Industrial decarbonization by a new energy baseline methodology. Case study

The main target of climate change policies in the majority of industrialized countries is to reduce energy consumption in their facilities, which would reduce the carbon emissions that are generated. Through this idea, energy management plans are developed, energy reduction targets are established,...

Full description

Autores:
Castrillón Mendoza, Rosaura del Pilar
Rey Hernández, Javier M.
Rey-Martínez, Francisco Javier
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13295
Acceso en línea:
https://hdl.handle.net/10614/13295
Palabra clave:
Norma ISO 50001
Industria-Consumo de energía
Normalización
Energy efficiency
Sustainable consumption
ISO standards 50001
Standardization
Rights
openAccess
License
Derechos reservados - MDPI, 2020
id REPOUAO2_0707a30130d9b175c1beecbec4fe4c74
oai_identifier_str oai:red.uao.edu.co:10614/13295
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Industrial decarbonization by a new energy baseline methodology. Case study
title Industrial decarbonization by a new energy baseline methodology. Case study
spellingShingle Industrial decarbonization by a new energy baseline methodology. Case study
Norma ISO 50001
Industria-Consumo de energía
Normalización
Energy efficiency
Sustainable consumption
ISO standards 50001
Standardization
title_short Industrial decarbonization by a new energy baseline methodology. Case study
title_full Industrial decarbonization by a new energy baseline methodology. Case study
title_fullStr Industrial decarbonization by a new energy baseline methodology. Case study
title_full_unstemmed Industrial decarbonization by a new energy baseline methodology. Case study
title_sort Industrial decarbonization by a new energy baseline methodology. Case study
dc.creator.fl_str_mv Castrillón Mendoza, Rosaura del Pilar
Rey Hernández, Javier M.
Rey-Martínez, Francisco Javier
dc.contributor.author.none.fl_str_mv Castrillón Mendoza, Rosaura del Pilar
dc.contributor.author.spa.fl_str_mv Rey Hernández, Javier M.
Rey-Martínez, Francisco Javier
dc.contributor.corporatename.spa.fl_str_mv Revista Sustainability
dc.subject.spa.fl_str_mv Norma ISO 50001
topic Norma ISO 50001
Industria-Consumo de energía
Normalización
Energy efficiency
Sustainable consumption
ISO standards 50001
Standardization
dc.subject.armarc.spa.fl_str_mv Industria-Consumo de energía
Normalización
dc.subject.proposal.eng.fl_str_mv Energy efficiency
Sustainable consumption
ISO standards 50001
Standardization
description The main target of climate change policies in the majority of industrialized countries is to reduce energy consumption in their facilities, which would reduce the carbon emissions that are generated. Through this idea, energy management plans are developed, energy reduction targets are established, and energy-efficient technologies are applied to achieve high energy savings, which are environmentally compatible. In order to evaluate the impact of their operations and investments, companies promote measures of performance in their energy management plans. An integral part of measuring energy performance is the establishment of energy baselines applicable to the complete facility that provide a basis for evaluating energy efficiency improvements and incorporating energy performance indicators. The implementation of energy management systems in accordance with the requirements of ISO Standard 50001 is a contribution to the aim and strategies for improving cleaner production in industries. This involves an option for the industry to establish energy benchmarks to evaluate performance, predict energy consumption, and align production with the lowest possible consumption of primary and secondary forms of energy. Ultimately, this goal should lead to the manufacturing of cleaner products that are environmentally friendly, energy efficient, and are in accordance with the global environmental targets of cleaner manufacturing. This paper discusses an alternative for establishing energy baselines for the industrial sector in which several products are produced from a single raw material, and we determined the energy consumption of each product and its impact on the overall efficiency of the industry at the same time. The method is applied to the plastic injection process and the result is an energy baseline (EBL) in accordance with the requirements of ISO 50001, which serves as a reference for determining energy savings. The EBL facilitates a reduction in energy consumption and greenhouse gas emissions in sectors such as plastics, a sector which accounts for 15% of Colombia’s manufacturing GDP
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-03-04
dc.date.accessioned.none.fl_str_mv 2021-09-30T17:24:01Z
dc.date.available.none.fl_str_mv 2021-09-30T17:24:01Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 20711050
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13295
dc.identifier.doi.none.fl_str_mv 10.3390/su12051960
identifier_str_mv 20711050
10.3390/su12051960
url https://hdl.handle.net/10614/13295
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Volumen 12, número 5 (2020)
dc.relation.citationendpage.spa.fl_str_mv 19
dc.relation.citationissue.spa.fl_str_mv 5
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 12
dc.relation.cites.eng.fl_str_mv Castrillón Mendoza, R., Rey Hernández, J.M., Rey Martínez, F.J. (2020). Industrial decarbonization by a new energy baseline methodology. Case study. Sustainability. Vol. 12 (5), pp. 1-19. https://doi.org/10.3390/su12051960
dc.relation.ispartofjournal.eng.fl_str_mv Sustainability
dc.relation.references.spa.fl_str_mv 1. EU EPBD 2018/844/EU. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX: 32018L0844&from=IT (accessed on 5 October 2019).
2. EU EPBD 2010/31/EU. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex% 3A32010L0031 (accessed on 5 October 2019).
3. EU EPBD 2012/27/EU. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid= 1399375464230&uri=CELEX:32012L0027 (accessed on 5 October 2019).
4. International Energy Agency (IEA). Tracking Industry. Available online: https://www.iea.org/reports/ tracking-industry-2019 (accessed on 5 October 2019).
5. International Energy Agency (IEA). Energy E ciency 2018—Analysis and Outlooks to 2040; International Energy Agency: Paris, France, 2017; pp. 1–143.
6. ISO. ISO Survey 2017. Available online: https://www.iso.org/the-iso-survey.html (accessed on 8 October 2019).
7. Chakraborty, D. Environmental Management Accounting (EMA) and Environmental Reporting in a Resource ConstrainedWorld: Challenges for CMAs. Manag. Account. 2017, 52, 36–42.
8. Dzene, I.; Polikarpova, I.; Zogla, L.; Rosa, M. Application of ISO 50001 for Implementation of Sustainable Energy Action Plans. Energy Procedia 2015, 72, 111–118. [CrossRef]
9. Deloitte LATCO Análisis Económico y de Industrias Latinoamérica La hora de las reformas estructurales. Available online: https://www2.deloitte.com/content/dam/Deloitte/cr/Documents/finance/Deloitte-Analisis- Economico-y-de-Industrias-Latinoamerica.pdf (accessed on 10 October 2019).
10. Wang, H.; Chen, W. Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe. Appl. Energy 2019, 238, 1563–1572. [CrossRef]
11. Barrett, J.; Cooper, T.; Hammond, G.P.; Pidgeon, N. Industrial energy, materials and products: UK decarbonisation challenges and opportunities. Appl. Therm. Eng. 2018, 136, 643–656. [CrossRef]
12. Arce, G. Plan de Acción Indicativo de Eficiencia Energética 2017–2022; Ministerio de Minas y Energía, República de Colombia: Bogota, Colombia, 2017.
13. Ley de 1715. Available online: http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.htm (accessed on 10 October 2019).
14. International Organization for Standards (ISO). ISO 50001: International Standard, Energy Management Systems—Requirements with Guidance for Use; International Organization for Standards: Geneva, Switzerland, 2011.
15. Rey-Hernández, J.M.; Velasco-Gómez, E.; San José-Alonso, J.F.; Tejero-González, A.; González-González, S.L.; Rey-Martínez, F.J. Monitoring Data Study of the Performance of Renewable Energy Systems in a Near Zero Energy Building in Spain: A Case Study. Energies 2018, 11, 2979. [CrossRef]
16. Castrillon, R.; González, A.; Ciro, E. Mejoramiento de la eficiencia energética en la industria del cemento por proceso húmedo a través de la implementación del sistema de gestión integral de la energía. Dyna 2013, 80, 115–123.
17. International Energy Agency (IEA). Indicadores de Eficiencia Energética: Bases Esenciales para el Establecimiento de Políticas; International Energy Agency: Paris, France, 2015; p. 182.
18. Rey-Hernández, J.M.; Velasco-Gómez, E.; San José-Alonso, J.F.; Tejero-González, A.; Rey-Martínez, F.J. Energy analysis at a near zero energy building. A case-study in Spain. Energies 2018, 11, 857. [CrossRef]
19. McKane, A.; Therkelsen, P.; Scodel, A.; Rao, P.; Aghajanzadeh, A.; Hirzel, S.; Zhang, R.; Prem, R.; Fossa, A.; Lazarevska, A.M.; et al. Predicting the quantifiable impacts of ISO 50001 on climate change mitigation. Energy Policy 2017, 107, 278–288. [CrossRef]
20. Kassai, M. Experimental investigation of carbon dioxide cross-contamination in sorption energy recovery wheel in ventilation system. Build. Serv. Eng. Res. Technol. 2018, 39, 463–474. [CrossRef]
21. Kassai, M.; Simonson, C.J. Experimental E ectiveness Investigation of Liquid-to-air Membrane Energy Exchangers under Low Heat Capacity Rates Conditions. Exp. Heat Transf. 2016, 29, 445–455. [CrossRef]
22. Kanneganti, H.; Gopalakrishnan, B.; Crowe, E.; Al-Shebeeb, O.; Yelamanchi, T.; Nimbarte, A.; Currie, K.; Abolhassani, A. Specification of energy assessment methodologies to satisfy ISO 50001 energy management standard. Sustain. Energy Technol. Assess. 2017, 23, 121–135. [CrossRef]
23. Pelser,W.A.; Vosloo, J.C.; Mathews, M.J. Results and prospects of applying an ISO 50001 based reporting system on a cement plant. J. Clean. Prod. 2018, 198, 642–653. [CrossRef]
24. Bonacina, F.; Corsini, A.; De Propris, L.; Marchegiani, A.; Mori, F. Industrial Energy Management Systems in Italy: State of the art and perspective. Energy Procedia 2015, 82, 562–569. [CrossRef]
25. Jovanovi´c, B.; Filipovi´c, J.; Baki´c, V. Energy management system implementation in Serbian manufacturing—Plan-Do-Check-Act cycle approach. J. Clean. Prod. 2017, 162, 1144–1156. [CrossRef]
26. Benedetti, M.; Cesarotti, V.; Introna, V. From energy targets setting to energy-aware operations control and back: An advanced methodology for energy e cient manufacturing. J. Clean. Prod. 2017, 167, 1518–1533. [CrossRef]
27. International Organization for Standards (ISO). ISO 50006: Energy Management Systems—Measuring Energy Performance Using Energy Baselines (EnB) and Energy Performance Indicators (EnPI)—General Principles and Guidance; International Organization for Standards: Geneva, Switzerland, 2016.
28. Department of Energy (DOE). Steps to Develop a Baseline: A Guide to Developing an Energy Use and Energy. Available online: https://www1.eere.energy.gov/manufacturing/resources/pdfs/leaderbaselinestepsguideline. pdf (accessed on 5 October 2019).
29. Castrillón, R.; Gonzalez, A. Metodología Para la Planificación Energética a Partir de la Norma ISO 50001; Universidad Autónoma de Occidente: Cali, Colombia, 2018; ISBN 978-958-8994-59-8.
30. Castrillón, R.; Quispe, E.C.; Gonzalez, A.; Urhan, M.; Fandiño, D. Metodología Para la Implementación del Sistema de Gestión Integral de la Energía. Fundamentos y Casos Prácticos; Universidad Autónoma de Occidente: Cali, Colombia, 2015; ISBN 9789588713540.
31. The Northwest Energy E ciency Alliance (NEEEA). Energy Baseline Methodologies for Industrial Facilities, 1st ed.; The Northwest Energy E ciency Alliance: Portland, OR, USA, 2011.
32. Gómez-Calvet, R.; Conesa, D.; Gómez-Calvet, A.R.; Tortosa-Ausina, E. Energy e ciency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures? Appl. Energy 2014, 132, 137–154. [CrossRef]
33. Morvay, Z.K.; Gvozdenac, D.D. Applied Industrial Energy and Environmental Management; John Wiley & Son: Hoboken, NJ, USA, 2009; ISBN 9780470697429.
34. Bogetoft, P.; Otto, L. Benchmarking with DEA, SFA, and R; Springer: Berlin, Germany, 2011; ISBN 978-1-4419-7961-2.
35. Sakamoto, T.; Takase, K.; Matsuhashi, R.; Managi, S. Baseline of the projection under a structural change in energy demand. Energy Policy 2016, 98, 274–289. [CrossRef]
36. Marina Domingo, A.M.; Rey-Hernández, J.M.; San José Alonso, J.F.; Crespo, R.M.; Rey Martínez, F.J. Energy e ciency analysis carried out by installing district heating on a university campus. A case study in Spain. Energies 2018, 11, 2826. [CrossRef]
37. Jentsch, M.F.; Bahaj, A.S.; James, P.A.B. Climate change future proofing of buildings-Generation and assessment of building simulation weather files. Energy Build. 2008, 40, 2148–2168. [CrossRef]
38. Sagastume Gutiérrez, A.; Cabello Eras, J.J.; Sousa Santos,V.; Hernández Herrera, H.; Hens, L.; Vandecasteele, C. Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia. J. Clean. Prod. 2018, 198, 1443–1458. [CrossRef]
39. Prias, O.; Campos, J.; Rojas, D.; Palencia, A. Implementación de un Sistestema de Gestión de la Energía. Guía con Base en ISO50001. 2013. Available online: http://reciee.com/pdf/2013%20-%20Implementaci%C3%B3n%20SGIE,%20Gu%C3%ADa%20con%20Base%20ISO%2050001%20(1).pdf (accessed on 15 October 2019).
40. Allaire, J.J.; Team, R.C. RStudio IDE for R. Available online: https://rstudio.com/ (accessed on 19 December 2019).
41. Vargas Isaza, C.A. Consumo de Energía en la Industria del Plástico: Revisión de Estudios Realizados; Instituto Tecnológico Metropolitano: Medellín, Colombia, 2015; Volume 1.
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 2020
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 19 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.publisher.place.eng.fl_str_mv Basel, Switzerland
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/cc92ebd8-5288-4f52-80d5-54a87f3d63fb/download
https://red.uao.edu.co/bitstreams/d6d05446-3316-4b6a-9c05-10305b271a07/download
https://red.uao.edu.co/bitstreams/766ad717-13fb-43a6-b6e0-ffce1c055ae1/download
https://red.uao.edu.co/bitstreams/834af5ae-cb62-4653-b40a-1ceeabf08a55/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
0b5e73e346c367a7ff7368dfaadc5112
90bffa6d077f3c243d292f9418749063
2c10ac63a987d0736c73a0a5774b9b37
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260184707497984
spelling Castrillón Mendoza, Rosaura del Pilarvirtual::1270-1Rey Hernández, Javier M.a215a870b0b0a7b3c822e6a3de651d0aRey-Martínez, Francisco Javier5dd37f97688762fed5c230c2ff7274a5Revista Sustainability2021-09-30T17:24:01Z2021-09-30T17:24:01Z2020-03-0420711050https://hdl.handle.net/10614/1329510.3390/su12051960The main target of climate change policies in the majority of industrialized countries is to reduce energy consumption in their facilities, which would reduce the carbon emissions that are generated. Through this idea, energy management plans are developed, energy reduction targets are established, and energy-efficient technologies are applied to achieve high energy savings, which are environmentally compatible. In order to evaluate the impact of their operations and investments, companies promote measures of performance in their energy management plans. An integral part of measuring energy performance is the establishment of energy baselines applicable to the complete facility that provide a basis for evaluating energy efficiency improvements and incorporating energy performance indicators. The implementation of energy management systems in accordance with the requirements of ISO Standard 50001 is a contribution to the aim and strategies for improving cleaner production in industries. This involves an option for the industry to establish energy benchmarks to evaluate performance, predict energy consumption, and align production with the lowest possible consumption of primary and secondary forms of energy. Ultimately, this goal should lead to the manufacturing of cleaner products that are environmentally friendly, energy efficient, and are in accordance with the global environmental targets of cleaner manufacturing. This paper discusses an alternative for establishing energy baselines for the industrial sector in which several products are produced from a single raw material, and we determined the energy consumption of each product and its impact on the overall efficiency of the industry at the same time. The method is applied to the plastic injection process and the result is an energy baseline (EBL) in accordance with the requirements of ISO 50001, which serves as a reference for determining energy savings. The EBL facilitates a reduction in energy consumption and greenhouse gas emissions in sectors such as plastics, a sector which accounts for 15% of Colombia’s manufacturing GDP19 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos reservados - MDPI, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Norma ISO 50001Industria-Consumo de energíaNormalizaciónEnergy efficiencySustainable consumptionISO standards 50001StandardizationIndustrial decarbonization by a new energy baseline methodology. Case studyArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Volumen 12, número 5 (2020)195112Castrillón Mendoza, R., Rey Hernández, J.M., Rey Martínez, F.J. (2020). Industrial decarbonization by a new energy baseline methodology. Case study. Sustainability. Vol. 12 (5), pp. 1-19. https://doi.org/10.3390/su12051960Sustainability1. EU EPBD 2018/844/EU. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX: 32018L0844&from=IT (accessed on 5 October 2019).2. EU EPBD 2010/31/EU. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex% 3A32010L0031 (accessed on 5 October 2019).3. EU EPBD 2012/27/EU. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid= 1399375464230&uri=CELEX:32012L0027 (accessed on 5 October 2019).4. International Energy Agency (IEA). Tracking Industry. Available online: https://www.iea.org/reports/ tracking-industry-2019 (accessed on 5 October 2019).5. International Energy Agency (IEA). Energy E ciency 2018—Analysis and Outlooks to 2040; International Energy Agency: Paris, France, 2017; pp. 1–143.6. ISO. ISO Survey 2017. Available online: https://www.iso.org/the-iso-survey.html (accessed on 8 October 2019).7. Chakraborty, D. Environmental Management Accounting (EMA) and Environmental Reporting in a Resource ConstrainedWorld: Challenges for CMAs. Manag. Account. 2017, 52, 36–42.8. Dzene, I.; Polikarpova, I.; Zogla, L.; Rosa, M. Application of ISO 50001 for Implementation of Sustainable Energy Action Plans. Energy Procedia 2015, 72, 111–118. [CrossRef]9. Deloitte LATCO Análisis Económico y de Industrias Latinoamérica La hora de las reformas estructurales. Available online: https://www2.deloitte.com/content/dam/Deloitte/cr/Documents/finance/Deloitte-Analisis- Economico-y-de-Industrias-Latinoamerica.pdf (accessed on 10 October 2019).10. Wang, H.; Chen, W. Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe. Appl. Energy 2019, 238, 1563–1572. [CrossRef]11. Barrett, J.; Cooper, T.; Hammond, G.P.; Pidgeon, N. Industrial energy, materials and products: UK decarbonisation challenges and opportunities. Appl. Therm. Eng. 2018, 136, 643–656. [CrossRef]12. Arce, G. Plan de Acción Indicativo de Eficiencia Energética 2017–2022; Ministerio de Minas y Energía, República de Colombia: Bogota, Colombia, 2017.13. Ley de 1715. Available online: http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.htm (accessed on 10 October 2019).14. International Organization for Standards (ISO). ISO 50001: International Standard, Energy Management Systems—Requirements with Guidance for Use; International Organization for Standards: Geneva, Switzerland, 2011.15. Rey-Hernández, J.M.; Velasco-Gómez, E.; San José-Alonso, J.F.; Tejero-González, A.; González-González, S.L.; Rey-Martínez, F.J. Monitoring Data Study of the Performance of Renewable Energy Systems in a Near Zero Energy Building in Spain: A Case Study. Energies 2018, 11, 2979. [CrossRef]16. Castrillon, R.; González, A.; Ciro, E. Mejoramiento de la eficiencia energética en la industria del cemento por proceso húmedo a través de la implementación del sistema de gestión integral de la energía. Dyna 2013, 80, 115–123.17. International Energy Agency (IEA). Indicadores de Eficiencia Energética: Bases Esenciales para el Establecimiento de Políticas; International Energy Agency: Paris, France, 2015; p. 182.18. Rey-Hernández, J.M.; Velasco-Gómez, E.; San José-Alonso, J.F.; Tejero-González, A.; Rey-Martínez, F.J. Energy analysis at a near zero energy building. A case-study in Spain. Energies 2018, 11, 857. [CrossRef]19. McKane, A.; Therkelsen, P.; Scodel, A.; Rao, P.; Aghajanzadeh, A.; Hirzel, S.; Zhang, R.; Prem, R.; Fossa, A.; Lazarevska, A.M.; et al. Predicting the quantifiable impacts of ISO 50001 on climate change mitigation. Energy Policy 2017, 107, 278–288. [CrossRef]20. Kassai, M. Experimental investigation of carbon dioxide cross-contamination in sorption energy recovery wheel in ventilation system. Build. Serv. Eng. Res. Technol. 2018, 39, 463–474. [CrossRef]21. Kassai, M.; Simonson, C.J. Experimental E ectiveness Investigation of Liquid-to-air Membrane Energy Exchangers under Low Heat Capacity Rates Conditions. Exp. Heat Transf. 2016, 29, 445–455. [CrossRef]22. Kanneganti, H.; Gopalakrishnan, B.; Crowe, E.; Al-Shebeeb, O.; Yelamanchi, T.; Nimbarte, A.; Currie, K.; Abolhassani, A. Specification of energy assessment methodologies to satisfy ISO 50001 energy management standard. Sustain. Energy Technol. Assess. 2017, 23, 121–135. [CrossRef]23. Pelser,W.A.; Vosloo, J.C.; Mathews, M.J. Results and prospects of applying an ISO 50001 based reporting system on a cement plant. J. Clean. Prod. 2018, 198, 642–653. [CrossRef]24. Bonacina, F.; Corsini, A.; De Propris, L.; Marchegiani, A.; Mori, F. Industrial Energy Management Systems in Italy: State of the art and perspective. Energy Procedia 2015, 82, 562–569. [CrossRef]25. Jovanovi´c, B.; Filipovi´c, J.; Baki´c, V. Energy management system implementation in Serbian manufacturing—Plan-Do-Check-Act cycle approach. J. Clean. Prod. 2017, 162, 1144–1156. [CrossRef]26. Benedetti, M.; Cesarotti, V.; Introna, V. From energy targets setting to energy-aware operations control and back: An advanced methodology for energy e cient manufacturing. J. Clean. Prod. 2017, 167, 1518–1533. [CrossRef]27. International Organization for Standards (ISO). ISO 50006: Energy Management Systems—Measuring Energy Performance Using Energy Baselines (EnB) and Energy Performance Indicators (EnPI)—General Principles and Guidance; International Organization for Standards: Geneva, Switzerland, 2016.28. Department of Energy (DOE). Steps to Develop a Baseline: A Guide to Developing an Energy Use and Energy. Available online: https://www1.eere.energy.gov/manufacturing/resources/pdfs/leaderbaselinestepsguideline. pdf (accessed on 5 October 2019).29. Castrillón, R.; Gonzalez, A. Metodología Para la Planificación Energética a Partir de la Norma ISO 50001; Universidad Autónoma de Occidente: Cali, Colombia, 2018; ISBN 978-958-8994-59-8.30. Castrillón, R.; Quispe, E.C.; Gonzalez, A.; Urhan, M.; Fandiño, D. Metodología Para la Implementación del Sistema de Gestión Integral de la Energía. Fundamentos y Casos Prácticos; Universidad Autónoma de Occidente: Cali, Colombia, 2015; ISBN 9789588713540.31. The Northwest Energy E ciency Alliance (NEEEA). Energy Baseline Methodologies for Industrial Facilities, 1st ed.; The Northwest Energy E ciency Alliance: Portland, OR, USA, 2011.32. Gómez-Calvet, R.; Conesa, D.; Gómez-Calvet, A.R.; Tortosa-Ausina, E. Energy e ciency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures? Appl. Energy 2014, 132, 137–154. [CrossRef]33. Morvay, Z.K.; Gvozdenac, D.D. Applied Industrial Energy and Environmental Management; John Wiley & Son: Hoboken, NJ, USA, 2009; ISBN 9780470697429.34. Bogetoft, P.; Otto, L. Benchmarking with DEA, SFA, and R; Springer: Berlin, Germany, 2011; ISBN 978-1-4419-7961-2.35. Sakamoto, T.; Takase, K.; Matsuhashi, R.; Managi, S. Baseline of the projection under a structural change in energy demand. Energy Policy 2016, 98, 274–289. [CrossRef]36. Marina Domingo, A.M.; Rey-Hernández, J.M.; San José Alonso, J.F.; Crespo, R.M.; Rey Martínez, F.J. Energy e ciency analysis carried out by installing district heating on a university campus. A case study in Spain. Energies 2018, 11, 2826. [CrossRef]37. Jentsch, M.F.; Bahaj, A.S.; James, P.A.B. Climate change future proofing of buildings-Generation and assessment of building simulation weather files. Energy Build. 2008, 40, 2148–2168. [CrossRef]38. Sagastume Gutiérrez, A.; Cabello Eras, J.J.; Sousa Santos,V.; Hernández Herrera, H.; Hens, L.; Vandecasteele, C. Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia. J. Clean. Prod. 2018, 198, 1443–1458. [CrossRef]39. Prias, O.; Campos, J.; Rojas, D.; Palencia, A. Implementación de un Sistestema de Gestión de la Energía. Guía con Base en ISO50001. 2013. Available online: http://reciee.com/pdf/2013%20-%20Implementaci%C3%B3n%20SGIE,%20Gu%C3%ADa%20con%20Base%20ISO%2050001%20(1).pdf (accessed on 15 October 2019).40. Allaire, J.J.; Team, R.C. RStudio IDE for R. Available online: https://rstudio.com/ (accessed on 19 December 2019).41. Vargas Isaza, C.A. Consumo de Energía en la Industria del Plástico: Revisión de Estudios Realizados; Instituto Tecnológico Metropolitano: Medellín, Colombia, 2015; Volume 1.GeneralPublicationfe76be56-3153-45da-89c5-fc9953b918d9virtual::1270-1fe76be56-3153-45da-89c5-fc9953b918d9virtual::1270-1https://scholar.google.es/citations?user=6O9VfcAAAAAJ&hl=esvirtual::1270-10000-0002-0421-7739virtual::1270-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000144886virtual::1270-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/cc92ebd8-5288-4f52-80d5-54a87f3d63fb/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALIndustrial decarbonization by a new energy-baseline methodology. Case study.pdfIndustrial decarbonization by a new energy-baseline methodology. Case study.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1477416https://red.uao.edu.co/bitstreams/d6d05446-3316-4b6a-9c05-10305b271a07/download0b5e73e346c367a7ff7368dfaadc5112MD53TEXTIndustrial decarbonization by a new energy-baseline methodology. Case study.pdf.txtIndustrial decarbonization by a new energy-baseline methodology. Case study.pdf.txtExtracted texttext/plain77298https://red.uao.edu.co/bitstreams/766ad717-13fb-43a6-b6e0-ffce1c055ae1/download90bffa6d077f3c243d292f9418749063MD54THUMBNAILIndustrial decarbonization by a new energy-baseline methodology. Case study.pdf.jpgIndustrial decarbonization by a new energy-baseline methodology. Case study.pdf.jpgGenerated Thumbnailimage/jpeg14518https://red.uao.edu.co/bitstreams/834af5ae-cb62-4653-b40a-1ceeabf08a55/download2c10ac63a987d0736c73a0a5774b9b37MD5510614/13295oai:red.uao.edu.co:10614/132952024-03-01 16:43:59.359https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2020open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K