Geopolymeric concretes based on fly ash with high unburned content

This study used fly ash (FA) with a high amount of unburned content (21%) to produce simple (Geo FA) and binary (Geo FA/granulated blast furnace slag [GBFS]) geopolymeric concretes. The effect on the mechanical strength of the SiO2/Al2O3 and Na2O/SiO2 molar ratios and the percentage of GBFS (% GBFS)...

Full description

Autores:
Gordillo Suárez, Marisol
Mejía De Gutierrez, Ruby
Valencia Saavedra, William
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11402
Acceso en línea:
http://hdl.handle.net/10614/11402
https://doi.org/10.1016/j.conbuildmat.2018.01.071
Palabra clave:
Agregados (Materiales de construcción)
Aggregates (Building materials)
Fly ash
Granulated blast furnace slag
Geopolymer concrete
Mechanical properties
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_04e287e74207bb590c15e4d6c48aa302
oai_identifier_str oai:red.uao.edu.co:10614/11402
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Geopolymeric concretes based on fly ash with high unburned content
title Geopolymeric concretes based on fly ash with high unburned content
spellingShingle Geopolymeric concretes based on fly ash with high unburned content
Agregados (Materiales de construcción)
Aggregates (Building materials)
Fly ash
Granulated blast furnace slag
Geopolymer concrete
Mechanical properties
title_short Geopolymeric concretes based on fly ash with high unburned content
title_full Geopolymeric concretes based on fly ash with high unburned content
title_fullStr Geopolymeric concretes based on fly ash with high unburned content
title_full_unstemmed Geopolymeric concretes based on fly ash with high unburned content
title_sort Geopolymeric concretes based on fly ash with high unburned content
dc.creator.fl_str_mv Gordillo Suárez, Marisol
Mejía De Gutierrez, Ruby
Valencia Saavedra, William
dc.contributor.author.none.fl_str_mv Gordillo Suárez, Marisol
Mejía De Gutierrez, Ruby
Valencia Saavedra, William
dc.subject.armarc.spa.fl_str_mv Agregados (Materiales de construcción)
topic Agregados (Materiales de construcción)
Aggregates (Building materials)
Fly ash
Granulated blast furnace slag
Geopolymer concrete
Mechanical properties
dc.subject.armarc.eng.fl_str_mv Aggregates (Building materials)
dc.subject.proposal.eng.fl_str_mv Fly ash
Granulated blast furnace slag
Geopolymer concrete
Mechanical properties
description This study used fly ash (FA) with a high amount of unburned content (21%) to produce simple (Geo FA) and binary (Geo FA/granulated blast furnace slag [GBFS]) geopolymeric concretes. The effect on the mechanical strength of the SiO2/Al2O3 and Na2O/SiO2 molar ratios and the percentage of GBFS (% GBFS) added to the blend were determined. Using the optimal parameters of alkaline activation, concretes with strengths up to 48 MPa were obtained after 28 days of curing at room temperature (25 °C). The results of this study are complemented by the microstructural characterisation of the geopolymeric pastes using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) techniques
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-03-20
dc.date.accessioned.none.fl_str_mv 2019-11-05T20:56:18Z
dc.date.available.none.fl_str_mv 2019-11-05T20:56:18Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0950-0618
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11402
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.conbuildmat.2018.01.071
identifier_str_mv 0950-0618
url http://hdl.handle.net/10614/11402
https://doi.org/10.1016/j.conbuildmat.2018.01.071
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 706
dc.relation.citationstartpage.none.fl_str_mv 697
dc.relation.citationvolume.none.fl_str_mv 165
dc.relation.cites.eng.fl_str_mv Valencia-Saavedra, W., de Gutiérrez, R. M., & Gordillo, M. (2018). Geopolymeric concretes based on fly ash with high unburned content. Construction and Building Materials. 165, 697-706. https://doi.org/10.1016/j.conbuildmat.2018.01.071
dc.relation.ispartofjournal.eng.fl_str_mv Construction and Building Materials
dc.relation.references.none.fl_str_mv [1] S. Donatello, C. Kuenzel, A. Palomo, A. Fernández-Jiménez, High temperatura resistance of a very high volume fly ash cement paste, Cem. Concr. Compos. 45 (2014) 234–242, https://doi.org/10.1016/j.cemconcomp.2013.09.010.
[2] A. Fernández-Jiménez, A. Palomo, Composition and microstructure of alkali activated fly ash binder: effect of the activator, Cem. Concr. Res. 35 (2005) 1984–1992, https://doi.org/10.1016/j.cemconres.2005.03.003.
[3] V.D. Glukhovsky, G.S. Rostovskaja, G.V. Rumyna, High strength slag-alkaline cements, in: Proc. 7th Int. Congr. Chem. Cem. Paris, 1980, pp. 164–168.
[4] W.K.W. Lee, J.S.J. van Deventer, Structural reorganisation of class F fly ash in alkaline silicate solutions, Colloids Surf. Physicochem. Eng. Asp. 211 (2002) 49–66, https://doi.org/10.1016/S0927-7757(02)00237-6.
[5] V.M. Malhotra, CANMET/ACI: Eighth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, 2004.
[6] F. Puertas, A. Fernández-Jiménez, Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes, Cem. Concr. Compos. 25 (2003) 287–292, https://doi.org/10.1016/S0958-9465(02)00059-8.
[7] Z. Xie, Y. Xi, Hardening mechanisms of an alkaline-activated class F fly ash, Cem. Concr. Res. 31 (2001) 1245–1249, (01)00571-3.
[8] A. Palomo, M.W. Grutzeck, M.T. Blanco, Alkali-activated fly ashes: a cement for the future, Cem. Concr. Res. 29 (1999) 1323–1329, https://doi.org/10.1016/S0008-8846(98)00243-9.
[9] D.M. Roy, Alkali-activated cements opportunities and challenges, Cem. Concr. Res. 29 (1999) 249–254, https://doi.org/10.1016/S0008-8846(98)00093-3.
[10] J.L. Provis, G.C. Lukey, H. Xu, J.S.J. van Deventer, Structural evolution of fly ash based geopolymers in alkaline environments, Ind. Eng. Chem. Res. 47 (2008) 2991–2999, https://doi.org/10.1021/ie0707671.
[11] J.E. Oh, Y. Jun, Y. Jeong, Characterization of geopolymers from compositionally and physically different class F fly ashes, Cem. Concr. Compos. 50 (2014) 16– 26, https://doi.org/10.1016/j.cemconcomp.2013.10.019.
[12] J.S.J. van Deventer, J.L. Provis, P. Duxson, G.C. Lukey, Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products, J. Hazard. Mater. 139 (2007) 506–513, https://doi.org/10.1016/j.jhazmat.2006.02.044.
[13] A. Fernández-Jimenez, A. Palomo, Factores que afectan al desarrollo inicial de resistencias a compresión en hormigones de ceniza volante activados alcalinamente (sin OPC), Mater. Constr. 57 (2007) 7–22.
[14] D. Hardjito, S.E. Wallah, D.M.J. Sumajouw, B.V. Rangan, Introducing fly ashbased geopolymer concrete: manufacture and engineering properties, in: 30th Conf. Our World Concr. Struct., 2005, pp. 23–24.
[15] M. Olivia, H. Nikraz, Properties of fly ash geopolymer concrete designed by Taguchi method, Mater. Des. 1980–2015 (36) (2012) 191–198, https://doi.org/10.1016/j.matdes.2011.10.036.
[16] Mat D. Yusrina, H. Kamarudin, C.M. Ruzaidi, A.F. Osman, M. Al-Bakri, Epoxy Layered-Silicates Filled With Fly Ash Based Geopolymer: Compressive Properties, Mater. Sci. Forum, Trans Tech Publication, 2015, pp. 58–62.
[17] N.A. Lloyd, B.V. Rangan, Geopolymer concrete: a review of development and opportunities, in: 35th Conf. Our World Concr. Struct., 2010 pp. 25–27.
[18] B.V. Rangan, Fly ash-based geopolymer concrete, in: Proc. Int. Workshop Geopolymer Cem. Concr., Allied Publishers Private Limited, 2010, pp. 68–106.
[19] Y. Fan, S. Yin, Z. Wen, J. Zhong, Activation of fly ash and its effects on cement properties1, Cem. Concr. Res. 29 (1999) 467–472, https://doi.org/10.1016/S0008-8846(98)00178-1.
[20] S.K. Nath, S. Kumar, Influence of iron making slags on strength and microstructure of fly ash geopolymer, Constr. Build. Mater. 38 (2013) 924–930, https://doi.org/10.1016/j.conbuildmat.2012.09.070.
[21] J.C. Swanepoel, C.A. Strydom, Utilisation of fly ash in a geopolymeric material, Appl. Geochem. 17 (2002) 1143–1148, https://doi.org/10.1016/S0883-2927(02)00005-7.
[22] S. Kumar, R. Kumar, S.P. Mehrotra, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J. Mater. Sci. 45 (2009) 607–615, https://doi.org/10.1007/s10853-009-3934-5.
[23] C. Shi, R.L. Day, Early strength development and hydration of alkali-activated blast furnace slag/fly ash blends, Adv. Cem. Res. 11 (1999) 189–196, https://doi.org/10.1680/adcr.1999.11.4.189.
[24] M. Chi, R. Huang, Binding mechanism and properties of alkali-activated fly ash/slag mortars, Constr. Build. Mater. 40 (2013) 291–298, https://doi.org/10.1016/j.conbuildmat.2012.11.003.
[25] F. Puertas, S. Marti´nez-Rami´rez, S. Alonso, T. Vázquez, Alkali-activated fly ash/slag cements: Strength behaviour and hydration products, Cem. Concr. Res. 30 (2000) 1625–1632, https://doi.org/10.1016/S0008-8846(00)00298-2.
[26] P. Nath, P.K. Sarker, Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition, Constr. Build. Mater. 66 (2014) 163–171, https://doi.org/10.1016/j.conbuildmat.2014.05.080.
[27] P.S. Deb, P. Nath, P.K. Sarker, The effects of ground granulated blastfurnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature, Mater. Des. 62 (2014) 32–39, https://doi.org/10.1016/j.matdes.2014.05.001.
[28] J. Mejía, E. Rodríguez, R. Mejía de Gutiérrez, Utilización potencial de una ceniza volante de baja calidad como fuente de aluminosilicatos en la producción de geopolímeros, Ing. Univ. 18 (2014) 309–327.
[29] J.M. Mejía, R. Mejía de Gutiérrez, F. Puertas, Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems, Mater. Constr. 63 (2013) 361–375.
[30] J.C. Pulido, J. Lizarazo-Marriaga, W.A. Chaparro, Comportamiento mecánico de sistemas cementantes binarios (cemento portland – ceniza volante – escoria de alto horno), Rev. Latinoam. Metal. Mater. 36 (2016) 78–98.
[31] S.S. Suarez Silgado, Mezclas binarias y ternarias basadas en cenizas volantes, Universidad Politécnica de Cataluña, Influencia del activador sobre la formación de fases y resistencias mecánicas, 2010.
[32] E. Gruyaert, N. Robeyst, N.D. Belie, Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry, J. Therm. Anal. Calorim. 102 (2010) 941–951, https://doi.org/10.1007/s10973-010-0841-6.
[33] Q. Xu, J. Hu, J.M. Ruiz, K. Wang, Z. Ge, Isothermal calorimetry tests and modeling of cement hydration parameters, Thermochim. Acta 499 (2010) 91– 99, https://doi.org/10.1016/j.tca.2009.11.007.
[34] H. Xu, W. Gong, L. Syltebo, W. Lutze, I.L. Pegg, DuraLith geopolymer waste form for Hanford secondary waste: correlating setting behavior to hydration heat evolution, J. Hazard. Mater. 278 (2014) 34–39, https://doi.org/10.1016/j.jhazmat.2014.05.070.
[35] R. Kumar, S. Kumar, S.P. Mehrotra, Towards sustainable solutions for fly ash through mechanical activation, Resour. Conserv. Recycl. 52 (2007) 157–179, https://doi.org/10.1016/j.resconrec.2007.06.007.
[36] S.A. Bernal, J.L. Provis, V. Rose, R. Mejía de Gutierrez, Evolution of binder structure in sodium silicate-activated slag-metakaolin blends, Cem. Concr. Compos. 33 (2011) 46–54, https://doi.org/10.1016/j.cemconcomp.2010.09.004.
[37] S. Chithiraputhiran, N. Neithalath, Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends, Constr. Build. Mater. 45 (2013) 233–242, https://doi.org/10.1016/j.conbuildmat.2013.03.061.
[38] F. Winnefeld, A. Leemann, M. Lucuk, P. Svoboda, M. Neuroth, Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials, Constr. Build. Mater. 24 (2010) 1086–1093, https://doi.org/10.1016/j.conbuildmat.2009.11.007.
[39] A. Fernández-Jiménez, A. Palomo, M. Criado, Microstructure development of alkali-activated fly ash cement: a descriptive model, Cem. Concr. Res. 35 (2005) 1204–1209, https://doi.org/10.1016/j.cemconres.2004.08.021.
[40] J.L. Provis, J.S.J. Van Deventer, Geopolymers: Structures, Processing, Properties and Industrial Applications, Elsevier, 2009.
[41] F. Puertas, M. Palacios, H. Manzano, J.S. Dolado, A. Rico, J. Rodríguez, A model for the C-A-S-H gel formed in alkali-activated slag cements, J. Eur. Ceram. Soc. 31 (2011) 2043–2056, https://doi.org/10.1016/j.jeurceramsoc.2011.04.036.
[42] J.L. Provis, J.S.J. van Deventer, Geopolymerisation kinetics. 2. Reaction kinetic modelling, Chem. Eng. Sci. 62 (2007) 2318–2329, https://doi.org/10.1016/j.ces.2007.01.028.
[43] P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. van Deventer, Geopolymer technology: the current state of the art, J. Mater. Sci. 42 (2006) 2917–2933, https://doi.org/10.1007/s10853-006-0637-z.
[44] S.A. Bernal, E.D. Rodríguez, R. Mejía de Gutiérrez, J.L. Provis, S. Delvasto, Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash, Waste Biomass Valorization 3 (2011) 99–108, https://doi.org/10.1007/s12649-011-9093-3.
[45] I. García-Lodeiro, A. Fernández-Jiménez, A. Palomo, D.E. Macphee, Effect of calcium additions on N–A–S–H cementitious gels, J. Am. Ceram. Soc. 93 (2010) 1934–1940, https://doi.org/10.1111/j.1551-2916.2010.03668.x.
[46] T. Phoo-ngernkham, P. Chindaprasirt, V. Sata, S. Pangdaeng, T. Sinsiri, Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive, Int. J. Miner. Metall. Mater. 20 (2013) 214–220, https://doi.org/10.1007/s12613-013-0715-6.
[47] A. Palomo, A. Fernández-Jiménez, G. Kovalchuk, L.M. Ordoñez, M.C. Naranjo, OPC-fly ash cementitious systems: study of gel binders produced during alkaline hydration, J. Mater. Sci. 42 (2007) 2958–2966, https://doi.org/10.1007/s10853-006-0585-7.
[48] C.K. Yip, G.C. Lukey, J.L. Provis, J.S.J. van Deventer, Effect of calcium silicate sources on geopolymerisation, Cem. Concr. Res. 38 (2008) 554–564, https://doi.org/10.1016/j.cemconres.2007.11.001.
[49] C. Li, H. Sun, L. Li, A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements, Cem. Concr. Res. 40 (2010) 1341–1349, https://doi.org/10.1016/j.cemconres.2010.03.020.
[50] A. Palomo, P. Krivenko, I. Garcia-Lodeiro, E. Kavalerova, O. Maltseva, A. Fernández-Jiménez, A review on alkaline activation: new analytical perspectives, Mater. Constr. 64 (2014) e022, https://doi.org/10.3989/mc.2014.00314.
[51] R.A. Robayo, R. Mejía de Gutiérrez, M. Gordillo, Natural pozzolan-andgranulated blast furnace slag-based binary geopolymers, Mater. Constr. 66 (2016) e077, https://doi.org/10.3989/mc.2016.03615.
[52] E. Rodríguez, S. Bernal, R. Mejía de Gutiérrez, F. Puertas, Hormigón alternativo basado en escorias activadas alcalinamente, Mater. Constr. 58 (2008) 53–67, https://doi.org/10.3989/mc.2008.v58.i291.104.
[53] N.K. Lee, H.K. Lee, Reactivity and reaction products of alkali-activated, fly ash/slag paste, Constr. Build. Mater. 81 (2015) 303–312, https://doi.org/10.1016/j.conbuildmat.2015.02.022.
[54] C.A. Rees, J.L. Provis, G.C. Lukey, J.S.J. van Deventer, In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation, Langmuir 23 (2007) 9076–9082, https://doi.org/10.1021/la701185g.
[55] J.F. Rivera, R. Mejía de Gutierrez, J.M. Mejía, M. Gordillo, Hybrid cement based on the alkali activation of by-products of coal, Rev. Constr. J. Constr. 13 (2014) 31–39.
[56] M. Criado, A. Fernández-Jiménez, A. Palomo, Alkali activation of fly ash: Effect of the SiO2/Na2O ratio: Part I: FTIR study, Microporous Mesoporous Mater. 106 (2007) 180–191, https://doi.org/10.1016/j.micromeso.2007.02.055.
[57] Lodeiro I. García, D.E. Macphee, A. Palomo, A. Fernández-Jiménez, Effect of alkalis on fresh C-S–H gels. FTIR analysis, Cem. Concr. Res. 39 (2009) 147–153, https://doi.org/10.1016/j.cemconres.2009.01.003.
[58] D. Panias, I.P. Giannopoulou, T. Perraki, Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers, colloids Surf, Physicochem. Eng. Asp. 301 (2007) 246–254, https://doi.org/10.1016/j.colsurfa.2006.12.064.
[59] I. Garcia-Lodeiro, A. Palomo, A. Fernández-Jiménez, D.E. Macphee, Compatibility studies between N–A–S–H and C–A–S–H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O, Cem. Concr. Res. 41 (2011) 923–931, https://doi.org/10.1016/j.cemconres.2011.05.006.
[60] M.N. Qureshi, S. Ghosh, Effect of silicate content on the properties of alkaliactivated blast furnace slag paste, Arab. J. Sci. Eng. 39 (2014) 5905–5916, https://doi.org/10.1007/s13369-014-1172-x.
[61] A. Sathonsaowaphak, P. Chindaprasirt, K. Pimraksa, Workability and strength of lignite bottom ash geopolymer mortar, J. Hazard. Mater. 168 (2009) 44–50, https://doi.org/10.1016/j.jhazmat.2009.01.120.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 10 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Elsevier
dc.source.spa.fl_str_mv instname:Universidad Autónoma de Occidente
reponame:Repositorio Institucional UAO
instname_str Universidad Autónoma de Occidente
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/cc41da26-3f0a-4608-9f22-0c49b7c0b98b/download
https://red.uao.edu.co/bitstreams/b01757e0-1c4c-4106-94f6-8a30872cb289/download
https://red.uao.edu.co/bitstreams/ea896f42-43a8-4acf-be6a-4a33caccfe9e/download
https://red.uao.edu.co/bitstreams/6404e8bc-317e-4463-bdd3-26b893cfcf09/download
https://red.uao.edu.co/bitstreams/bca16626-6663-4c91-a3e7-d4c3fc788645/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
0c61e76574ffe65765bc0ce277669d7e
9198db07fa405645b7f376d7e0d63ef9
d16e9d62b04db96ca88fc74011ea1df9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260020561313792
spelling Gordillo Suárez, Marisolvirtual::2008-1Mejía De Gutierrez, Ruby1b60abcc863dbd7d3601e725e6116059Valencia Saavedra, Williameae53b8ff3977df9b580fecf3ad35797Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-05T20:56:18Z2019-11-05T20:56:18Z2018-03-200950-0618http://hdl.handle.net/10614/11402https://doi.org/10.1016/j.conbuildmat.2018.01.071This study used fly ash (FA) with a high amount of unburned content (21%) to produce simple (Geo FA) and binary (Geo FA/granulated blast furnace slag [GBFS]) geopolymeric concretes. The effect on the mechanical strength of the SiO2/Al2O3 and Na2O/SiO2 molar ratios and the percentage of GBFS (% GBFS) added to the blend were determined. Using the optimal parameters of alkaline activation, concretes with strengths up to 48 MPa were obtained after 28 days of curing at room temperature (25 °C). The results of this study are complemented by the microstructural characterisation of the geopolymeric pastes using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) techniquesapplication/pdf10 páginasengElsevierDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAOGeopolymeric concretes based on fly ash with high unburned contentArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Agregados (Materiales de construcción)Aggregates (Building materials)Fly ashGranulated blast furnace slagGeopolymer concreteMechanical properties706697165Valencia-Saavedra, W., de Gutiérrez, R. M., & Gordillo, M. (2018). Geopolymeric concretes based on fly ash with high unburned content. Construction and Building Materials. 165, 697-706. https://doi.org/10.1016/j.conbuildmat.2018.01.071Construction and Building Materials[1] S. Donatello, C. Kuenzel, A. Palomo, A. Fernández-Jiménez, High temperatura resistance of a very high volume fly ash cement paste, Cem. Concr. Compos. 45 (2014) 234–242, https://doi.org/10.1016/j.cemconcomp.2013.09.010.[2] A. Fernández-Jiménez, A. Palomo, Composition and microstructure of alkali activated fly ash binder: effect of the activator, Cem. Concr. Res. 35 (2005) 1984–1992, https://doi.org/10.1016/j.cemconres.2005.03.003.[3] V.D. Glukhovsky, G.S. Rostovskaja, G.V. Rumyna, High strength slag-alkaline cements, in: Proc. 7th Int. Congr. Chem. Cem. Paris, 1980, pp. 164–168.[4] W.K.W. Lee, J.S.J. van Deventer, Structural reorganisation of class F fly ash in alkaline silicate solutions, Colloids Surf. Physicochem. Eng. Asp. 211 (2002) 49–66, https://doi.org/10.1016/S0927-7757(02)00237-6.[5] V.M. Malhotra, CANMET/ACI: Eighth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, 2004.[6] F. Puertas, A. Fernández-Jiménez, Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes, Cem. Concr. Compos. 25 (2003) 287–292, https://doi.org/10.1016/S0958-9465(02)00059-8.[7] Z. Xie, Y. Xi, Hardening mechanisms of an alkaline-activated class F fly ash, Cem. Concr. Res. 31 (2001) 1245–1249, (01)00571-3.[8] A. Palomo, M.W. Grutzeck, M.T. Blanco, Alkali-activated fly ashes: a cement for the future, Cem. Concr. Res. 29 (1999) 1323–1329, https://doi.org/10.1016/S0008-8846(98)00243-9.