Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts
This study presents further developments in Euler/Lagrange approach to calculate confined particle-laden flows in pneumatic conveying lines. Special emphasis is placed on influence of particle-wall collisions and wall roughness as well as inter particle collisions with possible agglomeration on deve...
- Autores:
-
Laín Beatove, Santiago
Sommerfeld, Martin
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2011
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11904
- Acceso en línea:
- http://hdl.handle.net/10614/11904
- Palabra clave:
- Transporte neumático
Dinámica de fluidos
Pneumatic-tube transportation
Fluid dynamics
Gas-solid flow
Inter-particle collisions
Pneumatic conveying
Turbulence
Wall roughness
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_066bd395ecee32606be1f215d26870db |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11904 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts |
title |
Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts |
spellingShingle |
Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts Transporte neumático Dinámica de fluidos Pneumatic-tube transportation Fluid dynamics Gas-solid flow Inter-particle collisions Pneumatic conveying Turbulence Wall roughness |
title_short |
Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts |
title_full |
Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts |
title_fullStr |
Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts |
title_full_unstemmed |
Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts |
title_sort |
Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts |
dc.creator.fl_str_mv |
Laín Beatove, Santiago Sommerfeld, Martin |
dc.contributor.author.none.fl_str_mv |
Laín Beatove, Santiago Sommerfeld, Martin |
dc.subject.armarc.spa.fl_str_mv |
Transporte neumático Dinámica de fluidos |
topic |
Transporte neumático Dinámica de fluidos Pneumatic-tube transportation Fluid dynamics Gas-solid flow Inter-particle collisions Pneumatic conveying Turbulence Wall roughness |
dc.subject.armarc.eng.fl_str_mv |
Pneumatic-tube transportation Fluid dynamics |
dc.subject.proposal.eng.fl_str_mv |
Gas-solid flow Inter-particle collisions Pneumatic conveying Turbulence Wall roughness |
description |
This study presents further developments in Euler/Lagrange approach to calculate confined particle-laden flows in pneumatic conveying lines. Special emphasis is placed on influence of particle-wall collisions and wall roughness as well as inter particle collisions with possible agglomeration on developing two-phase flow structure and resulting process parameters. Model sand numerical method were validated based on pressure drop measured along a 6 m horizontal channel, and agreement was found to be excellent for different particles sizes, mass loading and wall roughness. In a horizontal pipe flow, due to wall roughness induced focussing of particle trajectories towards the core of pipe, a secondary flow in pipe cross-section develops. Additional pressure drop due to particles in pipe flow was higher than that in channel due to different wall collision behaviour |
publishDate |
2011 |
dc.date.issued.none.fl_str_mv |
2011-02 |
dc.date.accessioned.none.fl_str_mv |
2020-02-14T21:13:26Z |
dc.date.available.none.fl_str_mv |
2020-02-14T21:13:26Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0022-4456 0975-1084 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11904 |
identifier_str_mv |
0022-4456 0975-1084 |
url |
http://hdl.handle.net/10614/11904 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.eng.fl_str_mv |
Journal of Scientific and Industrial Research. Volumen 70, número 2, (febrero 2011); páginas 129-134 |
dc.relation.citationendpage.none.fl_str_mv |
134 |
dc.relation.citationstartpage.none.fl_str_mv |
129 |
dc.relation.citationvolume.none.fl_str_mv |
70 |
dc.relation.cites.spa.fl_str_mv |
Laín Beatove, S., Sommerfeld, M. (2011). Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts. Journal of Scientific and Industrial Research. 70(2),129-134. http://hdl.handle.net/10614/11904 |
dc.relation.references.none.fl_str_mv |
Lain S, Modeling and Simulation of Bubble Induced Flows :[Universidad Autónoma de Occidente, Cali (Colombia)] 2007(in spanish) 91-93. Simonin O, 2000, Statistical and continuum modelling of turbulent reactive particulate flows: Part I. Theoretical derivationof dispersed phase Eulerian modelling from probability density function kinetic equation, Von Karman Institute for Fluid Mechanics Lecture Series, No. 2000-6 (Brussels, Belgium) 1-34. Zaichik L I, Pershukov V A, Kozelev M V & Vinberg A A,Modeling of dynamics, heat transfer, and combustion in twophase turbulent flows: 1. Isothermal flows, Exp Therm Fluid Sci, 15 (1997) 291-310. Laín S, On Modeling and Numerical Computation of Industrial Disperse Two-Phase Flow with the Euler-Lagrange Approach (Shaker Verlag, Aachen, Germany) 2010, 11-25. Sommerfeld M, Modellierung und numerische Berechnung von partikelbeladenen turbulenten Strömungen mit Hilfe des Euler/Lagrange-Verfahrens, Habilitationsschrift (Universität Erlangen-Nürnberg, Shaker Verlag, Aachen) 1996, 28-42. Gouesbet G & Berlemont A, Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows, Progr Energy & Combust Sci, 25 (1999) 133-159. Lain S & Sommerfeld M, Experimental and Numerical Study of the Motion of Non-Spherical Particles in Wall-Bounded Turbulent Flows [Universidad Autónoma de Occidente, Cali (Colombia)] 2008a, 25-34. Sommerfeld M, Analysis of collision effects for turbulent gasparticle flow in a horizontal channel: Part I. Particle transport,Int J Multiphase Flow, 29 (2003) 675-699. Lun C K K & Liu H S, Numerical simulation of dilute turbulent gas–solid flows in horizontal channels, Int J Multiphase Flow,23 (1997) 575-605. Laín S, Sommerfeld M & Kussin J, Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow, Int J Heat Fluid Flow, 23 (2002) 647-656. Sommerfeld M & J. Kussin J, Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel, Powder Technol, 142 (2004) 180-192. Lain S & Sommerfeld M, Euler/Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness, Powder Technol, 184 (2008b) 76-88. Kohnen G, Rüger M & Sommerfeld M, Convergence behaviour for numerical calculations by the Euler/Lagrange method for strongly coupled phases, in Numerical Methods in Multiphase Flows 1, FED-Vol 185, edited by C T Crowe et al (ASME Fluids Engineering Division Summer Meeting, Lake Tahoe,USA) 1994, 191-202. Sommerfeld M, Kohnen G & Rüger M, 1993, Some open questions and inconsistencies of Lagrangian Particle dispersion models, in 9th Symp on Turbulent Shear Flows (Kyoto,Japan) 1993, Paper 15.1, 1-10. Sommerfeld M & Huber N, Experimental analysis and modelling of particle-wall collisions, Int J Multiphase Flow, 25 (1999)1457-1489. Sommerfeld M, Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence, Int J Multiphase Flows, 27 (2001) 1828-1858. |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
6 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
CSIR-NIScPR |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/8636d42a-7f59-4c63-8fa0-82d883f14152/download https://red.uao.edu.co/bitstreams/c2def215-dc0a-4121-a7cf-73da4772e036/download https://red.uao.edu.co/bitstreams/6d78e913-4080-4188-96f3-5a3e9c0382e8/download https://red.uao.edu.co/bitstreams/dec44394-cc5a-4c23-9911-56cb2f95339d/download https://red.uao.edu.co/bitstreams/8ca59572-eef7-4e41-8273-ad4d37f4d03f/download |
bitstream.checksum.fl_str_mv |
41054b9d0254649f9f0b9b9a3ddbd1d7 5f98ab6697a2088ea75593af5b388f9d 4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 b26f8a76a8c39e5d7f0640d3d429a3d0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259881930129408 |
spelling |
Laín Beatove, Santiagovirtual::2554-1Sommerfeld, Martin4225b01693727b10986bcc383715fa70Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2020-02-14T21:13:26Z2020-02-14T21:13:26Z2011-020022-44560975-1084http://hdl.handle.net/10614/11904This study presents further developments in Euler/Lagrange approach to calculate confined particle-laden flows in pneumatic conveying lines. Special emphasis is placed on influence of particle-wall collisions and wall roughness as well as inter particle collisions with possible agglomeration on developing two-phase flow structure and resulting process parameters. Model sand numerical method were validated based on pressure drop measured along a 6 m horizontal channel, and agreement was found to be excellent for different particles sizes, mass loading and wall roughness. In a horizontal pipe flow, due to wall roughness induced focussing of particle trajectories towards the core of pipe, a secondary flow in pipe cross-section develops. Additional pressure drop due to particles in pipe flow was higher than that in channel due to different wall collision behaviourapplication/pdf6 páginasengCSIR-NIScPRJournal of Scientific and Industrial Research. Volumen 70, número 2, (febrero 2011); páginas 129-13413412970Laín Beatove, S., Sommerfeld, M. (2011). Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts. Journal of Scientific and Industrial Research. 70(2),129-134. http://hdl.handle.net/10614/11904Lain S, Modeling and Simulation of Bubble Induced Flows :[Universidad Autónoma de Occidente, Cali (Colombia)] 2007(in spanish) 91-93.Simonin O, 2000, Statistical and continuum modelling of turbulent reactive particulate flows: Part I. Theoretical derivationof dispersed phase Eulerian modelling from probability density function kinetic equation, Von Karman Institute for Fluid Mechanics Lecture Series, No. 2000-6 (Brussels, Belgium) 1-34.Zaichik L I, Pershukov V A, Kozelev M V & Vinberg A A,Modeling of dynamics, heat transfer, and combustion in twophase turbulent flows: 1. Isothermal flows, Exp Therm Fluid Sci, 15 (1997) 291-310.Laín S, On Modeling and Numerical Computation of Industrial Disperse Two-Phase Flow with the Euler-Lagrange Approach (Shaker Verlag, Aachen, Germany) 2010, 11-25.Sommerfeld M, Modellierung und numerische Berechnung von partikelbeladenen turbulenten Strömungen mit Hilfe des Euler/Lagrange-Verfahrens, Habilitationsschrift (Universität Erlangen-Nürnberg, Shaker Verlag, Aachen) 1996, 28-42.Gouesbet G & Berlemont A, Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows, Progr Energy & Combust Sci, 25 (1999) 133-159.Lain S & Sommerfeld M, Experimental and Numerical Study of the Motion of Non-Spherical Particles in Wall-Bounded Turbulent Flows [Universidad Autónoma de Occidente, Cali (Colombia)] 2008a, 25-34.Sommerfeld M, Analysis of collision effects for turbulent gasparticle flow in a horizontal channel: Part I. Particle transport,Int J Multiphase Flow, 29 (2003) 675-699.Lun C K K & Liu H S, Numerical simulation of dilute turbulent gas–solid flows in horizontal channels, Int J Multiphase Flow,23 (1997) 575-605.Laín S, Sommerfeld M & Kussin J, Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow, Int J Heat Fluid Flow, 23 (2002) 647-656.Sommerfeld M & J. Kussin J, Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel, Powder Technol, 142 (2004) 180-192.Lain S & Sommerfeld M, Euler/Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness, Powder Technol, 184 (2008b) 76-88.Kohnen G, Rüger M & Sommerfeld M, Convergence behaviour for numerical calculations by the Euler/Lagrange method for strongly coupled phases, in Numerical Methods in Multiphase Flows 1, FED-Vol 185, edited by C T Crowe et al (ASME Fluids Engineering Division Summer Meeting, Lake Tahoe,USA) 1994, 191-202.Sommerfeld M, Kohnen G & Rüger M, 1993, Some open questions and inconsistencies of Lagrangian Particle dispersion models, in 9th Symp on Turbulent Shear Flows (Kyoto,Japan) 1993, Paper 15.1, 1-10.Sommerfeld M & Huber N, Experimental analysis and modelling of particle-wall collisions, Int J Multiphase Flow, 25 (1999)1457-1489.Sommerfeld M, Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence, Int J Multiphase Flows, 27 (2001) 1828-1858.Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ductsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Transporte neumáticoDinámica de fluidosPneumatic-tube transportationFluid dynamicsGas-solid flowInter-particle collisionsPneumatic conveyingTurbulenceWall roughnessPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2554-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2554-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2554-10000-0002-0269-2608virtual::2554-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2554-1TEXTA0297_Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts.pdf.txtA0297_Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts.pdf.txtExtracted texttext/plain23449https://red.uao.edu.co/bitstreams/8636d42a-7f59-4c63-8fa0-82d883f14152/download41054b9d0254649f9f0b9b9a3ddbd1d7MD59THUMBNAILA0297_Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts.pdf.jpgA0297_Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts.pdf.jpgGenerated Thumbnailimage/jpeg16306https://red.uao.edu.co/bitstreams/c2def215-dc0a-4121-a7cf-73da4772e036/download5f98ab6697a2088ea75593af5b388f9dMD510CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/6d78e913-4080-4188-96f3-5a3e9c0382e8/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/dec44394-cc5a-4c23-9911-56cb2f95339d/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALA0297_Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts.pdfA0297_Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf258307https://red.uao.edu.co/bitstreams/8ca59572-eef7-4e41-8273-ad4d37f4d03f/downloadb26f8a76a8c39e5d7f0640d3d429a3d0MD5610614/11904oai:red.uao.edu.co:10614/119042024-03-07 08:08:36.798https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |