reducción de materia orgánica y producción de hidrógeno a partir de lixiviados generados en sitios de disposición final de residuos sólidos municipales
title_full_unstemmed Diseño de un reactor biológico de electrohidrogénesis para la reducción de materia orgánica y producción de hidrógeno a partir de lixiviados generados en sitios de disposición final de residuos sólidos municipales
title_sort Diseño de un reactor biológico de electrohidrogénesis para la reducción de materia orgánica y producción de hidrógeno a partir de lixiviados generados en sitios de disposición final de residuos sólidos municipales
dc.creator.fl_str_mv Giraldo Isaza, Laura Vanessa
dc.contributor.advisor.none.fl_str_mv Vásquez Sarria, Nancy
dc.contributor.author.spa.fl_str_mv Giraldo Isaza, Laura Vanessa
dc.subject.spa.fl_str_mv Ingenieria Ambiental
Lixiviación de suelos
Bioreactores
Hidrógeno
Electrohidrogénesis
Residuos sólidos municipales
topic Ingenieria Ambiental
Lixiviación de suelos
Bioreactores
Hidrógeno
Electrohidrogénesis
Residuos sólidos municipales
Soil leaching
Bioreactors
Hydrogen
Electrohydrogenesis reactor
dc.subject.eng.fl_str_mv Soil leaching
Bioreactors
Hydrogen
Electrohydrogenesis reactor
description Vinculado a la tendencia de disposición de residuos sólidos municipales en sitios de disposición final, se relaciona la generación de lixiviados; que, en consideración con una emisión al medio ambiente, indica una contaminación hídrica y edáfica, la cual afecta las condiciones socioambientales en las localidades aledañas al relleno. Para abordar una solución a esta problemática, en este proyecto se realizó el diseño de un reactor de electrohidrogénesis con el fin de disminuir la concentración de materia orgánica presente en los lixiviados, integrado a una reconversión de este elemento en energía en forma de H2, buscando complementar la actual gestión de residuos sólidos con un aprovechamiento energético. Dentro de este marco, se evaluaron las características fisicoquímicas de los lixiviados a tratar; donde el lixiviado maduro fue extraído del antiguo botadero a cielo abierto de Navarro y la emisión fresca y media del relleno sanitario Colomba-Guabal, donde fueron evaluadas las condiciones de biodegradabilidad, pH, contenido de nutrientes y definición de eficiencias requeridas de tratamiento. En este sentido, para la formulación de la estrategia de tratamiento, se analizaron condiciones operacionales, estructurales y biológicas para definir el diseño de reactor; ajustadas a las condiciones de los lixiviados estudiados. De igual forma, se evaluaron los parámetros críticos de operación, en donde los criterios de diseño mostraron que las variables más importantes para la definición de este tipo de sistemas son las eficiencias de reducción de materia orgánica esperadas (DQO), la disposición y componentes de los electrodos, los componentes eléctricos de la célula y las variables de control operacional como el pH, la temperatura, el tipo de flujo y las condiciones biológicas asociadas al inóculo
publishDate 2019
dc.date.accessioned.spa.fl_str_mv 2019-11-27T20:41:43Z
dc.date.available.spa.fl_str_mv 2019-11-27T20:41:43Z
dc.date.issued.spa.fl_str_mv 2019-08-06
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv http://red.uao.edu.co//handle/10614/11595
url http://red.uao.edu.co//handle/10614/11595
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 114 páginas
dc.coverage.spatial.spa.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.department.spa.fl_str_mv Departamento de Energética y Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.source.spa.fl_str_mv instname:Universidad Autónoma de Occidente
reponame:Repositorio Institucional UAO
instname_str Universidad Autónoma de Occidente
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
dc.source.bibliographiccitation.spa.fl_str_mv Actividades complementarias de tratamiento y disposición final de residuos sólidos en el servicio público de aseo, Decreto 1784 de 2017. DO: 50.405 (2017). Aelterman, P., Rabaey, K., Pham, T.H., Boon, N. y Verstraete, W. (mayo, 2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science and Technology, 40, (10), 3388–3394. doi: 10.1021/es0525511. Aelterman, P., Versichele, M., Marzorati, M., Boon, N. y Verstraete, W. (diciembre, 2008). Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresource Technology, 99(18), 8895–8902. doi: 10.1016/j.biortech.2008.04.061 Adhikari, B. y Khanal, S. N. (enero, 2015). Qualitative study of landfill leachate from different ages of landfill sites of various countries including Nepal. Journal of Environmental Science, Toxicology and Food Technology, 9(1), 2319-2399. Recuperado de: https://www.semanticscholar.org/paper/Qualitative-Study-of-Land fill-Leachate-from-Ages-of-Adhikari Khanal/733aa8686cd11f21fa21052d2e4fcfdbf8 a0b123. Adhikari, B., Khanal, S., Giri, D. y Lamichhane, J. (diciembre, 2014). Seasonal variation of pH, BOD, COD and BOD/COD ratio in different ages of landfill leachate in Nepal. Journal of Biomolecule Reconstruction, 11, (2), 89-99. Akman, D., Cirik, K., Ozdemir, S., Ozkaya, B. y Cinar, O. (diciembre, 2013). Bioelectricity generation in continuously-fed microbial fuel cell: effects of anode electrode material and hydraulic retention time. Bioresource technology, 149, 459-464. doi: 10.1016/j.biortech.2013.09.102. Ammary, B. Y. (abril, 2004). Nutrients requirements in biological industrial wastewater treatment. African Journal of Biotechnology, 3(4), 236-238. Recuperado de: https://tspace.library.utoronto.ca/bitstream/1807/4122/1/jb04045.pdf. Andreoli, C. V., Von Sperling, M., Fernandes, F. y Ronteltap, M. (2007). Sludge treatment and disposal. IWA publishing. Recuperado de: https://iwaponline.com/ebooks/book/1/Sludge-Treatment-and-Disposal. Behera, B. K., y Varma, A. (2016). Microbial resources for sustainable energy. Springer. Recuperado de: https://www.springer.com/gp/book/9783319337760. Bermek, H., Catal, T., Akan, S. S., Ulutaş, M. S., Kumru, M., Özgüven, M., Liu, H., Özçelik, B. y Akarsubaşı, A. T. (abril, 2014). Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells. World Journal of Microbiology and Biotechnology, 30, (4). 1177-1185. doi: 10.1007/s11274-013-1541-8. Bhalla, B., Saini, M. S. y Jha, M. K. (agosto, 2013). Effect of age and seasonal variations on leachate characteristics of municipal solid waste landfill. International Journal of Research in Engineering and Technology, 2(8), 223-232. doi: 10.15623/ijret.2013.0208037. Borole, A.P., Reguera, G., Ringeisen, B., Wang, Z.W., Feng, Y. y Kim, B.H. (octubre, 2011) Electroactive biofilms: current status and future research needs. Energy & Environmental Science, 4. 4813–4834. doi:10.1039/ C1EE02511B. Call, D. F., y Logan, B. E. (julio, 2011). A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosensors and Bioelectronics, 26, (11). 4526-4531. doi: 10.1016/j.bios.2011.05.014. Castañeda Sánchez, J. C. (2018). Diagnóstico de la planta de tratamiento de lixiviados del relleno sanitario Colomba El Guabal (Tesis de Maestria). Escuela Colombiana de Ingenieria Julio Garavito. Bogota, Colombia. Recuperado de: https://repositorio.escuelaing.edu.co/handle/001/785. Chae, K. J., Choi, M. J., Lee, J. W., Kim, K. Y. y Kim, I. S. (julio, 2009). Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource technology, 100 (14), 3518-3525. doi: 10.1016/j.biortech.2009.02.065. Challenge Technology. (2017). The Challenge AER-200 Respirometer System for anaerobic applications. Recuperado de https://www.environmental-expert.com/arti cles/the-challenge-aer-200-respirqmeter-system-for-anaerobic-applications 622176/full-article. Cheng, S., y Logan, B. E. (marzo, 2007). Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochemistry Communications, 9 (3), 492-496. doi: 10.1016/j.elecom.2006.10.023. Christensen, T.H. y Kjeldsen, P. (1991). Basic biochemical processes in landfills. En: Christensen, T.H., Stegmann, R. y Cossu, R., Sanitary Landfilling: Process, Technology and Environmental Impact. Academic Press. Londres, 251–256. Cotterill, S., Heidrich, E., y Curtis, T. (2016). Microbial electrolysis cells for hydrogen production. Microbial Electrochemical and Fuel Cells. 287–319. doi:10.1016/b978-1-78242-375-1.00009-5. Danthurebandara, M., Van Passel, S., Nelen, D., Tielemans, Y., y Van Acker, K. (noviembre, 2012). Environmental and socioeconomic impacts of landfills. Linnaeus Eco-Tech 2012. 40-52. Recuperado de: https://www.researchgate.net/publication/278738702_Environmental_and_socio-economic_impacts_of_landfills. Ding, C., Yang, K.-L., y He, J. (2016). Biological and fermentative production of hydrogen. Handbook of Biofuels Production. 303–333. doi:10.1016/b978-0-08-100455-5.00011-4. Du, Y., Feng, Y., Teng, Q. y Li, H. (enero, 2015). Effect of inorganic salt in the culture on microbial fuel cells performance. International Journal of Electrochemical Science, 10 (2), 1316-1325. Recuperado de: http://electrochemsci.org/papers/vol10 /100201316.pdf. Escapa, A., Mateos, R., Martínez, E. J., y Blanes, J. (marzo, 2016). Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renewable and Sustainable Energy Reviews, 55. 942–956. doi: 10.1016/j.rser.2015.11.029. Gálvez, A., Greenman, J. y Ieropoulos, I. (noviembre, 2009). Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresource technology, 100, (21). 5085-5091. doi: 10.1016/j.biortech.2009.05.061. Gao, J., Oloibiri, V., Chys, M., Audenaert, W., Decostere, B., He, Y., Herman, V.L., Demeestere, K., y Van Hulle, S. W. (2015). The present status of landfill leachate treatment and its development trend from a technological point of view. Reviews in Environmental Science and Biotechnology, 14, (1). 93-122. doi: 10.1007/s11157-014-9349-z. Goodridge, F., y Scott, K. (2013). Electrochemical process engineering: a guide to the design of electrolytic plant. Springer Science & Business Media. Gong, W., Wei, Y., Li, B., Huang, Z., y Zhao, L. (octubre, 2017). Hydrogen production from landfill leachate using supercrítical water gasification. Chemical Engineering Transactions, 61. 43-48. doi: 10.3303/CET1761005 Gotvajn, A. Ž., y Pavko, A. (octubre, 2015). Perspectives on Biological Treatment of Sanitary Landfill Leachate. En Wastewater Treatment Engineering. InTech. doi: 10.5772/60924. Greenman, J., Gálvez, A., Giusti, L., y Ieropoulos, I. (febrero, 2009). Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzyme and Microbial Technology, 44, (2). 112-119. doi: 10.1016/j.enzmictec.2008.09.012. Gupta, P. y Parkhey, P. (junio, 2017). Electrohydrogenesis: Energy Efficient and Economical Technology for Biohydrogen Production. Advances in Biofeedstocks and Biofuels: Production Technologies for Biofuels, 2, 201-233. doi: 10.1002/9781119117551.ch8. Hernández-Flores, G., Poggi-Varaldo, H. M., Romero-Castañón, T., Solorza-Feria, O., y Rinderknecht-Seijas, N. (diciembre, 2017). Harvesting energy from leachates in microbial fuel cells using an anion exchange membrane. International Journal of Hydrogen Energy, 42, (51). 30374-30382. doi: 10.1016/j.ijhydene.2017.08.201. Hosseini, B., Darzi, N. G., Sadeghpour, M. y Asadi, M. (2008). The effect of the sludge recycle ratio in an activated sludge system for the treatment of Amol's industrial park wastewater. Chemical Industry and Chemical Engineering Quarterly, 14 (3), 173-180. Recuperado de : http://www.ache.org.rs/CICEQ/2008/No 3/04_14%283%29_2008.pdf Janicek, A., Fan, Y. y Liu, H. (abril, 2014). Design of microbial fuel cells for practical application: a review and analysis of scale-up studies. Biofuels, 5 (1), 79-92. doi: 10.4155/bfs.13.69. Jiang, D., Curtis, M., Troop, E., Scheible, K., McGrath, J., Hu, B., Suib, S., Raymond, D. y Li, B. (enero, 2011). A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. international journal of hydrogen energy, 36 (1), 876-884. doi: 10.1016/j.ijhydene.2010.08.074. Kadier, A., Simayi, Y., Abdeshahian, P., Azman, N. F., Chandrasekhar, K., y Kalil, M. S. (marzo, 2016). A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Engineering Journal, 55, (1). 427-443. doi: 10.1016/j.aej.2015.10.008. Kamble, B. S., y Saxena, P. R. (octubre, 2017). Environmental impact of municipal dumpsite leachate on groundwater quality in Jawaharnagar, Rangareddy, Telangana, India. Applied Water Science, 7, (6). 3333-3343. doi: 10.1007/s13201-016-0480-6. Kargi, F., y Catalkaya, E. C. (julio, 2011). Electrohydrolysis of landfill leachate organics for hydrogen gas production and COD removal. International Journal of Hydrogen Energy, 36, (14). 8252-8260. doi: 10.1016/j.ijhydene.2011.04.197. Katuri, K. P., Scott, K., Head, I. M., Picioreanu, C. y Curtis, T. P. (febrero, 2011). Microbial fuel cells meet with external resistance. Bioresource Technology, 102(3), 2758–2766. doi: 10.1016/j.biortech.2010.10.147 Khanal, S. K. (2011). Anaerobic biotechnology for bioenergy production: principles and applications. John Wiley & Sons. Recuperado de: https://www.wiley.com/en-ax/Anaerobic+Biotechnology+for+Bioenergy+Production%3A+Principles+and+Applications-p-9780813823461. Khanal, S. K., Chen, W. H., Li, L., y Sung, S. (septiembre, 2004). Biological hydrogen production: effects of pH and intermediate products. International journal of hydrogen energy, 29 (11), 1123-1131. doi: 10.1016/j.ijhydene.2003.11.002. Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., y Christensen, T. H. (junio, 2010). Present and long-term composition of MSW landfill leachate: a review. Crítical reviews in environmental science and technology, 32, (4). 297-336. doi: 10.1080/10643380290813462. Kulikowska, D. y Klimiuk, E. (septiembre, 2008). The effect of landfill age on municipal leachate composition. Bioresource Technology, 99(13), 5981-5985. doi: 10.1016/j.biortech.2007.10.015. Kumar, R., Singh, L., Wahid, Z. A., y Din, M. F. M. (febrero, 2015). Exoelectrogens in microbial fuel cells toward bioelectricity generation: a review. International Journal of Energy Research, 39, (8).1048-1067. doi: 10.1002/er.3305. Kumar, R., Singh, L., y Zularisam, A. W. (abril, 2016). Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renewable and Sustainable Energy Reviews, 56.1322-1336. doi: 10.1016/j.rser.2015.12.029. Lew, D. (junio, 2017). Waste Landfill. Waste Management. Recuperado de: https://www.drdarrinlew.us/waste-management/waste-landfill.html. Lippi, M., Ley, M. B. R. G., Mendez, G. P., y Junior, R. A. F. C. (diciembre, 2018). State of Art of Landfill Leachate Treatment: Literature Review and Critical Evaluation. Ciência e Natura, 40, 78. Liu, H., Grot, S. y Logan, B. E. (abril, 2005). Electrochemically assisted microbial production of hydrogen from acetate. Environmental science & technology, 39 (11), 4317-4320. doi: 10.1021/es050244p. Liu, S. (2013). Landfill leachate treatment methods and evaluation of Hedeskoga and Måsalycke landfills. Lund University. Lund, Suecia. Recuperado de: https://www.chemeng.lth.se/exjobbR/E709.pdf. Liu, Z., Liu, J., Zhang, S. y Su, Z. (julio, 2009). Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates. Biochemical Engineering Journal. 45 (3), 185-191. doi: 10.1016/j.bej.2009.03.011. Lobato, J., Cañizares, P., Fernández, F. J. y Rodrigo, M. A. (febrero, 2012). An evaluation of aerobic and anaerobic sludges as start-up material for microbial fuel cell systems. New biotechnology, 29(3), 415-420. doi: 10.1016/j.nbt.2011.09.004. Logan, B. E., Oh, S. E., Kim, I. S. y Van Ginkel, S. (2002). Biological hydrogen production measured in batch anaerobic respirometers. Environmental science & technology, 36 (11), 2530-2535. doi: 10.1021/es015783i. Lopez-Vazquez, C. M., Méndez, G. B., Carrillo, F. C. y García, H. H. (2017). Tratamiento biológico de aguas residuales: principios, modelación y diseño. IWA Publishing. Recuperado de: https://www.iwapublishing.com/books/97817804 09139/tratamientobiol%C3%B3gico-de-aguas-residuales-principios modelaci% C3%B3n-y-dise%C3%B1o. Mann, U. (2009). Principles of chemical reactor analysis and design: new tools for industrial chemical reactor operations. John Wiley & Sons. Recuperado de: https://www.wiley.com/enax/Principles+of+Chemical+Reactor+Analysis+and+Design%3A+New+Tools+for+Industrial+Chemical+Reactor+Operations%2C+2nd+Edition-p-9780470385814. Manohara, B. y Belagali, S. L. (enero, 2014). Characterization of essential nutrients and heavy metals during municipal solid waste composting. International Journal of Innovative Research in Science, Engineering and Technology, 3(2), 9664-9672. Recuperado de: https://www.researchgate.net/publication/295547315_Characteriza tion_of_Essential_Nutrients_and_Heavy_Metals_during_Municipal_Solid_Waste_Composting. Mårtensson, A. M., Aulin, C., Wahlberg, O. y Ågren, S. (enero, 2002). Effect of humic substances on the mobility of toxic metals in a mature landfill. Waste management and research, 17, (4). 296-304. doi: 10.1034/j.1399-3070.1999.00053.x. Martin, E., Savadogo, O., Guiot, S. R. y Tartakovsky, B. (septiembre, 2010). The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge. Biochemical engineering journal, 51 (3), 132-139. doi: 10.1016/j.bej.2010.06.006. Mejía, A. A. R., Vásquez, J. A. y González, A. L. (junio, 2012). Bacterias, fuente de energía para el futuro. Tecnura, 16 (32), 117-142. Doi: 10.14483/udistrital.jour.tecnura.2012.2.a10. Moilanen, D. E., Piletic, I. R. y Fayer, M. D. (marzo, 2007). Water dynamics in nafion fuel cell membranes: the effects of confinement and structural changes on the hydrogen bond network. The Journal of Physical Chemistry C, 111 (25), 8884-8891. Doi: 10.1021/jp067460k. Mohan, S. V., y Pandey, A. (2013). Biohydrogen Production. Biohydrogen. 1–24. doi:10.1016/b978-0-444-59555-3.00001-5 Moravia, W. G., Amaral, M. C., y Lange, L. C. (enero, 2013). Evaluation of landfill leachate treatment by advanced oxidative process by Fenton’s reagent combined with membrane separation system. Waste Management, 33, (1). 89-101. doi: 10.1016/j.wasman.2012.08.009. Mukherjee, S., Mukhopadhyay, S., Hashim, M. A., y Sen Gupta, B. (enero, 2015). Contemporary environmental issues of landfill leachate: assessment and remedies. Crítical reviews in environmental science and technology, 45, (5). 472-590. doi: 10.1080/10643389.2013.876524. Nam, J. Y. y Logan, B. E. (diciembre, 2012). Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells. International Journal of Hydrogen Energy, 37(24), 18622-18628. doi: 10.1016/j.ijhydene.2012.09.140. Nam, J. Y., Tokash, J. C. y Logan, B. E. (agosto, 2011). Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential. international journal of hydrogen energy, 36 (17), 10550-10556. doi: 10.1016/j.ijhydene.2011.05.148. Nien, P. C., Lee, C. Y., Ho, K. C., Adav, S. S., Liu, L., Wang, A., Ren, L. y Lee, D. J. (abril, 2011). Power overshoot in two-chambered microbial fuel cell (MFC). Bioresource technology, 102 (7), 4742-4746. Doi: 10.1016/j.biortech.2010.12.015. Nimje, V. R., Chen, C. Y., Chen, C. C., Jean, J. S., Reddy, A. S., Fan, C. W., Pan, K.Y, Liu, H.T. y Chen, J. L. (mayo, 2009). Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. Journal of Power Sources, 190 (2), 258-263. doi: 10.1016/j.jpowsour.2009.01.019. Nguyen, H. T., Kakarla, R., y Min, B. (diciembre, 2017). Algae cathode microbial fuel cells for electricity generation and nutrient removal from landfill leachate wastewater. International Journal of Hydrogen Energy, 42, (49). 29433-29442. doi: 10.1016/j.ijhydene.2017.10.011. Noguera, K., y Olivero, J. (septiembre, 2010). Los rellenos sanitarios en Latinoamérica: caso colombiano. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 34, (132). 347-356. Oh, S. E., Kim, J. R., Joo, J.-H. y Logan, B. E. (septiembre, 2009). Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Science and Technology, 60(5), 1311–1317.doi:10.2166/wst.2009.444 Oliveira, V. B., Simões, M., Melo, L. F. y Pinto, A. M. F. R. (abril, 2013). Overview on the developments of microbial fuel cells. Biochemical engineering journal, 73, 53-64. doi: 10.1016/j.bej.2013.01.012. Öman, C. B. y Junestedt, C. (2008). Chemical characterization of landfill leachates – 400 parameters and compounds. Waste Management, 28(10), 1876–1891. doi: 10.1016/j.wasman.2007.06.018. Özkaya, B., Cetinkaya, A. Y., Cakmakci, M., Karadağ, D. y Sahinkaya, E. (abril, 2013). Electricity generation from young landfill leachate in a microbial fuel cell with a new electrode material. Bioprocess and biosystems engineering, 36(4), 399-405. doi: 10.1007/s00449-012-0796-z. Pant, D., Van Bogaert, G., Diels, L., y Vanbroekhoven, K. (marzo, 2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource technology, 101, (6) .1533-1543. doi: 10.1016/j.biortech.2009.10.017. Patil, S. A., Harnisch, F., Koch, C., Hübschmann, T., Fetzer, I., Carmona-Martínez, A. A., Müller, S. y Schröder, U. (octubre, 2011). Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition. Bioresource technology, 102 (20), 9683-9690. doi: 10.1016/j.biortech.2011.07.087. Peng, Y. (mayo, 2017). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry, 10, (S. 2). 2567-S2574. doi: 10.1016/j.arabjc.2013.09.031. Poddar, S. y Khurana, S. (junio, 2011). Geobacter: the electric microbe! efficient microbial fuel cells to generate clean, cheap electricity. Indian journal of microbiology, 51 (2), 240-241. doi: 10.1007/s12088-011-0180-8. Política Nacional para la Gestión Integrada de Residuos Sólidos, CONPES 3874 (2016). Recuperado de: https://www.dnp.gov.co/CrecimientoVerde/Documents /Documentos%20CONPES/Publicados/CONPES%203874%20%20GESTIÓN%20INTEGRAL%20DE%20RESIDUOS%20SÓLIDOS.pdf. Rajaram, V., Siddiqui, F. Z., y Khan, M. E. (2011). From landfill gas to energy: Technologies and challenges. CRC press. doi: 10.1201/b11598. Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., y Moulin, P. (febrero, 2008). Landfill leachate treatment: review and opportunity. Journal of hazardous materials, 150, (3). 468-493. doi: 10.1016/j.jhazmat.2007.09.077. Reinhart, D. R. y Basel Al-Yousfi, A. (julio, 1996). The Impact of Leachate Recirculation On Municipal Solid Waste Landfill Operating Characteristics. Waste Management & Research, 14 (4), 337–346. doi:10.1177/0734242x9601400402. Resolución 0631 de 2015. (marzo, 2017). DO: 49.486 (2015). Resolución 0330 de 2017. (junio, 2017). DO: 50.267 (2017). Rodríguez, M. G. (2003). Cálculos avanzados en procesos de descontaminación de aguas (Vol. 9). Editorial CSIC-CSIC Press. Recuperado de: https://www.research gate.net/publication/44723979_Procesos_de_descontaminacion_de_aguas_calculos_avanzados_informatizados_Manuel_Gil_Rodriguez. Sacco, N. J., Bonetto, M. C., y Cortón, E. (febrero, 2017). Isolation and characterization of a novel electrogenic bacterium, Dietzia sp. RNV-4. PloS one, 12, (2). e0169955. doi :10.1371/journal. pone.0169955. Santoro, C., Arbizzani, C., Erable, B., y Ieropoulos, I. (julio, 2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356. 225–244. doi: 10.1016/j.jpowsour.2017.03.109. Scott, K. y Yu, E. H. (Eds.). (2015). Microbial electrochemical and fuel cells: fundamentals and applications. Woodhead Publishing. Recuperado de: https://www.sciencedirect.com/book/9781782423751/microbial-electrochemical-and-fuel-cells. Schiopu, A. M., y Gavrilescu, M. (noviembre, 2010). Options for the treatment and management of municipal landfill leachate: common and specific issues. CLEAN–Soil, Air, Water, 38, (12). 1101-1110. doi: 10.1002/clen.200900184. Schröder, U. (mayo, 2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9, (21). 2619-2629. doi: 10.1039/B703627M. Singh, L., y Kalia, V. C. (Eds.). (2017). Waste Biomass Management-A Holistic Approach. Springer. Sonawane, J. M., Adeloju, S. B., y Ghosh, P. C. (septiembre, 2017). Landfill leachate: A promising substrate for microbial fuel cells. International Journal of Hydrogen Energy, 42, (37). 23794-23798. doi: 10.1016/j.ijhydene.2017.03.137. Sun, G., Thygesen, A., Ale, M. T., Mensah, M., Poulsen, F. W., y Meyer, A. S. (marzo, 2014). The significance of the initiation process parameters and reactor design for maximizing the efficiency of microbial fuel cells. Applied Microbiology and Biotechnology, 98(6), 2415–2427.doi:10.1007/s00253-013-5486-5. Sun, G., Thygesen, A. y Meyer, A. S. (junio, 2015). Acetate is a superior substrate for microbial fuel cell initiation preceding bioethanol effluent utilization. Applied microbiology and biotechnology, 99(11), 4905-4915. doi: 10.1007/s00253-015-6513-5. Superintendencia de Servicios Públicos Domiciliarios (SSPD). (2018). Disposición Final de Residuos Sólidos, Informe Nacional 2016. Recuperado de: https://www.superservicios.gov.co/noticias/disposición-final-residuos-sólidos-informe-nacional-2016. Superintendencia de Servicios Públicos Domiciliarios (SSPD). (2019). Disposición Final de Residuos Sólidos, Informe Nacional 2017. Recuperado de: https://www.superservicios.gov.co/publicaciones/acueducto-alcantarillado-y-aseo/disposición-final-residuos-sólidos-informe-2017. Tchobanoglous, G.; Theisen, H. y Vigil, S. (1994). Gestión integral de residuos sólidos. Ciudad de México. McGraw-Hill/ Interamericana de España S.A. Recuperado de: https://www.urbe.edu/UDWLibrary/InfoBook.do?id=4451. Tharali, A. D., Sain, N., y Osborne, W. J. (octubre, 2016). Microbial fuel cells in bioelectricity production. Frontiers in Life Science, 9 (4), 252–266. doi:10.1080/21553769.2016.1230787 Thygesen, A., Poulsen, F. W., Angelidaki, I., Min, B. y Bjerre, A. B. (noviembre, 2011). Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate. Biomass and bioenergy, 35(11), 4732-4739. doi: 10.1016/j.biombioe.2011.09.026. Torres Lozada, P., Barba Ho, L., Ojeda, C., Martínez, J., y Castaño, Y. (diciembre, 2014). Influencia de la edad de lixiviados sobre su composición fisicoquímica y su potencial de toxicidad. Revista U.D.C.A, 17(1), 245-255. Recuperado de: https://revistas.udca.edu.co/index.php/ruadc/article/view/960. Torretta, V., Ferronato, N., Katsoyiannis, I., Tolkou, A., y Airoldi, M. (enero, 2017). Novel and conventional technologies for landfill leachates treatment: A review. Sustainability, 9, (1). 9. doi: 10.3390/su9010009. Tsai, Y.-P. (marzo, 2005). Impact of flow velocity on the dynamic behaviour of biofilm bacteria. Biofouling, 21(5-6), 267–277.doi:10.1080/08927010500398633 Von Sperling, M. (2015). Activated Sludge and Aerobic Biofilm Reactors. IWA. Recuperado de: https://www.iwapublishing.com/books/9781843391654/activated-sludge-and-aerobic-biofilm-reactors. Wang, F., Smith, D. W., y El-Din, M. G. (diciembre, 2003). Application of advanced oxidation methods for landfill leachate treatment–A review. Journal of Environmental Engineering and Science, 2, (6). 413-427. doi:10.1139/s03-058. Watson, V. J. y Logan, B. E. (enero, 2011). Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochemistry Communications, 13 (1), 54-56. doi: 10.1016/j.elecom.2010.11.011. Wei, J., Liang, P. y Huang, X. (octubre, 2011). Recent progress in electrodes for microbial fuel cells. Bioresource technology, 102 (20), 9335-9344. Doi: 10.1016/j.biortech.2011.07.019. Yang, C., Chen, H., Zeng, G., Yu, G. y Luo, S. (agosto, 2010). Biomass accumulation and control strategies in gas biofiltration. Biotechnology Advances, 28(4), 531-540. doi: 10.1016/j.biotechadv.2010.04.002. Yates, M. D., Kiely, P. D., Call, D. F., Rismani-Yazdi, H., Bibby, K., Peccia, J., Regan, J.M. y Logan, B. E. (noviembre, 2012). Convergent development of anodic bacterial communities in microbial fuel cells. The ISME Journal, 6 (11), 2002-2013. doi: 10.1038/ismej.2012.42. You, S. J., Zhao, Q. L., Jiang, J. Q., Zhang, J. N., y Zhao, S. Q. (marzo, 2006). Sustainable approach for leachate treatment: electricity generation in microbial fuel cell. Journal of Environmental Science and Health Part A, 41, (12). 2721-2734. doi: 10.1080/10934520600966284. Youcai, Z. (julio, 2018). Pollution Control Technology for Leachate from Municipal Solid Waste: Landfills, Incineration Plants, and Transfer Stations. Butterworth-Heinemann. Recuperado de: https://www.elsevier.com/books/pollution-control-technology-for-leachate-from-municipal-solid-waste/youcai/978-0-12-815813-5. Yu, A.C., Loo, J.F., Yu, S., Kong, S.K. y Chan, T.F. (enero, 2014). Monitoring bacterial growth using tunable resistive pulse sensing with a pore-based technique. Applied Microbiology and Biotechnology. 98 (2), 855- 862. doi:10.1007/s00253-013-5377-9. Zhao, L., Li, J., Battaglia, F. y He, Z. (julio, 2016). Investigation of multiphysics in tubular microbial fuel cells by coupled computational fluid dynamics with multi-order Butler–Volmer reactions. Chemical Engineering Journal, 296, 377-385. doi: 10.1016/j.cej.2016.03.110. Zhang, J. N., Zhao, Q. L., You, S. J., Jiang, J. Q., y Ren, N. Q. (abril, 2008). Continuous electricity production from leachate in a novel upflow air-cathode membrane-free microbial fuel cell. Water Science and Technology, 57, (7). 1017-1021. doi: 10.2166/wst.2008.063. Zhou, M., Wang, H., Hassett, J.D., y Gu, T. (marzo, 2013). Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. Journal of Chemical Technology and Biotechnology, 88, (4). 508–518. doi:10.1002/jctb.4004. Zhu, I. y Getting, T. (Agosto, 2012). A review of nitrate reduction using inorganic materials. Environmental Technology Reviews, 1(1), 46-58. doi: 10.1080/09593330.2012.706646.
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/03f462bf-6a9c-423b-a130-a59b39d8f78f/download
https://red.uao.edu.co/bitstreams/25e75663-2d6e-4de8-9ce2-2e14fcfe77aa/download
https://red.uao.edu.co/bitstreams/5c5ad520-8ed3-4e8b-9464-e2250ae702fd/download
https://red.uao.edu.co/bitstreams/31636feb-9f33-42fb-8e4b-0e4fc999bc45/download
https://red.uao.edu.co/bitstreams/51fc4417-d9b6-4123-8b38-4d2e3a69a0f7/download
https://red.uao.edu.co/bitstreams/8ea744a1-5ff1-4d57-b929-d2fc21421e14/download
https://red.uao.edu.co/bitstreams/634fad50-4df3-485e-ae6a-9cde2535a5cd/download
https://red.uao.edu.co/bitstreams/03f8ca28-a631-4c6f-9a96-085d9ead6c43/download
https://red.uao.edu.co/bitstreams/507a02d6-1e0a-4649-aaa0-92a1b5afcdf2/download
https://red.uao.edu.co/bitstreams/29131968-7f9f-4cd7-97fc-3e3f308640e5/download
bitstream.checksum.fl_str_mv 9e0541360d2f710aa4e8d17bdb32e043
6c2b855342307dc6e65fc9699ded46eb
08d3ce43041881037e79467180fe1876
17896a3a57243294e489196746f7f6fd
867c57afc0a7afcf3a8b144496d6969d
4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
97ffc9ab6e314adf08dacacc3a6d5282
fd2dd0c60db11928a7d8684d36c0bbed
f79d32c68086dcf7e473e3e2f05c0863
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1808478782385815552
spelling Vásquez Sarria, Nancyvirtual::5122-1Giraldo Isaza, Laura Vanessa33d525ce1418b60147bd23a5d855a6ecIngeniero AmbientalUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-27T20:41:43Z2019-11-27T20:41:43Z2019-08-06http://red.uao.edu.co//handle/10614/11595Vinculado a la tendencia de disposición de residuos sólidos municipales en sitios de disposición final, se relaciona la generación de lixiviados; que, en consideración con una emisión al medio ambiente, indica una contaminación hídrica y edáfica, la cual afecta las condiciones socioambientales en las localidades aledañas al relleno. Para abordar una solución a esta problemática, en este proyecto se realizó el diseño de un reactor de electrohidrogénesis con el fin de disminuir la concentración de materia orgánica presente en los lixiviados, integrado a una reconversión de este elemento en energía en forma de H2, buscando complementar la actual gestión de residuos sólidos con un aprovechamiento energético. Dentro de este marco, se evaluaron las características fisicoquímicas de los lixiviados a tratar; donde el lixiviado maduro fue extraído del antiguo botadero a cielo abierto de Navarro y la emisión fresca y media del relleno sanitario Colomba-Guabal, donde fueron evaluadas las condiciones de biodegradabilidad, pH, contenido de nutrientes y definición de eficiencias requeridas de tratamiento. En este sentido, para la formulación de la estrategia de tratamiento, se analizaron condiciones operacionales, estructurales y biológicas para definir el diseño de reactor; ajustadas a las condiciones de los lixiviados estudiados. De igual forma, se evaluaron los parámetros críticos de operación, en donde los criterios de diseño mostraron que las variables más importantes para la definición de este tipo de sistemas son las eficiencias de reducción de materia orgánica esperadas (DQO), la disposición y componentes de los electrodos, los componentes eléctricos de la célula y las variables de control operacional como el pH, la temperatura, el tipo de flujo y las condiciones biológicas asociadas al inóculoRelated to the prevailing trend of disposition of municipal solid waste in landfills, the landfill leachate generation occurs; that, in consideration of a direct emission to the environment, indicates a water and soil contamination, which affects the social and environmental conditions in the localities surrounding the landfill. In order to address a solution to the exposed problematic, the design of an electrohydrogenesis reactor was formulated for reducing the concentration of organic matter concentrated in the suspension, integrated to a reconversion of this element into energy; in the manner of H2, seeking to complement the current solid waste management with an energy use. Within this framework, the physicochemical characteristics of the leached to be treated were evaluated; where the mature leachate was extracted from the old open-air dump of Navarro and the fresh and medium emission from the Colomba-Guabal landfill, where the conditions of biodegradability, pH, nutrient content and definition of required treatment efficiencies were evaluated. In this sense, for the formulation of this treatment strategy, operational, structural and biological conditions were analyzed to define the reactor design; adjusted to the conditions of the leachates studied. Likewise, the crítical operation parameters were evaluated, where the design criteria showed that the most important variables for the definition of this type of systems are the expected efficiencies of reduction of organic matter (COD), the disposition and components of the electrodes, the electrical components of the cell and the variables of operational control such as pH, temperature, type of flow and biological conditions associated with the inoculumProyecto de grado (Ingeniero Ambiental)-Universidad Autónoma de Occidente, 2019PregradoIngeniero(a) Ambientalapplication/pdf114 páginasspaDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAOActividades complementarias de tratamiento y disposición final de residuos sólidos en el servicio público de aseo, Decreto 1784 de 2017. DO: 50.405 (2017). Aelterman, P., Rabaey, K., Pham, T.H., Boon, N. y Verstraete, W. (mayo, 2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science and Technology, 40, (10), 3388–3394. doi: 10.1021/es0525511. Aelterman, P., Versichele, M., Marzorati, M., Boon, N. y Verstraete, W. (diciembre, 2008). Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresource Technology, 99(18), 8895–8902. doi: 10.1016/j.biortech.2008.04.061 Adhikari, B. y Khanal, S. N. (enero, 2015). Qualitative study of landfill leachate from different ages of landfill sites of various countries including Nepal. Journal of Environmental Science, Toxicology and Food Technology, 9(1), 2319-2399. Recuperado de: https://www.semanticscholar.org/paper/Qualitative-Study-of-Land fill-Leachate-from-Ages-of-Adhikari Khanal/733aa8686cd11f21fa21052d2e4fcfdbf8 a0b123. Adhikari, B., Khanal, S., Giri, D. y Lamichhane, J. (diciembre, 2014). Seasonal variation of pH, BOD, COD and BOD/COD ratio in different ages of landfill leachate in Nepal. Journal of Biomolecule Reconstruction, 11, (2), 89-99. Akman, D., Cirik, K., Ozdemir, S., Ozkaya, B. y Cinar, O. (diciembre, 2013). Bioelectricity generation in continuously-fed microbial fuel cell: effects of anode electrode material and hydraulic retention time. Bioresource technology, 149, 459-464. doi: 10.1016/j.biortech.2013.09.102. Ammary, B. Y. (abril, 2004). Nutrients requirements in biological industrial wastewater treatment. African Journal of Biotechnology, 3(4), 236-238. Recuperado de: https://tspace.library.utoronto.ca/bitstream/1807/4122/1/jb04045.pdf. Andreoli, C. V., Von Sperling, M., Fernandes, F. y Ronteltap, M. (2007). Sludge treatment and disposal. IWA publishing. Recuperado de: https://iwaponline.com/ebooks/book/1/Sludge-Treatment-and-Disposal. Behera, B. K., y Varma, A. (2016). Microbial resources for sustainable energy. Springer. Recuperado de: https://www.springer.com/gp/book/9783319337760. Bermek, H., Catal, T., Akan, S. S., Ulutaş, M. S., Kumru, M., Özgüven, M., Liu, H., Özçelik, B. y Akarsubaşı, A. T. (abril, 2014). Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells. World Journal of Microbiology and Biotechnology, 30, (4). 1177-1185. doi: 10.1007/s11274-013-1541-8. Bhalla, B., Saini, M. S. y Jha, M. K. (agosto, 2013). Effect of age and seasonal variations on leachate characteristics of municipal solid waste landfill. International Journal of Research in Engineering and Technology, 2(8), 223-232. doi: 10.15623/ijret.2013.0208037. Borole, A.P., Reguera, G., Ringeisen, B., Wang, Z.W., Feng, Y. y Kim, B.H. (octubre, 2011) Electroactive biofilms: current status and future research needs. Energy & Environmental Science, 4. 4813–4834. doi:10.1039/ C1EE02511B. Call, D. F., y Logan, B. E. (julio, 2011). A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosensors and Bioelectronics, 26, (11). 4526-4531. doi: 10.1016/j.bios.2011.05.014. Castañeda Sánchez, J. C. (2018). Diagnóstico de la planta de tratamiento de lixiviados del relleno sanitario Colomba El Guabal (Tesis de Maestria). Escuela Colombiana de Ingenieria Julio Garavito. Bogota, Colombia. Recuperado de: https://repositorio.escuelaing.edu.co/handle/001/785. Chae, K. J., Choi, M. J., Lee, J. W., Kim, K. Y. y Kim, I. S. (julio, 2009). Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource technology, 100 (14), 3518-3525. doi: 10.1016/j.biortech.2009.02.065. Challenge Technology. (2017). The Challenge AER-200 Respirometer System for anaerobic applications. Recuperado de https://www.environmental-expert.com/arti cles/the-challenge-aer-200-respirqmeter-system-for-anaerobic-applications 622176/full-article. Cheng, S., y Logan, B. E. (marzo, 2007). Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochemistry Communications, 9 (3), 492-496. doi: 10.1016/j.elecom.2006.10.023. Christensen, T.H. y Kjeldsen, P. (1991). Basic biochemical processes in landfills. En: Christensen, T.H., Stegmann, R. y Cossu, R., Sanitary Landfilling: Process, Technology and Environmental Impact. Academic Press. Londres, 251–256. Cotterill, S., Heidrich, E., y Curtis, T. (2016). Microbial electrolysis cells for hydrogen production. Microbial Electrochemical and Fuel Cells. 287–319. doi:10.1016/b978-1-78242-375-1.00009-5. Danthurebandara, M., Van Passel, S., Nelen, D., Tielemans, Y., y Van Acker, K. (noviembre, 2012). Environmental and socioeconomic impacts of landfills. Linnaeus Eco-Tech 2012. 40-52. Recuperado de: https://www.researchgate.net/publication/278738702_Environmental_and_socio-economic_impacts_of_landfills. Ding, C., Yang, K.-L., y He, J. (2016). Biological and fermentative production of hydrogen. Handbook of Biofuels Production. 303–333. doi:10.1016/b978-0-08-100455-5.00011-4. Du, Y., Feng, Y., Teng, Q. y Li, H. (enero, 2015). Effect of inorganic salt in the culture on microbial fuel cells performance. International Journal of Electrochemical Science, 10 (2), 1316-1325. Recuperado de: http://electrochemsci.org/papers/vol10 /100201316.pdf. Escapa, A., Mateos, R., Martínez, E. J., y Blanes, J. (marzo, 2016). Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renewable and Sustainable Energy Reviews, 55. 942–956. doi: 10.1016/j.rser.2015.11.029. Gálvez, A., Greenman, J. y Ieropoulos, I. (noviembre, 2009). Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresource technology, 100, (21). 5085-5091. doi: 10.1016/j.biortech.2009.05.061. Gao, J., Oloibiri, V., Chys, M., Audenaert, W., Decostere, B., He, Y., Herman, V.L., Demeestere, K., y Van Hulle, S. W. (2015). The present status of landfill leachate treatment and its development trend from a technological point of view. Reviews in Environmental Science and Biotechnology, 14, (1). 93-122. doi: 10.1007/s11157-014-9349-z. Goodridge, F., y Scott, K. (2013). Electrochemical process engineering: a guide to the design of electrolytic plant. Springer Science & Business Media. Gong, W., Wei, Y., Li, B., Huang, Z., y Zhao, L. (octubre, 2017). Hydrogen production from landfill leachate using supercrítical water gasification. Chemical Engineering Transactions, 61. 43-48. doi: 10.3303/CET1761005 Gotvajn, A. Ž., y Pavko, A. (octubre, 2015). Perspectives on Biological Treatment of Sanitary Landfill Leachate. En Wastewater Treatment Engineering. InTech. doi: 10.5772/60924. Greenman, J., Gálvez, A., Giusti, L., y Ieropoulos, I. (febrero, 2009). Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzyme and Microbial Technology, 44, (2). 112-119. doi: 10.1016/j.enzmictec.2008.09.012. Gupta, P. y Parkhey, P. (junio, 2017). Electrohydrogenesis: Energy Efficient and Economical Technology for Biohydrogen Production. Advances in Biofeedstocks and Biofuels: Production Technologies for Biofuels, 2, 201-233. doi: 10.1002/9781119117551.ch8. Hernández-Flores, G., Poggi-Varaldo, H. M., Romero-Castañón, T., Solorza-Feria, O., y Rinderknecht-Seijas, N. (diciembre, 2017). Harvesting energy from leachates in microbial fuel cells using an anion exchange membrane. International Journal of Hydrogen Energy, 42, (51). 30374-30382. doi: 10.1016/j.ijhydene.2017.08.201. Hosseini, B., Darzi, N. G., Sadeghpour, M. y Asadi, M. (2008). The effect of the sludge recycle ratio in an activated sludge system for the treatment of Amol's industrial park wastewater. Chemical Industry and Chemical Engineering Quarterly, 14 (3), 173-180. Recuperado de : http://www.ache.org.rs/CICEQ/2008/No 3/04_14%283%29_2008.pdf Janicek, A., Fan, Y. y Liu, H. (abril, 2014). Design of microbial fuel cells for practical application: a review and analysis of scale-up studies. Biofuels, 5 (1), 79-92. doi: 10.4155/bfs.13.69. Jiang, D., Curtis, M., Troop, E., Scheible, K., McGrath, J., Hu, B., Suib, S., Raymond, D. y Li, B. (enero, 2011). A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. international journal of hydrogen energy, 36 (1), 876-884. doi: 10.1016/j.ijhydene.2010.08.074. Kadier, A., Simayi, Y., Abdeshahian, P., Azman, N. F., Chandrasekhar, K., y Kalil, M. S. (marzo, 2016). A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Engineering Journal, 55, (1). 427-443. doi: 10.1016/j.aej.2015.10.008. Kamble, B. S., y Saxena, P. R. (octubre, 2017). Environmental impact of municipal dumpsite leachate on groundwater quality in Jawaharnagar, Rangareddy, Telangana, India. Applied Water Science, 7, (6). 3333-3343. doi: 10.1007/s13201-016-0480-6. Kargi, F., y Catalkaya, E. C. (julio, 2011). Electrohydrolysis of landfill leachate organics for hydrogen gas production and COD removal. International Journal of Hydrogen Energy, 36, (14). 8252-8260. doi: 10.1016/j.ijhydene.2011.04.197. Katuri, K. P., Scott, K., Head, I. M., Picioreanu, C. y Curtis, T. P. (febrero, 2011). Microbial fuel cells meet with external resistance. Bioresource Technology, 102(3), 2758–2766. doi: 10.1016/j.biortech.2010.10.147 Khanal, S. K. (2011). Anaerobic biotechnology for bioenergy production: principles and applications. John Wiley & Sons. Recuperado de: https://www.wiley.com/en-ax/Anaerobic+Biotechnology+for+Bioenergy+Production%3A+Principles+and+Applications-p-9780813823461. Khanal, S. K., Chen, W. H., Li, L., y Sung, S. (septiembre, 2004). Biological hydrogen production: effects of pH and intermediate products. International journal of hydrogen energy, 29 (11), 1123-1131. doi: 10.1016/j.ijhydene.2003.11.002. Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., y Christensen, T. H. (junio, 2010). Present and long-term composition of MSW landfill leachate: a review. Crítical reviews in environmental science and technology, 32, (4). 297-336. doi: 10.1080/10643380290813462. Kulikowska, D. y Klimiuk, E. (septiembre, 2008). The effect of landfill age on municipal leachate composition. Bioresource Technology, 99(13), 5981-5985. doi: 10.1016/j.biortech.2007.10.015. Kumar, R., Singh, L., Wahid, Z. A., y Din, M. F. M. (febrero, 2015). Exoelectrogens in microbial fuel cells toward bioelectricity generation: a review. International Journal of Energy Research, 39, (8).1048-1067. doi: 10.1002/er.3305. Kumar, R., Singh, L., y Zularisam, A. W. (abril, 2016). Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renewable and Sustainable Energy Reviews, 56.1322-1336. doi: 10.1016/j.rser.2015.12.029. Lew, D. (junio, 2017). Waste Landfill. Waste Management. Recuperado de: https://www.drdarrinlew.us/waste-management/waste-landfill.html. Lippi, M., Ley, M. B. R. G., Mendez, G. P., y Junior, R. A. F. C. (diciembre, 2018). State of Art of Landfill Leachate Treatment: Literature Review and Critical Evaluation. Ciência e Natura, 40, 78. Liu, H., Grot, S. y Logan, B. E. (abril, 2005). Electrochemically assisted microbial production of hydrogen from acetate. Environmental science & technology, 39 (11), 4317-4320. doi: 10.1021/es050244p. Liu, S. (2013). Landfill leachate treatment methods and evaluation of Hedeskoga and Måsalycke landfills. Lund University. Lund, Suecia. Recuperado de: https://www.chemeng.lth.se/exjobbR/E709.pdf. Liu, Z., Liu, J., Zhang, S. y Su, Z. (julio, 2009). Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates. Biochemical Engineering Journal. 45 (3), 185-191. doi: 10.1016/j.bej.2009.03.011. Lobato, J., Cañizares, P., Fernández, F. J. y Rodrigo, M. A. (febrero, 2012). An evaluation of aerobic and anaerobic sludges as start-up material for microbial fuel cell systems. New biotechnology, 29(3), 415-420. doi: 10.1016/j.nbt.2011.09.004. Logan, B. E., Oh, S. E., Kim, I. S. y Van Ginkel, S. (2002). Biological hydrogen production measured in batch anaerobic respirometers. Environmental science & technology, 36 (11), 2530-2535. doi: 10.1021/es015783i. Lopez-Vazquez, C. M., Méndez, G. B., Carrillo, F. C. y García, H. H. (2017). Tratamiento biológico de aguas residuales: principios, modelación y diseño. IWA Publishing. Recuperado de: https://www.iwapublishing.com/books/97817804 09139/tratamientobiol%C3%B3gico-de-aguas-residuales-principios modelaci% C3%B3n-y-dise%C3%B1o. Mann, U. (2009). Principles of chemical reactor analysis and design: new tools for industrial chemical reactor operations. John Wiley & Sons. Recuperado de: https://www.wiley.com/enax/Principles+of+Chemical+Reactor+Analysis+and+Design%3A+New+Tools+for+Industrial+Chemical+Reactor+Operations%2C+2nd+Edition-p-9780470385814. Manohara, B. y Belagali, S. L. (enero, 2014). Characterization of essential nutrients and heavy metals during municipal solid waste composting. International Journal of Innovative Research in Science, Engineering and Technology, 3(2), 9664-9672. Recuperado de: https://www.researchgate.net/publication/295547315_Characteriza tion_of_Essential_Nutrients_and_Heavy_Metals_during_Municipal_Solid_Waste_Composting. Mårtensson, A. M., Aulin, C., Wahlberg, O. y Ågren, S. (enero, 2002). Effect of humic substances on the mobility of toxic metals in a mature landfill. Waste management and research, 17, (4). 296-304. doi: 10.1034/j.1399-3070.1999.00053.x. Martin, E., Savadogo, O., Guiot, S. R. y Tartakovsky, B. (septiembre, 2010). The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge. Biochemical engineering journal, 51 (3), 132-139. doi: 10.1016/j.bej.2010.06.006. Mejía, A. A. R., Vásquez, J. A. y González, A. L. (junio, 2012). Bacterias, fuente de energía para el futuro. Tecnura, 16 (32), 117-142. Doi: 10.14483/udistrital.jour.tecnura.2012.2.a10. Moilanen, D. E., Piletic, I. R. y Fayer, M. D. (marzo, 2007). Water dynamics in nafion fuel cell membranes: the effects of confinement and structural changes on the hydrogen bond network. The Journal of Physical Chemistry C, 111 (25), 8884-8891. Doi: 10.1021/jp067460k. Mohan, S. V., y Pandey, A. (2013). Biohydrogen Production. Biohydrogen. 1–24. doi:10.1016/b978-0-444-59555-3.00001-5 Moravia, W. G., Amaral, M. C., y Lange, L. C. (enero, 2013). Evaluation of landfill leachate treatment by advanced oxidative process by Fenton’s reagent combined with membrane separation system. Waste Management, 33, (1). 89-101. doi: 10.1016/j.wasman.2012.08.009. Mukherjee, S., Mukhopadhyay, S., Hashim, M. A., y Sen Gupta, B. (enero, 2015). Contemporary environmental issues of landfill leachate: assessment and remedies. Crítical reviews in environmental science and technology, 45, (5). 472-590. doi: 10.1080/10643389.2013.876524. Nam, J. Y. y Logan, B. E. (diciembre, 2012). Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells. International Journal of Hydrogen Energy, 37(24), 18622-18628. doi: 10.1016/j.ijhydene.2012.09.140. Nam, J. Y., Tokash, J. C. y Logan, B. E. (agosto, 2011). Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential. international journal of hydrogen energy, 36 (17), 10550-10556. doi: 10.1016/j.ijhydene.2011.05.148. Nien, P. C., Lee, C. Y., Ho, K. C., Adav, S. S., Liu, L., Wang, A., Ren, L. y Lee, D. J. (abril, 2011). Power overshoot in two-chambered microbial fuel cell (MFC). Bioresource technology, 102 (7), 4742-4746. Doi: 10.1016/j.biortech.2010.12.015. Nimje, V. R., Chen, C. Y., Chen, C. C., Jean, J. S., Reddy, A. S., Fan, C. W., Pan, K.Y, Liu, H.T. y Chen, J. L. (mayo, 2009). Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. Journal of Power Sources, 190 (2), 258-263. doi: 10.1016/j.jpowsour.2009.01.019. Nguyen, H. T., Kakarla, R., y Min, B. (diciembre, 2017). Algae cathode microbial fuel cells for electricity generation and nutrient removal from landfill leachate wastewater. International Journal of Hydrogen Energy, 42, (49). 29433-29442. doi: 10.1016/j.ijhydene.2017.10.011. Noguera, K., y Olivero, J. (septiembre, 2010). Los rellenos sanitarios en Latinoamérica: caso colombiano. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 34, (132). 347-356. Oh, S. E., Kim, J. R., Joo, J.-H. y Logan, B. E. (septiembre, 2009). Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Science and Technology, 60(5), 1311–1317.doi:10.2166/wst.2009.444 Oliveira, V. B., Simões, M., Melo, L. F. y Pinto, A. M. F. R. (abril, 2013). Overview on the developments of microbial fuel cells. Biochemical engineering journal, 73, 53-64. doi: 10.1016/j.bej.2013.01.012. Öman, C. B. y Junestedt, C. (2008). Chemical characterization of landfill leachates – 400 parameters and compounds. Waste Management, 28(10), 1876–1891. doi: 10.1016/j.wasman.2007.06.018. Özkaya, B., Cetinkaya, A. Y., Cakmakci, M., Karadağ, D. y Sahinkaya, E. (abril, 2013). Electricity generation from young landfill leachate in a microbial fuel cell with a new electrode material. Bioprocess and biosystems engineering, 36(4), 399-405. doi: 10.1007/s00449-012-0796-z. Pant, D., Van Bogaert, G., Diels, L., y Vanbroekhoven, K. (marzo, 2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource technology, 101, (6) .1533-1543. doi: 10.1016/j.biortech.2009.10.017. Patil, S. A., Harnisch, F., Koch, C., Hübschmann, T., Fetzer, I., Carmona-Martínez, A. A., Müller, S. y Schröder, U. (octubre, 2011). Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition. Bioresource technology, 102 (20), 9683-9690. doi: 10.1016/j.biortech.2011.07.087. Peng, Y. (mayo, 2017). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry, 10, (S. 2). 2567-S2574. doi: 10.1016/j.arabjc.2013.09.031. Poddar, S. y Khurana, S. (junio, 2011). Geobacter: the electric microbe! efficient microbial fuel cells to generate clean, cheap electricity. Indian journal of microbiology, 51 (2), 240-241. doi: 10.1007/s12088-011-0180-8. Política Nacional para la Gestión Integrada de Residuos Sólidos, CONPES 3874 (2016). Recuperado de: https://www.dnp.gov.co/CrecimientoVerde/Documents /Documentos%20CONPES/Publicados/CONPES%203874%20%20GESTIÓN%20INTEGRAL%20DE%20RESIDUOS%20SÓLIDOS.pdf. Rajaram, V., Siddiqui, F. Z., y Khan, M. E. (2011). From landfill gas to energy: Technologies and challenges. CRC press. doi: 10.1201/b11598. Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., y Moulin, P. (febrero, 2008). Landfill leachate treatment: review and opportunity. Journal of hazardous materials, 150, (3). 468-493. doi: 10.1016/j.jhazmat.2007.09.077. Reinhart, D. R. y Basel Al-Yousfi, A. (julio, 1996). The Impact of Leachate Recirculation On Municipal Solid Waste Landfill Operating Characteristics. Waste Management & Research, 14 (4), 337–346. doi:10.1177/0734242x9601400402. Resolución 0631 de 2015. (marzo, 2017). DO: 49.486 (2015). Resolución 0330 de 2017. (junio, 2017). DO: 50.267 (2017). Rodríguez, M. G. (2003). Cálculos avanzados en procesos de descontaminación de aguas (Vol. 9). Editorial CSIC-CSIC Press. Recuperado de: https://www.research gate.net/publication/44723979_Procesos_de_descontaminacion_de_aguas_calculos_avanzados_informatizados_Manuel_Gil_Rodriguez. Sacco, N. J., Bonetto, M. C., y Cortón, E. (febrero, 2017). Isolation and characterization of a novel electrogenic bacterium, Dietzia sp. RNV-4. PloS one, 12, (2). e0169955. doi :10.1371/journal. pone.0169955. Santoro, C., Arbizzani, C., Erable, B., y Ieropoulos, I. (julio, 2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356. 225–244. doi: 10.1016/j.jpowsour.2017.03.109. Scott, K. y Yu, E. H. (Eds.). (2015). Microbial electrochemical and fuel cells: fundamentals and applications. Woodhead Publishing. Recuperado de: https://www.sciencedirect.com/book/9781782423751/microbial-electrochemical-and-fuel-cells. Schiopu, A. M., y Gavrilescu, M. (noviembre, 2010). Options for the treatment and management of municipal landfill leachate: common and specific issues. CLEAN–Soil, Air, Water, 38, (12). 1101-1110. doi: 10.1002/clen.200900184. Schröder, U. (mayo, 2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9, (21). 2619-2629. doi: 10.1039/B703627M. Singh, L., y Kalia, V. C. (Eds.). (2017). Waste Biomass Management-A Holistic Approach. Springer. Sonawane, J. M., Adeloju, S. B., y Ghosh, P. C. (septiembre, 2017). Landfill leachate: A promising substrate for microbial fuel cells. International Journal of Hydrogen Energy, 42, (37). 23794-23798. doi: 10.1016/j.ijhydene.2017.03.137. Sun, G., Thygesen, A., Ale, M. T., Mensah, M., Poulsen, F. W., y Meyer, A. S. (marzo, 2014). The significance of the initiation process parameters and reactor design for maximizing the efficiency of microbial fuel cells. Applied Microbiology and Biotechnology, 98(6), 2415–2427.doi:10.1007/s00253-013-5486-5. Sun, G., Thygesen, A. y Meyer, A. S. (junio, 2015). Acetate is a superior substrate for microbial fuel cell initiation preceding bioethanol effluent utilization. Applied microbiology and biotechnology, 99(11), 4905-4915. doi: 10.1007/s00253-015-6513-5. Superintendencia de Servicios Públicos Domiciliarios (SSPD). (2018). Disposición Final de Residuos Sólidos, Informe Nacional 2016. Recuperado de: https://www.superservicios.gov.co/noticias/disposición-final-residuos-sólidos-informe-nacional-2016. Superintendencia de Servicios Públicos Domiciliarios (SSPD). (2019). Disposición Final de Residuos Sólidos, Informe Nacional 2017. Recuperado de: https://www.superservicios.gov.co/publicaciones/acueducto-alcantarillado-y-aseo/disposición-final-residuos-sólidos-informe-2017. Tchobanoglous, G.; Theisen, H. y Vigil, S. (1994). Gestión integral de residuos sólidos. Ciudad de México. McGraw-Hill/ Interamericana de España S.A. Recuperado de: https://www.urbe.edu/UDWLibrary/InfoBook.do?id=4451. Tharali, A. D., Sain, N., y Osborne, W. J. (octubre, 2016). Microbial fuel cells in bioelectricity production. Frontiers in Life Science, 9 (4), 252–266. doi:10.1080/21553769.2016.1230787 Thygesen, A., Poulsen, F. W., Angelidaki, I., Min, B. y Bjerre, A. B. (noviembre, 2011). Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate. Biomass and bioenergy, 35(11), 4732-4739. doi: 10.1016/j.biombioe.2011.09.026. Torres Lozada, P., Barba Ho, L., Ojeda, C., Martínez, J., y Castaño, Y. (diciembre, 2014). Influencia de la edad de lixiviados sobre su composición fisicoquímica y su potencial de toxicidad. Revista U.D.C.A, 17(1), 245-255. Recuperado de: https://revistas.udca.edu.co/index.php/ruadc/article/view/960. Torretta, V., Ferronato, N., Katsoyiannis, I., Tolkou, A., y Airoldi, M. (enero, 2017). Novel and conventional technologies for landfill leachates treatment: A review. Sustainability, 9, (1). 9. doi: 10.3390/su9010009. Tsai, Y.-P. (marzo, 2005). Impact of flow velocity on the dynamic behaviour of biofilm bacteria. Biofouling, 21(5-6), 267–277.doi:10.1080/08927010500398633 Von Sperling, M. (2015). Activated Sludge and Aerobic Biofilm Reactors. IWA. Recuperado de: https://www.iwapublishing.com/books/9781843391654/activated-sludge-and-aerobic-biofilm-reactors. Wang, F., Smith, D. W., y El-Din, M. G. (diciembre, 2003). Application of advanced oxidation methods for landfill leachate treatment–A review. Journal of Environmental Engineering and Science, 2, (6). 413-427. doi:10.1139/s03-058. Watson, V. J. y Logan, B. E. (enero, 2011). Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochemistry Communications, 13 (1), 54-56. doi: 10.1016/j.elecom.2010.11.011. Wei, J., Liang, P. y Huang, X. (octubre, 2011). Recent progress in electrodes for microbial fuel cells. Bioresource technology, 102 (20), 9335-9344. Doi: 10.1016/j.biortech.2011.07.019. Yang, C., Chen, H., Zeng, G., Yu, G. y Luo, S. (agosto, 2010). Biomass accumulation and control strategies in gas biofiltration. Biotechnology Advances, 28(4), 531-540. doi: 10.1016/j.biotechadv.2010.04.002. Yates, M. D., Kiely, P. D., Call, D. F., Rismani-Yazdi, H., Bibby, K., Peccia, J., Regan, J.M. y Logan, B. E. (noviembre, 2012). Convergent development of anodic bacterial communities in microbial fuel cells. The ISME Journal, 6 (11), 2002-2013. doi: 10.1038/ismej.2012.42. You, S. J., Zhao, Q. L., Jiang, J. Q., Zhang, J. N., y Zhao, S. Q. (marzo, 2006). Sustainable approach for leachate treatment: electricity generation in microbial fuel cell. Journal of Environmental Science and Health Part A, 41, (12). 2721-2734. doi: 10.1080/10934520600966284. Youcai, Z. (julio, 2018). Pollution Control Technology for Leachate from Municipal Solid Waste: Landfills, Incineration Plants, and Transfer Stations. Butterworth-Heinemann. Recuperado de: https://www.elsevier.com/books/pollution-control-technology-for-leachate-from-municipal-solid-waste/youcai/978-0-12-815813-5. Yu, A.C., Loo, J.F., Yu, S., Kong, S.K. y Chan, T.F. (enero, 2014). Monitoring bacterial growth using tunable resistive pulse sensing with a pore-based technique. Applied Microbiology and Biotechnology. 98 (2), 855- 862. doi:10.1007/s00253-013-5377-9. Zhao, L., Li, J., Battaglia, F. y He, Z. (julio, 2016). Investigation of multiphysics in tubular microbial fuel cells by coupled computational fluid dynamics with multi-order Butler–Volmer reactions. Chemical Engineering Journal, 296, 377-385. doi: 10.1016/j.cej.2016.03.110. Zhang, J. N., Zhao, Q. L., You, S. J., Jiang, J. Q., y Ren, N. Q. (abril, 2008). Continuous electricity production from leachate in a novel upflow air-cathode membrane-free microbial fuel cell. Water Science and Technology, 57, (7). 1017-1021. doi: 10.2166/wst.2008.063. Zhou, M., Wang, H., Hassett, J.D., y Gu, T. (marzo, 2013). Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. Journal of Chemical Technology and Biotechnology, 88, (4). 508–518. doi:10.1002/jctb.4004. Zhu, I. y Getting, T. (Agosto, 2012). A review of nitrate reduction using inorganic materials. Environmental Technology Reviews, 1(1), 46-58. doi: 10.1080/09593330.2012.706646.Ingenieria AmbientalLixiviación de suelosBioreactoresHidrógenoElectrohidrogénesisResiduos sólidos municipalesSoil leachingBioreactorsHydrogenElectrohydrogenesis reactorDiseño de un reactor biológico de electrohidrogénesis para la reducción de materia orgánica y producción de hidrógeno a partir de lixiviados generados en sitios de disposición final de residuos sólidos municipalesTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Ingeniería AmbientalDepartamento de Energética y MecánicaFacultad de IngenieríaPublicationhttps://scholar.google.com/citations?hl=es&user=yS56RFsAAAAJ&view_op=list_works&gmla=AJsN-F4DxFUSv_SkhBieQX8VXZQQKapkbellzk5qlEvgTJvhWaKgEvhlncYMUhwNCFpAs2SFnfqXeWOUVa1VHEXHRS-WRagp2gvirtual::5122-10000-0002-0491-2053virtual::5122-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000446904virtual::5122-17be9a3ac-4d3e-40c5-bce9-5e05ca80ee3evirtual::5122-17be9a3ac-4d3e-40c5-bce9-5e05ca80ee3evirtual::5122-1TEXTT08758.pdf.txtT08758.pdf.txtExtracted texttext/plain217337https://red.uao.edu.co/bitstreams/03f462bf-6a9c-423b-a130-a59b39d8f78f/download9e0541360d2f710aa4e8d17bdb32e043MD59T8758A.xlsx.txtT8758A.xlsx.txtExtracted texttext/plain30975https://red.uao.edu.co/bitstreams/25e75663-2d6e-4de8-9ce2-2e14fcfe77aa/download6c2b855342307dc6e65fc9699ded46ebMD511TA8758.pdf.txtTA8758.pdf.txtExtracted texttext/plain44https://red.uao.edu.co/bitstreams/5c5ad520-8ed3-4e8b-9464-e2250ae702fd/download08d3ce43041881037e79467180fe1876MD512THUMBNAILT08758.pdf.jpgT08758.pdf.jpgGenerated Thumbnailimage/jpeg6278https://red.uao.edu.co/bitstreams/31636feb-9f33-42fb-8e4b-0e4fc999bc45/download17896a3a57243294e489196746f7f6fdMD510TA8758.pdf.jpgTA8758.pdf.jpgGenerated Thumbnailimage/jpeg15702https://red.uao.edu.co/bitstreams/51fc4417-d9b6-4123-8b38-4d2e3a69a0f7/download867c57afc0a7afcf3a8b144496d6969dMD513CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/8ea744a1-5ff1-4d57-b929-d2fc21421e14/download4460e5956bc1d1639be9ae6146a50347MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/634fad50-4df3-485e-ae6a-9cde2535a5cd/download20b5ba22b1117f71589c7318baa2c560MD55ORIGINALT08758.pdfT08758.pdfapplication/pdf2147431https://red.uao.edu.co/bitstreams/03f8ca28-a631-4c6f-9a96-085d9ead6c43/download97ffc9ab6e314adf08dacacc3a6d5282MD56T8758A.xlsxT8758A.xlsxapplication/vnd.openxmlformats-officedocument.spreadsheetml.sheet235885https://red.uao.edu.co/bitstreams/507a02d6-1e0a-4649-aaa0-92a1b5afcdf2/downloadfd2dd0c60db11928a7d8684d36c0bbedMD57TA8758.pdfTA8758.pdfapplication/pdf894332https://red.uao.edu.co/bitstreams/29131968-7f9f-4cd7-97fc-3e3f308640e5/downloadf79d32c68086dcf7e473e3e2f05c0863MD5810614/11595oai:red.uao.edu.co:10614/115952024-03-18 10:58:43.076https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K