[9] D.M. Roy, Alkali-activated cements opportunities and challenges, Cem. Concr. Res. 29 (1999) 249–254, https://doi.org/10.1016/S0008-8846(98)00093-3.[10] J.L. Provis, G.C. Lukey, H. Xu, J.S.J. van Deventer, Structural evolution of fly ash based geopolymers in alkaline environments, Ind. Eng. Chem. Res. 47 (2008) 2991–2999, https://doi.org/10.1021/ie0707671.[11] J.E. Oh, Y. Jun, Y. Jeong, Characterization of geopolymers from compositionally and physically different class F fly ashes, Cem. Concr. Compos. 50 (2014) 16– 26, https://doi.org/10.1016/j.cemconcomp.2013.10.019.[12] J.S.J. van Deventer, J.L. Provis, P. Duxson, G.C. Lukey, Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products, J. Hazard. Mater. 139 (2007) 506–513, https://doi.org/10.1016/j.jhazmat.2006.02.044.[13] A. Fernández-Jimenez, A. Palomo, Factores que afectan al desarrollo inicial de resistencias a compresión en hormigones de ceniza volante activados alcalinamente (sin OPC), Mater. Constr. 57 (2007) 7–22.[14] D. Hardjito, S.E. Wallah, D.M.J. Sumajouw, B.V. Rangan, Introducing fly ashbased geopolymer concrete: manufacture and engineering properties, in: 30th Conf. Our World Concr. Struct., 2005, pp. 23–24.[15] M. Olivia, H. Nikraz, Properties of fly ash geopolymer concrete designed by Taguchi method, Mater. Des. 1980–2015 (36) (2012) 191–198, https://doi.org/10.1016/j.matdes.2011.10.036.[16] Mat D. Yusrina, H. Kamarudin, C.M. Ruzaidi, A.F. Osman, M. Al-Bakri, Epoxy Layered-Silicates Filled With Fly Ash Based Geopolymer: Compressive Properties, Mater. Sci. Forum, Trans Tech Publication, 2015, pp. 58–62.[17] N.A. Lloyd, B.V. Rangan, Geopolymer concrete: a review of development and opportunities, in: 35th Conf. Our World Concr. Struct., 2010 pp. 25–27.[18] B.V. Rangan, Fly ash-based geopolymer concrete, in: Proc. Int. Workshop Geopolymer Cem. Concr., Allied Publishers Private Limited, 2010, pp. 68–106.[19] Y. Fan, S. Yin, Z. Wen, J. Zhong, Activation of fly ash and its effects on cement properties1, Cem. Concr. Res. 29 (1999) 467–472, https://doi.org/10.1016/S0008-8846(98)00178-1.[20] S.K. Nath, S. Kumar, Influence of iron making slags on strength and microstructure of fly ash geopolymer, Constr. Build. Mater. 38 (2013) 924–930, https://doi.org/10.1016/j.conbuildmat.2012.09.070.[21] J.C. Swanepoel, C.A. Strydom, Utilisation of fly ash in a geopolymeric material, Appl. Geochem. 17 (2002) 1143–1148, https://doi.org/10.1016/S0883-2927(02)00005-7.[22] S. Kumar, R. Kumar, S.P. Mehrotra, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J. Mater. Sci. 45 (2009) 607–615, https://doi.org/10.1007/s10853-009-3934-5.[23] C. Shi, R.L. Day, Early strength development and hydration of alkali-activated blast furnace slag/fly ash blends, Adv. Cem. Res. 11 (1999) 189–196, https://doi.org/10.1680/adcr.1999.11.4.189.[24] M. Chi, R. Huang, Binding mechanism and properties of alkali-activated fly ash/slag mortars, Constr. Build. Mater. 40 (2013) 291–298, https://doi.org/10.1016/j.conbuildmat.2012.11.003.[25] F. Puertas, S. Marti´nez-Rami´rez, S. Alonso, T. Vázquez, Alkali-activated fly ash/slag cements: Strength behaviour and hydration products, Cem. Concr. Res. 30 (2000) 1625–1632, https://doi.org/10.1016/S0008-8846(00)00298-2.[26] P. Nath, P.K. Sarker, Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition, Constr. Build. Mater. 66 (2014) 163–171, https://doi.org/10.1016/j.conbuildmat.2014.05.080.[27] P.S. Deb, P. Nath, P.K. Sarker, The effects of ground granulated blastfurnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature, Mater. Des. 62 (2014) 32–39, https://doi.org/10.1016/j.matdes.2014.05.001.[28] J. Mejía, E. Rodríguez, R. Mejía de Gutiérrez, Utilización potencial de una ceniza volante de baja calidad como fuente de aluminosilicatos en la producción de geopolímeros, Ing. Univ. 18 (2014) 309–327.[29] J.M. Mejía, R. Mejía de Gutiérrez, F. Puertas, Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems, Mater. Constr. 63 (2013) 361–375.[30] J.C. Pulido, J. Lizarazo-Marriaga, W.A. Chaparro, Comportamiento mecánico de sistemas cementantes binarios (cemento portland – ceniza volante – escoria de alto horno), Rev. Latinoam. Metal. Mater. 36 (2016) 78–98.[31] S.S. Suarez Silgado, Mezclas binarias y ternarias basadas en cenizas volantes, Universidad Politécnica de Cataluña, Influencia del activador sobre la formación de fases y resistencias mecánicas, 2010.[32] E. Gruyaert, N. Robeyst, N.D. Belie, Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry, J. Therm. Anal. Calorim. 102 (2010) 941–951, https://doi.org/10.1007/s10973-010-0841-6.[33] Q. Xu, J. Hu, J.M. Ruiz, K. Wang, Z. Ge, Isothermal calorimetry tests and modeling of cement hydration parameters, Thermochim. Acta 499 (2010) 91– 99, https://doi.org/10.1016/j.tca.2009.11.007.[34] H. Xu, W. Gong, L. Syltebo, W. Lutze, I.L. Pegg, DuraLith geopolymer waste form for Hanford secondary waste: correlating setting behavior to hydration heat evolution, J. Hazard. Mater. 278 (2014) 34–39, https://doi.org/10.1016/j.jhazmat.2014.05.070.[35] R. Kumar, S. Kumar, S.P. Mehrotra, Towards sustainable solutions for fly ash through mechanical activation, Resour. Conserv. Recycl. 52 (2007) 157–179, https://doi.org/10.1016/j.resconrec.2007.06.007.[36] S.A. Bernal, J.L. Provis, V. Rose, R. Mejía de Gutierrez, Evolution of binder structure in sodium silicate-activated slag-metakaolin blends, Cem. Concr. Compos. 33 (2011) 46–54, https://doi.org/10.1016/j.cemconcomp.2010.09.004.[37] S. Chithiraputhiran, N. Neithalath, Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends, Constr. Build. Mater. 45 (2013) 233–242, https://doi.org/10.1016/j.conbuildmat.2013.03.061.[38] F. Winnefeld, A. Leemann, M. Lucuk, P. Svoboda, M. Neuroth, Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials, Constr. Build. Mater. 24 (2010) 1086–1093, https://doi.org/10.1016/j.conbuildmat.2009.11.007.[39] A. Fernández-Jiménez, A. Palomo, M. Criado, Microstructure development of alkali-activated fly ash cement: a descriptive model, Cem. Concr. Res. 35 (2005) 1204–1209, https://doi.org/10.1016/j.cemconres.2004.08.021.[40] J.L. Provis, J.S.J. Van Deventer, Geopolymers: Structures, Processing, Properties and Industrial Applications, Elsevier, 2009.[41] F. Puertas, M. Palacios, H. Manzano, J.S. Dolado, A. Rico, J. Rodríguez, A model for the C-A-S-H gel formed in alkali-activated slag cements, J. Eur. Ceram. Soc. 31 (2011) 2043–2056, https://doi.org/10.1016/j.jeurceramsoc.2011.04.036.[42] J.L. Provis, J.S.J. van Deventer, Geopolymerisation kinetics. 2. Reaction kinetic modelling, Chem. Eng. Sci. 62 (2007) 2318–2329, https://doi.org/10.1016/j.ces.2007.01.028.[43] P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. van Deventer, Geopolymer technology: the current state of the art, J. Mater. Sci. 42 (2006) 2917–2933, https://doi.org/10.1007/s10853-006-0637-z.[44] S.A. Bernal, E.D. Rodríguez, R. Mejía de Gutiérrez, J.L. Provis, S. Delvasto, Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash, Waste Biomass Valorization 3 (2011) 99–108, https://doi.org/10.1007/s12649-011-9093-3.[45] I. García-Lodeiro, A. Fernández-Jiménez, A. Palomo, D.E. Macphee, Effect of calcium additions on N–A–S–H cementitious gels, J. Am. Ceram. Soc. 93 (2010) 1934–1940, https://doi.org/10.1111/j.1551-2916.2010.03668.x.[46] T. Phoo-ngernkham, P. Chindaprasirt, V. Sata, S. Pangdaeng, T. Sinsiri, Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive, Int. J. Miner. Metall. Mater. 20 (2013) 214–220, https://doi.org/10.1007/s12613-013-0715-6.[47] A. Palomo, A. Fernández-Jiménez, G. Kovalchuk, L.M. Ordoñez, M.C. Naranjo, OPC-fly ash cementitious systems: study of gel binders produced during alkaline hydration, J. Mater. Sci. 42 (2007) 2958–2966, https://doi.org/10.1007/s10853-006-0585-7.[48] C.K. Yip, G.C. Lukey, J.L. Provis, J.S.J. van Deventer, Effect of calcium silicate sources on geopolymerisation, Cem. Concr. Res. 38 (2008) 554–564, https://doi.org/10.1016/j.cemconres.2007.11.001.[49] C. Li, H. Sun, L. Li, A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements, Cem. Concr. Res. 40 (2010) 1341–1349, https://doi.org/10.1016/j.cemconres.2010.03.020.[50] A. Palomo, P. Krivenko, I. Garcia-Lodeiro, E. Kavalerova, O. Maltseva, A. Fernández-Jiménez, A review on alkaline activation: new analytical perspectives, Mater. Constr. 64 (2014) e022, https://doi.org/10.3989/mc.2014.00314.[51] R.A. Robayo, R. Mejía de Gutiérrez, M. Gordillo, Natural pozzolan-andgranulated blast furnace slag-based binary geopolymers, Mater. Constr. 66 (2016) e077, https://doi.org/10.3989/mc.2016.03615.[52] E. Rodríguez, S. Bernal, R. Mejía de Gutiérrez, F. Puertas, Hormigón alternativo basado en escorias activadas alcalinamente, Mater. Constr. 58 (2008) 53–67, https://doi.org/10.3989/mc.2008.v58.i291.104.[53] N.K. Lee, H.K. Lee, Reactivity and reaction products of alkali-activated, fly ash/slag paste, Constr. Build. Mater. 81 (2015) 303–312, https://doi.org/10.1016/j.conbuildmat.2015.02.022.[54] C.A. Rees, J.L. Provis, G.C. Lukey, J.S.J. van Deventer, In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation, Langmuir 23 (2007) 9076–9082, https://doi.org/10.1021/la701185g.[55] J.F. Rivera, R. Mejía de Gutierrez, J.M. Mejía, M. Gordillo, Hybrid cement based on the alkali activation of by-products of coal, Rev. Constr. J. Constr. 13 (2014) 31–39.[56] M. Criado, A. Fernández-Jiménez, A. Palomo, Alkali activation of fly ash: Effect of the SiO2/Na2O ratio: Part I: FTIR study, Microporous Mesoporous Mater. 106 (2007) 180–191, https://doi.org/10.1016/j.micromeso.2007.02.055.[57] Lodeiro I. García, D.E. Macphee, A. Palomo, A. Fernández-Jiménez, Effect of alkalis on fresh C-S–H gels. FTIR analysis, Cem. Concr. Res. 39 (2009) 147–153, https://doi.org/10.1016/j.cemconres.2009.01.003.[58] D. Panias, I.P. Giannopoulou, T. Perraki, Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers, colloids Surf, Physicochem. Eng. Asp. 301 (2007) 246–254, https://doi.org/10.1016/j.colsurfa.2006.12.064.[59] I. Garcia-Lodeiro, A. Palomo, A. Fernández-Jiménez, D.E. Macphee, Compatibility studies between N–A–S–H and C–A–S–H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O, Cem. Concr. Res. 41 (2011) 923–931, https://doi.org/10.1016/j.cemconres.2011.05.006.[60] M.N. Qureshi, S. Ghosh, Effect of silicate content on the properties of alkaliactivated blast furnace slag paste, Arab. J. Sci. Eng. 39 (2014) 5905–5916, https://doi.org/10.1007/s13369-014-1172-x.[61] A. Sathonsaowaphak, P. Chindaprasirt, K. Pimraksa, Workability and strength of lignite bottom ash geopolymer mortar, J. Hazard. Mater. 168 (2009) 44–50, https://doi.org/10.1016/j.jhazmat.2009.01.120.Publicationef737148-ed0f-4f64-af7e-d275f09fb3ebvirtual::2008-1ef737148-ed0f-4f64-af7e-d275f09fb3ebvirtual::2008-1https://scholar.google.com/citations?user=lj0tkLsAAAAJ&hl=es&oi=sravirtual::2008-10000-0003-1602-5547virtual::2008-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000472255virtual::2008-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/cc41da26-3f0a-4608-9f22-0c49b7c0b98b/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/b01757e0-1c4c-4106-94f6-8a30872cb289/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALGeopolymeric concretes based on fly ash with high unburned content.pdfGeopolymeric concretes based on fly ash with high unburned content.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf387947https://red.uao.edu.co/bitstreams/ea896f42-43a8-4acf-be6a-4a33caccfe9e/download0c61e76574ffe65765bc0ce277669d7eMD54TEXTGeopolymeric concretes based on fly ash with high unburned content.pdf.txtGeopolymeric concretes based on fly ash with high unburned content.pdf.txtExtracted texttext/plain44265https://red.uao.edu.co/bitstreams/6404e8bc-317e-4463-bdd3-26b893cfcf09/download9198db07fa405645b7f376d7e0d63ef9MD55THUMBNAILGeopolymeric concretes based on fly ash with high unburned content.pdf.jpgGeopolymeric concretes based on fly ash with high unburned content.pdf.jpgGenerated Thumbnailimage/jpeg15199https://red.uao.edu.co/bitstreams/bca16626-6663-4c91-a3e7-d4c3fc788645/downloadd16e9d62b04db96ca88fc74011ea1df9MD5610614/11402oai:red.uao.edu.co:10614/114022024-03-05 16:14:41.512https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K