An enhanced shunt active filter based on synchronverter concept
This article proposes a shunt active filter (SAF) operating as a Synchronverter to enhance its performance, including the virtual inertia functionality. The SAF behaves as a voltage source with a low-impedance path for harmonic contents. Synchronverter behavior is used together with selective filter...
- Autores:
-
França, Bruno Wanderley
Aredes, Mauricio
da Silva, Leonardo F.
Gontijo, Gustavo F.
Tricarico, Thiago C.
Posada, Johnny
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13909
- Acceso en línea:
- https://hdl.handle.net/10614/13909
https://red.uao.edu.co/
- Palabra clave:
- Filtros eléctricos
Análisis armónico
Electrónica de potencia
Electric filters
Harmonic analysis
Power electronics
Active filters
Power quality
Static synchronous machines
Virtual inertia
- Rights
- openAccess
- License
- Derechos reservados - IEEE, 2022
id |
REPOUAO2_05bdbf58edfb1ebaf7fabd8869d1917a |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13909 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
An enhanced shunt active filter based on synchronverter concept |
title |
An enhanced shunt active filter based on synchronverter concept |
spellingShingle |
An enhanced shunt active filter based on synchronverter concept Filtros eléctricos Análisis armónico Electrónica de potencia Electric filters Harmonic analysis Power electronics Active filters Power quality Static synchronous machines Virtual inertia |
title_short |
An enhanced shunt active filter based on synchronverter concept |
title_full |
An enhanced shunt active filter based on synchronverter concept |
title_fullStr |
An enhanced shunt active filter based on synchronverter concept |
title_full_unstemmed |
An enhanced shunt active filter based on synchronverter concept |
title_sort |
An enhanced shunt active filter based on synchronverter concept |
dc.creator.fl_str_mv |
França, Bruno Wanderley Aredes, Mauricio da Silva, Leonardo F. Gontijo, Gustavo F. Tricarico, Thiago C. Posada, Johnny |
dc.contributor.author.none.fl_str_mv |
França, Bruno Wanderley Aredes, Mauricio da Silva, Leonardo F. Gontijo, Gustavo F. Tricarico, Thiago C. Posada, Johnny |
dc.subject.armarc.spa.fl_str_mv |
Filtros eléctricos Análisis armónico Electrónica de potencia |
topic |
Filtros eléctricos Análisis armónico Electrónica de potencia Electric filters Harmonic analysis Power electronics Active filters Power quality Static synchronous machines Virtual inertia |
dc.subject.armarc.eng.fl_str_mv |
Electric filters Harmonic analysis Power electronics |
dc.subject.proposal.eng.fl_str_mv |
Active filters Power quality Static synchronous machines Virtual inertia |
description |
This article proposes a shunt active filter (SAF) operating as a Synchronverter to enhance its performance, including the virtual inertia functionality. The SAF behaves as a voltage source with a low-impedance path for harmonic contents. Synchronverter behavior is used together with selective filtering through proportional-resonant controllers to provide selective harmonic filtering of the load current, selective harmonic blocking of the source current, and low-impedance path for nonselected harmonic contents from the load and the source currents. The virtual inertia functionality aims to contribute to frequency stability during power system transients. Besides filtering unbalanced and harmonic contents and compensating for reactive power, the SAF contributes to inertia response during frequency transients. A tuning design method is proposed to ensure stability and proper conditioning of the power-quality issues. The reduced quantity of parameters to be tuned is another advantage of the proposed controller. Simulation and experimental results validate the compensation performance of the SAF |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-05-25T15:22:23Z |
dc.date.available.none.fl_str_mv |
2022-05-25T15:22:23Z |
dc.date.issued.none.fl_str_mv |
2022-02 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
21686777 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13909 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
21686777 Universidad Autónoma de Occidente Repositorio Educativo Digital |
url |
https://hdl.handle.net/10614/13909 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
505 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationstartpage.spa.fl_str_mv |
494 |
dc.relation.citationvolume.spa.fl_str_mv |
10 |
dc.relation.cites.eng.fl_str_mv |
França, B. W., Aredes, M., da Silva, L. F., Gontijo, G.F., Tricarico, T.C., Posada, J. (2021). An enhanced shunt active filter based on synchronverter concept. IEEE. IEEE Journal of Emerging and Selected Topics in Power Electronics. Vol 10 (1), pp. 494-505 |
dc.relation.ispartofjournal.eng.fl_str_mv |
IEEE Journal of Emerging and Selected Topics in Power Electronics |
dc.relation.references.none.fl_str_mv |
[1] O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation,” Renew. Sustain. Energy Rev., vol. 36, pp. 428–439, Aug. 2014, doi: 10.1016/j.rser.2014.01.016. [2] O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management—Part II: System operation, power quality and protection,” Renew. Sustain. Energy Rev., vol. 36, pp. 440–451, Aug. 2014, doi: 10.1016/j.rser.2014.04.048. [3] Q.-C. Zhong, “Power-electronics-enabled autonomous power systems: Architecture and technical routes,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5907–5918, Jul. 2017, doi: 10.1109/TIE.2017.2677339. [4] J. A. S. de Olivindo and I. R. Machado, “Shunt active power filter for energy quality improvement in distributed generation systems,” in Proc. IEEE 26th Int. Symp. Ind. Electron. (ISIE), Feb. 2017, pp. 146–151, doi: 10.1109/ISIE.2017.8001238. [5] M. M. Hashempour, M. Savaghebi, J. C. Vasquez, and J. M. Guerrero, “A control architecture to coordinate distributed generators and active power filters coexisting in a microgrid,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2325–2336, Sep. 2016, doi: 10.1109/TSG.2015.2488980. [6] S. S. Seyedalipour and G. B. Gharehpetian, “A control method for stable operation of distributed generation resources with active power filter capability,” in Proc. 21st Conf. Electr. Power Distrib. Netw. Conf. (EPDC), Apr. 2016, pp. 227–232, doi: 10.1109/EPDC.2016.7514811. [7] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning. Hoboken, NJ, USA: Wiley, 2007. [8] R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, “Proportionalresonant controllers and filters for grid-connected voltage-source converters,” IEE Proc. Electr. Power Appl., vol. 153, no. 5, pp. 750–762, Sep. 2006, doi: 10.1049/ip-epa:20060008. [9] J. He, Y. W. Li, and F. Blaabjerg, “Flexible microgrid power quality enhancement using adaptive hybrid voltage and current controller,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2784–2794, Jun. 2014, doi: 10.1109/TIE.2013.2276774. [10] J. He, Y. W. Li, and M. S. Munir, “A flexible harmonic control approach through voltage-controlled DG–grid interfacing converters,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 444–455, Jan. 2012, doi: 10.1109/TIE.2011.2141098. [11] Y. W. Li and J. He, “Distribution system harmonic compensation methods: An overview of DG-interfacing inverters,” IEEE Ind. Electron. Mag., vol. 8, no. 4, pp. 18–31, Dec. 2014, doi: 10.1109/MIE.2013.2295421. [12] Q.-C. Zhong and G. Weiss, “Synchronverters: Inverters that mimic synchronous generators,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1259–1267, Apr. 2011, doi: 10.1109/TIE.2010.2048839. [13] D. Chen, Y. Xu, and A. Q. Huang, “Integration of DC microgrids as virtual synchronous machines into the AC grid,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7455–7466, Sep. 2017, doi: 10.1109/TIE.2017.2674621. [14] Z. K. Shuai, Y. Hu, Y. L. Peng, C. Tu, and Z. J. Shen, “Dynamic stability analysis of synchronverter-dominated microgrid based on bifurcation theory,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7467–7477, Sep. 2017, doi: 10.1109/TIE.2017.2652387. [15] P. Piya and M. Karimi-Ghartemani, “A stability analysis and efficiency improvement of synchronverter,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Mar. 2016, pp. 3165–3171, doi: 10.1109/APEC.2016.7468317. [16] R. Rosso, S. Engelken, and M. Liserre, “Robust stability analysis of synchronverters operating in parallel,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 11309–11319, Nov. 2019, doi: 10.1109/TPEL.2019.2896707. [17] V. Natarajan and G. Weiss, “Synchronverters with better stability due to virtual inductors, virtual capacitors, and anti-windup,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5994–6004, Jul. 2017, doi: 10.1109/TIE.2017.2674611. [18] X. Meng, J. Liu, and Z. Liu, “A generalized droop control for gridsupporting inverter based on comparison between traditional droop control and virtual synchronous generator control,” IEEE Trans. Power Electron., vol. 34, no. 6, pp. 5416–5438, Jun. 2019, doi: 10.1109/TPEL.2018.2868722. [19] Y. Liu, S. Yang, D. Gunasekaran, and F. Z. Peng, “STATCOM-based virtual inertia control for wind power generation,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Mar. 2015, pp. 2189–2194, doi: 10.1109/APEC.2015.7104652. [20] E. L. Van Emmerik, B. W. França, and M. Aredes, “A synchronverter to damp electromechanical oscillations in the Brazilian transmission grid,” in Proc. IEEE 24th Int. Symp. Ind. Electron. (ISIE), Jun. 2015, pp. 221–226, doi: 10.1109/ISIE.2015.7281472. [21] G. Delille, B. Francois, and G. Malarange, “Dynamic frequency control support: A virtual inertia provided by distributed energy storage to isolated power systems,” in Proc. IEEE PES Innov. Smart Grid Technol. Conf. Eur. (ISGT Europe), Oct. 2010, pp. 1–8, doi: 10.1109/ISGTEUROPE.2010.5638887. [22] H. Zhang, J.-P. Hasler, N. Johansson, L. Angquist, and H.-P. Nee, “Frequency response improvement with synchronous condenser and power electronics converters,” in Proc. IEEE 3rd Int. Future Energy Electron. Conf. ECCE Asia (IFEEC ECCE Asia), Kaohsiung, Taiwan, Jun. 2017, pp. 1002–1007, doi: 10.1109/IFEEC.2017.7992178. [23] A. G. Yepes, F. D. Freijedo, Ó. López, and J. Doval-Gandoy, “Analysis and design of resonant current controllers for voltage-source converters by means of Nyquist diagrams and sensitivity function,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5231–5250, Nov. 2011, doi: 10.1109/TIE.2011.2126535. |
dc.rights.spa.fl_str_mv |
Derechos reservados - IEEE, 2022 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - IEEE, 2022 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
IEEE |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/b13434fd-7124-4bd2-9fd6-4b8ef753dd31/download https://dspace7-uao.metacatalogo.com/bitstreams/1c99d13b-0e43-4b9d-82fa-3aa773b06d96/download https://dspace7-uao.metacatalogo.com/bitstreams/01822748-95e8-45ee-8c0c-4d32c32be372/download https://dspace7-uao.metacatalogo.com/bitstreams/f876cd77-7f4e-4344-8e59-dee15c81a40f/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 3ce44959eb582deeedf4ba91e67ceac4 8ec887a446103238e750b3e631b1bdf6 1be5a43bf648f638cc2ff07ea818e694 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259899491680256 |
spelling |
França, Bruno Wanderley1b8b396d204785df6e2dfbd0e6ff80faAredes, Mauricio815d37eb50b29148a5b79f1f8f0cae4bda Silva, Leonardo F.76bf5c424a1b36cbe09495b87c2aba44Gontijo, Gustavo F.2363abba0364c54d8ed4bd05faa3fb7dTricarico, Thiago C.c2393eb8684d6a313a254b1502f3f308Posada, Johnnyba0b927fb5d5b9e299f7bd413f450ade2022-05-25T15:22:23Z2022-05-25T15:22:23Z2022-0221686777https://hdl.handle.net/10614/13909Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/This article proposes a shunt active filter (SAF) operating as a Synchronverter to enhance its performance, including the virtual inertia functionality. The SAF behaves as a voltage source with a low-impedance path for harmonic contents. Synchronverter behavior is used together with selective filtering through proportional-resonant controllers to provide selective harmonic filtering of the load current, selective harmonic blocking of the source current, and low-impedance path for nonselected harmonic contents from the load and the source currents. The virtual inertia functionality aims to contribute to frequency stability during power system transients. Besides filtering unbalanced and harmonic contents and compensating for reactive power, the SAF contributes to inertia response during frequency transients. A tuning design method is proposed to ensure stability and proper conditioning of the power-quality issues. The reduced quantity of parameters to be tuned is another advantage of the proposed controller. Simulation and experimental results validate the compensation performance of the SAF12 páginasapplication/pdfengIEEEDerechos reservados - IEEE, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2An enhanced shunt active filter based on synchronverter conceptArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Filtros eléctricosAnálisis armónicoElectrónica de potenciaElectric filtersHarmonic analysisPower electronicsActive filtersPower qualityStatic synchronous machinesVirtual inertia505149410França, B. W., Aredes, M., da Silva, L. F., Gontijo, G.F., Tricarico, T.C., Posada, J. (2021). An enhanced shunt active filter based on synchronverter concept. IEEE. IEEE Journal of Emerging and Selected Topics in Power Electronics. Vol 10 (1), pp. 494-505IEEE Journal of Emerging and Selected Topics in Power Electronics[1] O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation,” Renew. Sustain. Energy Rev., vol. 36, pp. 428–439, Aug. 2014, doi: 10.1016/j.rser.2014.01.016.[2] O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management—Part II: System operation, power quality and protection,” Renew. Sustain. Energy Rev., vol. 36, pp. 440–451, Aug. 2014, doi: 10.1016/j.rser.2014.04.048.[3] Q.-C. Zhong, “Power-electronics-enabled autonomous power systems: Architecture and technical routes,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5907–5918, Jul. 2017, doi: 10.1109/TIE.2017.2677339.[4] J. A. S. de Olivindo and I. R. Machado, “Shunt active power filter for energy quality improvement in distributed generation systems,” in Proc. IEEE 26th Int. Symp. Ind. Electron. (ISIE), Feb. 2017, pp. 146–151, doi: 10.1109/ISIE.2017.8001238.[5] M. M. Hashempour, M. Savaghebi, J. C. Vasquez, and J. M. Guerrero, “A control architecture to coordinate distributed generators and active power filters coexisting in a microgrid,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2325–2336, Sep. 2016, doi: 10.1109/TSG.2015.2488980.[6] S. S. Seyedalipour and G. B. Gharehpetian, “A control method for stable operation of distributed generation resources with active power filter capability,” in Proc. 21st Conf. Electr. Power Distrib. Netw. Conf. (EPDC), Apr. 2016, pp. 227–232, doi: 10.1109/EPDC.2016.7514811.[7] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning. Hoboken, NJ, USA: Wiley, 2007.[8] R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, “Proportionalresonant controllers and filters for grid-connected voltage-source converters,” IEE Proc. Electr. Power Appl., vol. 153, no. 5, pp. 750–762, Sep. 2006, doi: 10.1049/ip-epa:20060008.[9] J. He, Y. W. Li, and F. Blaabjerg, “Flexible microgrid power quality enhancement using adaptive hybrid voltage and current controller,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2784–2794, Jun. 2014, doi: 10.1109/TIE.2013.2276774.[10] J. He, Y. W. Li, and M. S. Munir, “A flexible harmonic control approach through voltage-controlled DG–grid interfacing converters,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 444–455, Jan. 2012, doi: 10.1109/TIE.2011.2141098.[11] Y. W. Li and J. He, “Distribution system harmonic compensation methods: An overview of DG-interfacing inverters,” IEEE Ind. Electron. Mag., vol. 8, no. 4, pp. 18–31, Dec. 2014, doi: 10.1109/MIE.2013.2295421.[12] Q.-C. Zhong and G. Weiss, “Synchronverters: Inverters that mimic synchronous generators,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1259–1267, Apr. 2011, doi: 10.1109/TIE.2010.2048839.[13] D. Chen, Y. Xu, and A. Q. Huang, “Integration of DC microgrids as virtual synchronous machines into the AC grid,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7455–7466, Sep. 2017, doi: 10.1109/TIE.2017.2674621.[14] Z. K. Shuai, Y. Hu, Y. L. Peng, C. Tu, and Z. J. Shen, “Dynamic stability analysis of synchronverter-dominated microgrid based on bifurcation theory,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7467–7477, Sep. 2017, doi: 10.1109/TIE.2017.2652387.[15] P. Piya and M. Karimi-Ghartemani, “A stability analysis and efficiency improvement of synchronverter,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Mar. 2016, pp. 3165–3171, doi: 10.1109/APEC.2016.7468317.[16] R. Rosso, S. Engelken, and M. Liserre, “Robust stability analysis of synchronverters operating in parallel,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 11309–11319, Nov. 2019, doi: 10.1109/TPEL.2019.2896707.[17] V. Natarajan and G. Weiss, “Synchronverters with better stability due to virtual inductors, virtual capacitors, and anti-windup,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5994–6004, Jul. 2017, doi: 10.1109/TIE.2017.2674611.[18] X. Meng, J. Liu, and Z. Liu, “A generalized droop control for gridsupporting inverter based on comparison between traditional droop control and virtual synchronous generator control,” IEEE Trans. Power Electron., vol. 34, no. 6, pp. 5416–5438, Jun. 2019, doi: 10.1109/TPEL.2018.2868722.[19] Y. Liu, S. Yang, D. Gunasekaran, and F. Z. Peng, “STATCOM-based virtual inertia control for wind power generation,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Mar. 2015, pp. 2189–2194, doi: 10.1109/APEC.2015.7104652.[20] E. L. Van Emmerik, B. W. França, and M. Aredes, “A synchronverter to damp electromechanical oscillations in the Brazilian transmission grid,” in Proc. IEEE 24th Int. Symp. Ind. Electron. (ISIE), Jun. 2015, pp. 221–226, doi: 10.1109/ISIE.2015.7281472.[21] G. Delille, B. Francois, and G. Malarange, “Dynamic frequency control support: A virtual inertia provided by distributed energy storage to isolated power systems,” in Proc. IEEE PES Innov. Smart Grid Technol. Conf. Eur. (ISGT Europe), Oct. 2010, pp. 1–8, doi: 10.1109/ISGTEUROPE.2010.5638887.[22] H. Zhang, J.-P. Hasler, N. Johansson, L. Angquist, and H.-P. Nee, “Frequency response improvement with synchronous condenser and power electronics converters,” in Proc. IEEE 3rd Int. Future Energy Electron. Conf. ECCE Asia (IFEEC ECCE Asia), Kaohsiung, Taiwan, Jun. 2017, pp. 1002–1007, doi: 10.1109/IFEEC.2017.7992178.[23] A. G. Yepes, F. D. Freijedo, Ó. López, and J. Doval-Gandoy, “Analysis and design of resonant current controllers for voltage-source converters by means of Nyquist diagrams and sensitivity function,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5231–5250, Nov. 2011, doi: 10.1109/TIE.2011.2126535.Comunidad generalPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/b13434fd-7124-4bd2-9fd6-4b8ef753dd31/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALAn enhanced Shunt Active Filter based on Synchronverter concept.pdfAn enhanced Shunt Active Filter based on Synchronverter concept.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf3458168https://dspace7-uao.metacatalogo.com/bitstreams/1c99d13b-0e43-4b9d-82fa-3aa773b06d96/download3ce44959eb582deeedf4ba91e67ceac4MD53TEXTAn enhanced Shunt Active Filter based on Synchronverter concept.pdf.txtAn enhanced Shunt Active Filter based on Synchronverter concept.pdf.txtExtracted texttext/plain61409https://dspace7-uao.metacatalogo.com/bitstreams/01822748-95e8-45ee-8c0c-4d32c32be372/download8ec887a446103238e750b3e631b1bdf6MD54THUMBNAILAn enhanced Shunt Active Filter based on Synchronverter concept.pdf.jpgAn enhanced Shunt Active Filter based on Synchronverter concept.pdf.jpgGenerated Thumbnailimage/jpeg18920https://dspace7-uao.metacatalogo.com/bitstreams/f876cd77-7f4e-4344-8e59-dee15c81a40f/download1be5a43bf648f638cc2ff07ea818e694MD5510614/13909oai:dspace7-uao.metacatalogo.com:10614/139092024-01-19 16:07:52.396https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - IEEE, 2022open.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |