Ideal Reactors as an Illustration of Solving Transport Phenomena Problems in Engineering
This contribution aims at emphasizing the importance of ideal reactors in the field of environmental engineering and in the education of the corresponding engineers. The exposition presents the mass flow governing equations of the ideal reactors (batch, completely mixed flow, and plug flow reactors)...
- Autores:
-
Laín Beatove, Santiago
Gandini Ayerbe, Mario Andrés
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/15522
- Acceso en línea:
- https://hdl.handle.net/10614/15522
https://doi.org/10.3390/fluids8020058
https://red.uao.edu.co/
- Palabra clave:
- Problem-solving in engineering
Ideal reactors
Mass conservation integral equation
Riccati equation
Second-order kinetics
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2023
id |
REPOUAO2_0219b34d02e1faa079f03fff65cd3a33 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/15522 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Ideal Reactors as an Illustration of Solving Transport Phenomena Problems in Engineering |
title |
Ideal Reactors as an Illustration of Solving Transport Phenomena Problems in Engineering |
spellingShingle |
Ideal Reactors as an Illustration of Solving Transport Phenomena Problems in Engineering Problem-solving in engineering Ideal reactors Mass conservation integral equation Riccati equation Second-order kinetics |
title_short |
Ideal Reactors as an Illustration of Solving Transport Phenomena Problems in Engineering |
title_full |
Ideal Reactors as an Illustration of Solving Transport Phenomena Problems in Engineering |
title_fullStr |
Ideal Reactors as an Illustration of Solving Transport Phenomena Problems in Engineering |
title_full_unstemmed |
Ideal Reactors as an Illustration of Solving Transport Phenomena Problems in Engineering |
title_sort |
Ideal Reactors as an Illustration of Solving Transport Phenomena Problems in Engineering |
dc.creator.fl_str_mv |
Laín Beatove, Santiago Gandini Ayerbe, Mario Andrés |
dc.contributor.author.none.fl_str_mv |
Laín Beatove, Santiago Gandini Ayerbe, Mario Andrés |
dc.contributor.corporatename.spa.fl_str_mv |
MDPI |
dc.subject.proposal.eng.fl_str_mv |
Problem-solving in engineering Ideal reactors Mass conservation integral equation Riccati equation Second-order kinetics |
topic |
Problem-solving in engineering Ideal reactors Mass conservation integral equation Riccati equation Second-order kinetics |
description |
This contribution aims at emphasizing the importance of ideal reactors in the field of environmental engineering and in the education of the corresponding engineers. The exposition presents the mass flow governing equations of the ideal reactors (batch, completely mixed flow, and plug flow reactors) as particular cases derived from the integral version of the conservation of mass of a chemical/biological species. In the case of transient problems and simple kinetics, such expressions result in first-order ordinary differential equations amenable to be solved analytically when they are linear. In this article, it is shown that when they are non-linear, due to the presence of a second-order kinetics reaction, an analytical solution is also possible, a situation not dealt with in the textbooks. Finally, the previous findings are integrated into a teaching proposal addressed to help undergraduate students to solve more efficiently ideal reactor problems |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-02-08 |
dc.date.accessioned.none.fl_str_mv |
2024-04-10T13:41:51Z |
dc.date.available.none.fl_str_mv |
2024-04-10T13:41:51Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Laín Beatove, S.; Gandini Ayerbe, M. A. (2023). Ideal Reactors as an Illustration of Solving Transport Phenomena Problems in Engineering. Fluids. 8(2). 16 p. https://doi.org/10.3390/fluids8020058 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/15522 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/fluids8020058 |
dc.identifier.eissn.none.fl_str_mv |
EISSN 2311-5521 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
Laín Beatove, S.; Gandini Ayerbe, M. A. (2023). Ideal Reactors as an Illustration of Solving Transport Phenomena Problems in Engineering. Fluids. 8(2). 16 p. https://doi.org/10.3390/fluids8020058 EISSN 2311-5521 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/15522 https://doi.org/10.3390/fluids8020058 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
16 |
dc.relation.citationissue.none.fl_str_mv |
2 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
8 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Fluids |
dc.relation.references.none.fl_str_mv |
1. Lewins, J. Entropy pollution of the environment: A teaching approach to the Second Law. Int. J. Mech. Eng. Educ. 2011, 39, 60–67. 2. Alvarez Cuenca, M.; Reza, M. The multi-stage vertical bioreactor in water engineering. Can. J. Chem. Eng. 2020, 98, 172–185. 3. Wendling, L.; Dumitru, A.; Arnbjerg-Nielsen, K.; Baldacchini, C.; Connop, S.; Dubovik, M.; zu-Castell Rüdenhausen, M. Indicators of NBS performance and impact. In Evaluating the Impact of Nature-Based Solutions: A Handbook for Practitioners; European Union: Maastricht, The Netherlands, 2021. 4. Mihelcic, J.R.; Zimmerman, J.B. Environmental Engineering. Fundamentals, Sustainability, Design, 3rd ed.; Chapter 4 Physical Processes; Wiley: Hoboken, NJ, USA, 2021. 5. Sanz, J.L.; Köchling, K. Next-generation sequencing and waste/wastewater treatment: A comprehensive overview. Rev. Environ. Sci. Bio/Technol. 2019, 18, 635–680. 6. Shah, M.P.; Rodriguez-Couto, S. (Eds.) Wastewater Treatment Reactors: Microbial Community Structure, 1st ed.; Elsevier: Berlin/Heidelberg, Germany, 2021. 7. Muddemann, T.; Haupt, D.; Sievers, M.; Kunz, U. Electrochemical reactors for wastewater treatment. ChemBioEng Rev. 2019, 6, 142–156. 8. Rostam, A.B.; Taghizadeh, M. Advanced oxidation processes integrated by membrane reactors and bioreactors for various wastewater treatments: A critical review. J. Environ. Chem. Eng. 2020, 8, 104566. [CrossRef] 9. Patiño, P.; Cruz, C.; Torres, P.; Lain, S. Hydrodynamic evaluation of a hydraulic clarifier through hydraulic behaviour indicators and simplified flow models. Ing. E Investig. 2012, 32, 77–82. 10. Lain, S.; Aliod, R. Study on the Eulerian Dispersed Phase Equations in Non-Uniform Turbulent Two-Phase Flows: Discussion and Comparison with Experiments. Int. J. Heat Fluid Flow 2000, 21, 374–380. 11. Montoya, C.; Lain, S.; Torres, P.; Cruz, C.; Escobar, J.C. Effects of water inlet configuration in a service reservoir applying CFD modelling. Ing. E Investig. 2016, 36, 21–40. 12. Li, M.; Zhang, H.; Lemckert, C.; Roiko, A.; Stratton, H. On the hydrodynamics and treatment efficiency of waste stabilization ponds: From a literature review to a strategic evaluation framework. J. Clean. Prod. 2018, 183, 495–514. [CrossRef] 13. Rizzo, A.; Tondera, T.; Pálfy, T.G.; Dittmer, U.; Meyer, D.; Schreiber, C.; Masi, F. Constructed wetlands for combined sewer overflow treatment: A state-of-the-art review. Sci. Total Environ. 2020, 727, 138618. [CrossRef] 14. Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Masi, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Sci. Total Environ. 2020, 711, 134731. [CrossRef] 15. Uthirakrishnan, U.; Sharmila, V.G.; Merrylin, J.; Kumar, S.A.; Dharmadhas, J.S.; Varjani, S.; Banu, J.R. Current advances and future outlook on pretreatment techniques to enhance biosolids disintegration and anaerobic digestion: A critical review. Chemosphere 2022, 288, 132553. [CrossRef] 16. Ahmed, A.; Li, W.; Varjani, S.; You, S. Waste-to-energy technologies for sustainability: Life-cycle assessment and economic analysis. In Biomass, Biofuels, Biochemicals, 1st ed.; Elsevier: Berlin/Heidelberg, Germany, 2022; pp. 599–612. 17. Uddin, M.N.; Siddiki, S.Y.A.; Mofijur, M.; Djavanroodi, F.; Hazrat, M.A.; Show, P.I.; Chu, Y.M. Prospects of bioenergy production from organic waste using anaerobic digestion technology: A mini review. Front. Energy Res. 2021, 9, 627093. 18. Townsend, T.G. Landfill Bioreactor Design and Operation, 1st ed.; Routledge: New York, NY, USA, 2018. 19. Cerminara, G.; Raga, R.; Hirata, O.; Pivato, A. Denitrification of low C/N landfill leachate in lab-scale landfill simulation bioreactors. Waste Manag. 2020, 113, 236–243. 20. Janse, J.H.; Van Dam, A.A.; Hes, E.M.; de Klein, J.J.; Finlayson, C.M.; Janssen, A.B.; Verhoeven, J.T. Towards a global model for wetlands ecosystem services. Curr. Opin. Environ. Sustain. 2019, 36, 11–19. [CrossRef] 21. Beven, K. How to make advances in hydrological modelling. Hydrol. Res. 2019, 50, 1481–1494. 22. Vinçon-Leite, B.; Casenave, C. Modelling eutrophication in lake ecosystems: A review. Sci. Total Environ. 2019, 651, 2985–3001. 23. Streeter, H.W.; Phelps, E.B. A study of the pollution and natural purification of the Ohio River. US Public Health Service. Public Health Bull. 1925, 146, 75. 24. Ejigu, M.T. Overview of water quality modeling. Cogent Eng. 2021, 8, 1891711. 25. Costa, C.M.D.S.B.; Leite, L.R.; Almeida, A.K.; de Almeida, I.K. Choosing an appropriate water quality model—A review. Environ. Monit. Assess. 2021, 193, 38. 26. Hauke, G. An Introduction to Fluid Mechanics and Transport Phenomena, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2008. 27. Nazaroff, W.W.; Alvarez-Cohen, L. Environmental Engineering Science, 1st ed.; Wiley: New York, NY, USA, 2000. 28. Spiegel, M.R. Mathematical Handbook of Formulas and Tables. Schaum’s Outline Series, 1st ed.; McGraw-Hill: New York, NY, USA, 1968. 29. Bittanti, S.; Laub, A.J.; Willems, J.C. The Riccati Equation, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1991. 30. Masters, G.M.; Ela, W.P. Introduction to Environmental Engineering and Science, 3rd ed.; Pearson: London, UK, 2014. 31. Masdem, S.J.; Davies, M.L. Principles of Environmental Engineering and Science, 4th ed.; Mc Graw Hill: New York, NY, USA, 2020. 32. Rawlings, J.B.; Eckerdt, J.G. Chemical Reactor Analysis and Design Fundamentals, 1st ed.; Nob Hill Publishing: Madison, WI, USA, 2002. 33. López, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type Cross Flow Water Turbines. J. Renew. Sustain. Energy 2016, 8, 014501. [CrossRef] 34. Laín, S.; Taborda, M.A.; López, O.D. Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies 2018, 11, 297. [CrossRef] |
dc.rights.spa.fl_str_mv |
Derechos reservados - MDPI, 2023 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - MDPI, 2023 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
16 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
MDPI |
dc.publisher.place.eng.fl_str_mv |
Basel, Switzerland |
dc.source.none.fl_str_mv |
https://www.mdpi.com/2311-5521/8/2/58 |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/a5285da2-9179-4b3e-87c0-a0cde4a27626/download https://red.uao.edu.co/bitstreams/fb5033d9-908c-48bf-be5a-710bbe85d99a/download https://red.uao.edu.co/bitstreams/7d0738bb-b47e-4312-942b-4dae0d3efd1d/download https://red.uao.edu.co/bitstreams/5ad15b09-8fda-42a9-8c73-92632654a5f1/download |
bitstream.checksum.fl_str_mv |
5a2df27a37c1d6365a1b6615cea52eac 6987b791264a2b5525252450f99b10d1 7d37d1f22a2a02adfbe2bd13d44d53a4 e1a3cd750b0da66a5cd1ed29259560ef |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259758123712512 |
spelling |
Laín Beatove, Santiagovirtual::5318-1Gandini Ayerbe, Mario Andrésvirtual::5319-1MDPI2024-04-10T13:41:51Z2024-04-10T13:41:51Z2023-02-08Laín Beatove, S.; Gandini Ayerbe, M. A. (2023). Ideal Reactors as an Illustration of Solving Transport Phenomena Problems in Engineering. Fluids. 8(2). 16 p. https://doi.org/10.3390/fluids8020058https://hdl.handle.net/10614/15522https://doi.org/10.3390/fluids8020058EISSN 2311-5521Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/This contribution aims at emphasizing the importance of ideal reactors in the field of environmental engineering and in the education of the corresponding engineers. The exposition presents the mass flow governing equations of the ideal reactors (batch, completely mixed flow, and plug flow reactors) as particular cases derived from the integral version of the conservation of mass of a chemical/biological species. In the case of transient problems and simple kinetics, such expressions result in first-order ordinary differential equations amenable to be solved analytically when they are linear. In this article, it is shown that when they are non-linear, due to the presence of a second-order kinetics reaction, an analytical solution is also possible, a situation not dealt with in the textbooks. Finally, the previous findings are integrated into a teaching proposal addressed to help undergraduate students to solve more efficiently ideal reactor problems16 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos reservados - MDPI, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.mdpi.com/2311-5521/8/2/58Ideal Reactors as an Illustration of Solving Transport Phenomena Problems in EngineeringArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8516218Fluids1. Lewins, J. Entropy pollution of the environment: A teaching approach to the Second Law. Int. J. Mech. Eng. Educ. 2011, 39, 60–67.2. Alvarez Cuenca, M.; Reza, M. The multi-stage vertical bioreactor in water engineering. Can. J. Chem. Eng. 2020, 98, 172–185.3. Wendling, L.; Dumitru, A.; Arnbjerg-Nielsen, K.; Baldacchini, C.; Connop, S.; Dubovik, M.; zu-Castell Rüdenhausen, M. Indicators of NBS performance and impact. In Evaluating the Impact of Nature-Based Solutions: A Handbook for Practitioners; European Union: Maastricht, The Netherlands, 2021.4. Mihelcic, J.R.; Zimmerman, J.B. Environmental Engineering. Fundamentals, Sustainability, Design, 3rd ed.; Chapter 4 Physical Processes; Wiley: Hoboken, NJ, USA, 2021.5. Sanz, J.L.; Köchling, K. Next-generation sequencing and waste/wastewater treatment: A comprehensive overview. Rev. Environ. Sci. Bio/Technol. 2019, 18, 635–680.6. Shah, M.P.; Rodriguez-Couto, S. (Eds.) Wastewater Treatment Reactors: Microbial Community Structure, 1st ed.; Elsevier: Berlin/Heidelberg, Germany, 2021.7. Muddemann, T.; Haupt, D.; Sievers, M.; Kunz, U. Electrochemical reactors for wastewater treatment. ChemBioEng Rev. 2019, 6, 142–156.8. Rostam, A.B.; Taghizadeh, M. Advanced oxidation processes integrated by membrane reactors and bioreactors for various wastewater treatments: A critical review. J. Environ. Chem. Eng. 2020, 8, 104566. [CrossRef]9. Patiño, P.; Cruz, C.; Torres, P.; Lain, S. Hydrodynamic evaluation of a hydraulic clarifier through hydraulic behaviour indicators and simplified flow models. Ing. E Investig. 2012, 32, 77–82.10. Lain, S.; Aliod, R. Study on the Eulerian Dispersed Phase Equations in Non-Uniform Turbulent Two-Phase Flows: Discussion and Comparison with Experiments. Int. J. Heat Fluid Flow 2000, 21, 374–380.11. Montoya, C.; Lain, S.; Torres, P.; Cruz, C.; Escobar, J.C. Effects of water inlet configuration in a service reservoir applying CFD modelling. Ing. E Investig. 2016, 36, 21–40.12. Li, M.; Zhang, H.; Lemckert, C.; Roiko, A.; Stratton, H. On the hydrodynamics and treatment efficiency of waste stabilization ponds: From a literature review to a strategic evaluation framework. J. Clean. Prod. 2018, 183, 495–514. [CrossRef]13. Rizzo, A.; Tondera, T.; Pálfy, T.G.; Dittmer, U.; Meyer, D.; Schreiber, C.; Masi, F. Constructed wetlands for combined sewer overflow treatment: A state-of-the-art review. Sci. Total Environ. 2020, 727, 138618. [CrossRef]14. Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Masi, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Sci. Total Environ. 2020, 711, 134731. [CrossRef]15. Uthirakrishnan, U.; Sharmila, V.G.; Merrylin, J.; Kumar, S.A.; Dharmadhas, J.S.; Varjani, S.; Banu, J.R. Current advances and future outlook on pretreatment techniques to enhance biosolids disintegration and anaerobic digestion: A critical review. Chemosphere 2022, 288, 132553. [CrossRef]16. Ahmed, A.; Li, W.; Varjani, S.; You, S. Waste-to-energy technologies for sustainability: Life-cycle assessment and economic analysis. In Biomass, Biofuels, Biochemicals, 1st ed.; Elsevier: Berlin/Heidelberg, Germany, 2022; pp. 599–612.17. Uddin, M.N.; Siddiki, S.Y.A.; Mofijur, M.; Djavanroodi, F.; Hazrat, M.A.; Show, P.I.; Chu, Y.M. Prospects of bioenergy production from organic waste using anaerobic digestion technology: A mini review. Front. Energy Res. 2021, 9, 627093.18. Townsend, T.G. Landfill Bioreactor Design and Operation, 1st ed.; Routledge: New York, NY, USA, 2018.19. Cerminara, G.; Raga, R.; Hirata, O.; Pivato, A. Denitrification of low C/N landfill leachate in lab-scale landfill simulation bioreactors. Waste Manag. 2020, 113, 236–243.20. Janse, J.H.; Van Dam, A.A.; Hes, E.M.; de Klein, J.J.; Finlayson, C.M.; Janssen, A.B.; Verhoeven, J.T. Towards a global model for wetlands ecosystem services. Curr. Opin. Environ. Sustain. 2019, 36, 11–19. [CrossRef]21. Beven, K. How to make advances in hydrological modelling. Hydrol. Res. 2019, 50, 1481–1494.22. Vinçon-Leite, B.; Casenave, C. Modelling eutrophication in lake ecosystems: A review. Sci. Total Environ. 2019, 651, 2985–3001.23. Streeter, H.W.; Phelps, E.B. A study of the pollution and natural purification of the Ohio River. US Public Health Service. Public Health Bull. 1925, 146, 75.24. Ejigu, M.T. Overview of water quality modeling. Cogent Eng. 2021, 8, 1891711.25. Costa, C.M.D.S.B.; Leite, L.R.; Almeida, A.K.; de Almeida, I.K. Choosing an appropriate water quality model—A review. Environ. Monit. Assess. 2021, 193, 38.26. Hauke, G. An Introduction to Fluid Mechanics and Transport Phenomena, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2008.27. Nazaroff, W.W.; Alvarez-Cohen, L. Environmental Engineering Science, 1st ed.; Wiley: New York, NY, USA, 2000.28. Spiegel, M.R. Mathematical Handbook of Formulas and Tables. Schaum’s Outline Series, 1st ed.; McGraw-Hill: New York, NY, USA, 1968.29. Bittanti, S.; Laub, A.J.; Willems, J.C. The Riccati Equation, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1991.30. Masters, G.M.; Ela, W.P. Introduction to Environmental Engineering and Science, 3rd ed.; Pearson: London, UK, 2014.31. Masdem, S.J.; Davies, M.L. Principles of Environmental Engineering and Science, 4th ed.; Mc Graw Hill: New York, NY, USA, 2020.32. Rawlings, J.B.; Eckerdt, J.G. Chemical Reactor Analysis and Design Fundamentals, 1st ed.; Nob Hill Publishing: Madison, WI, USA, 2002.33. López, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type Cross Flow Water Turbines. J. Renew. Sustain. Energy 2016, 8, 014501. [CrossRef]34. Laín, S.; Taborda, M.A.; López, O.D. Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies 2018, 11, 297. [CrossRef]Problem-solving in engineeringIdeal reactorsMass conservation integral equationRiccati equationSecond-order kineticsComunidad generalPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::5318-11b7ae0bb-d40b-4d15-94ee-5d8949aad3c5virtual::5319-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::5318-11b7ae0bb-d40b-4d15-94ee-5d8949aad3c5virtual::5319-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::5318-10000-0002-0269-2608virtual::5318-10000-0002-6430-2601virtual::5319-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::5318-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000952028virtual::5319-1ORIGINALIdeal_Reactors_as_an_Illustration_of_Solving_Transport_Phenomena_Problems_in_Engineering.pdfIdeal_Reactors_as_an_Illustration_of_Solving_Transport_Phenomena_Problems_in_Engineering.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf329481https://red.uao.edu.co/bitstreams/a5285da2-9179-4b3e-87c0-a0cde4a27626/download5a2df27a37c1d6365a1b6615cea52eacMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/fb5033d9-908c-48bf-be5a-710bbe85d99a/download6987b791264a2b5525252450f99b10d1MD52TEXTIdeal_Reactors_as_an_Illustration_of_Solving_Transport_Phenomena_Problems_in_Engineering.pdf.txtIdeal_Reactors_as_an_Illustration_of_Solving_Transport_Phenomena_Problems_in_Engineering.pdf.txtExtracted texttext/plain57262https://red.uao.edu.co/bitstreams/7d0738bb-b47e-4312-942b-4dae0d3efd1d/download7d37d1f22a2a02adfbe2bd13d44d53a4MD53THUMBNAILIdeal_Reactors_as_an_Illustration_of_Solving_Transport_Phenomena_Problems_in_Engineering.pdf.jpgIdeal_Reactors_as_an_Illustration_of_Solving_Transport_Phenomena_Problems_in_Engineering.pdf.jpgGenerated Thumbnailimage/jpeg15464https://red.uao.edu.co/bitstreams/5ad15b09-8fda-42a9-8c73-92632654a5f1/downloade1a3cd750b0da66a5cd1ed29259560efMD5410614/15522oai:red.uao.edu.co:10614/155222024-04-12 09:29:59.937https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2023open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |