Ecological light transmiting concrete made from glass waste and acrylic sheets
In this research, recycling of 100% glass waste was evaluated for the manufacture of self-compacting mortars for applications in translucent building systems. The glass waste (WG) was ground and used as a fine aggregate in mortar mixtures with cement:WG proportion of 1:1.5, 1:1,75 and 1:2.0 with dif...
- Autores:
-
Arias Erazo, Jonatan
Villaquirán-Caicedo, Mónica A.
Goyes, Clara
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13919
- Acceso en línea:
- https://hdl.handle.net/10614/13919
https://red.uao.edu.co/
- Palabra clave:
- Residuos de vidrio - Reciclaje
Glass waste - Recycling
Recycled glass aggregate
Mortars
Translucent concrete
- Rights
- openAccess
- License
- Derechos Reservados Elsevier, 2021
id |
REPOUAO2_0212701ccd73ace88237b755048305c6 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13919 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Ecological light transmiting concrete made from glass waste and acrylic sheets |
title |
Ecological light transmiting concrete made from glass waste and acrylic sheets |
spellingShingle |
Ecological light transmiting concrete made from glass waste and acrylic sheets Residuos de vidrio - Reciclaje Glass waste - Recycling Recycled glass aggregate Mortars Translucent concrete |
title_short |
Ecological light transmiting concrete made from glass waste and acrylic sheets |
title_full |
Ecological light transmiting concrete made from glass waste and acrylic sheets |
title_fullStr |
Ecological light transmiting concrete made from glass waste and acrylic sheets |
title_full_unstemmed |
Ecological light transmiting concrete made from glass waste and acrylic sheets |
title_sort |
Ecological light transmiting concrete made from glass waste and acrylic sheets |
dc.creator.fl_str_mv |
Arias Erazo, Jonatan Villaquirán-Caicedo, Mónica A. Goyes, Clara |
dc.contributor.author.none.fl_str_mv |
Arias Erazo, Jonatan Villaquirán-Caicedo, Mónica A. Goyes, Clara |
dc.subject.armarc.spa.fl_str_mv |
Residuos de vidrio - Reciclaje |
topic |
Residuos de vidrio - Reciclaje Glass waste - Recycling Recycled glass aggregate Mortars Translucent concrete |
dc.subject.armarc.eng.fl_str_mv |
Glass waste - Recycling |
dc.subject.proposal.eng.fl_str_mv |
Recycled glass aggregate Mortars Translucent concrete |
description |
In this research, recycling of 100% glass waste was evaluated for the manufacture of self-compacting mortars for applications in translucent building systems. The glass waste (WG) was ground and used as a fine aggregate in mortar mixtures with cement:WG proportion of 1:1.5, 1:1,75 and 1:2.0 with different water/cement (W/C) ratios. Properties such as fluidity, compressive strength, density, porosity, absorption, thermal properties, and characterization of the microstructure by SEM were analyzed. The results showed that as the WG content increases from 1:1.5 to 1:2.0 the compressive strength of the mortar decreases a maximum of 2.8% in samples with W/C:0.47, and this is due to the formation of microcracks and porosities, which cause the formation of a weakened and sparse interfacial zone which could be identified in the SEM tests. Nevertheless, the compressive strengths were between 20.6 MPa − 32.07 MPa, water absorption for mortars was between 12,92–14,74% and porosities from 23.02% to 25.93%. The thermal conductivity of the mortars was between 0.64 and 0.71 W/m.K. Additionally, the results of the spectrophotometry test for light transmission and the simulation in MATLAB allowed to obtain the brightness in the samples, it was possible to observe that the brightness varies according to the shape of the openings of the blocks, being the A design which allowed a greater passage of light (16%), and the materials developed could be classified as green building materials. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-05-27T13:42:35Z |
dc.date.available.none.fl_str_mv |
2022-05-27T13:42:35Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
9500618 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13919 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
9500618 Universidad Autónoma de Occidente Repositorio Educativo Digital |
url |
https://hdl.handle.net/10614/13919 https://red.uao.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
11 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
304 |
dc.relation.cites.eng.fl_str_mv |
Arias Erazo, J., Villaquirán Caicedo, M.A., Goyes López, C. E. (2021). Ecological light transmiting concrete made from glass waste and acrylic sheets. Construction and Building Materials. Vol. 304, pp. 1-11. https://www.sciencedirect.com/science/article/pii/S0950061821023990 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Construction and building materials |
dc.relation.references.none.fl_str_mv |
[1] European Commission, Construction and Demolition Wastes 2019 https://ec. europa.eu/environment/waste/construction_demolition.htm. [2] G. Kumar, S. Shrivastava, R.C. Gupta, Paver blocks manufactured from construction & demolition waste, Mater. Today Proc. 27 (2020) 311–317, https:// doi.org/10.1016/j.matpr.2019.11.039. [3] I.F. S´aez del Bosque, P. Van den Heede, N. De Belie, M.I. S´anchez de Rojas, C. Medina, Carbonation of concrete with construction and demolition waste based recycled aggregates and cement with recycled content, Constr. Build. Mater. 234 (2020), 117336, https://doi.org/10.1016/j.conbuildmat.2019.117336. [4] Y.F. Silva, D.A. Lange, S. Delvasto, Effect of incorporation of masonry residue on the properties of self-compacting concretes, Constr. Build. Mater. 196 (2019) 277–283, https://doi.org/10.1016/j.conbuildmat.2018.11.132. [5] Y.F. Silva, R.A. Robayo, P.E. Mattey, S. Delvasto, Properties of self-compacting concrete on fresh and hardened with residue of masonry and recycled concrete, Constr. Build. Mater. 124 (2016) 639–644, https://doi.org/10.1016/j. conbuildmat.2016.07.057. [6] G. Zou, J. Zhang, X. Liu, Y. Lin, H. Yu, Design and performance of emulsified asphalt mixtures containing construction and demolition waste, Constr. Build. Mater. 239 (2020), 117846, https://doi.org/10.1016/j.conbuildmat.2019.117846. [7] X. Jianzhuang, Recycled Aggregate Concrete Structures, Springer N, Springer Nature, Shanghai (2018), https://doi.org/10.1007/978-3-662-53987-3. [8] S. Waite, P. Cox, T. Tudor, Strategies for local authorities to achieve the EU 2020 50% recycling, reuse and composting target: A case study of England, Resour. Conserv. Recycl. 105 (2015) 18–28, https://doi.org/10.1016/j. resconrec.2015.09.017. [9] European Commission, Commission Regulation (EU) No 1179/2012 . Establishing criteria determining when glass cullet ceases to be waste under Directive 2008/98/ EC of the European Parliament and of the Council, Off. J. Eur. Union. (2012) L337/ 31-L337/36. [10] Ministerio del Medio Ambiente de Colombia., Resoluci´on 0472, 2017. https:// www.minambiente.gov.co/images/normativa/app/resoluciones/3a- RESOLUCION-472-DE-2017.pdf. [11] O. Rubio, Creaci´on de una empresa de reciclaje de vidrio Mundo Cristal, EAN, 2012. https://repository.ean.edu.co/bitstream/handle/10882/6020/Rubioosbaldo2013.pdf;jsessionid=1353523E3B8E7AB1B9349AC15DA39319? sequence=11. [12] Twenergy, Colombia apuesta por el reciclaje de vidrio, Twenergy. (2019). https:// twenergy.com/ecologia-y-reciclaje/reciclaje/colombia-apuesta-por-el-reciclaje-devidrio- 618/#:~:text=La labor de las plantas,m´as de 100 referencias distintas. [13] E. Montoya-Quesada, M.A. Villaquir´an-Caicedo, R.M. de Guti´errez, New glassceramic from ternary-quaternary mixtures based on Colombian industrial wastes: Blast furnace slag, cupper slag, fly ash and glass cullet, Bol. La Soc. Esp. Ceram. y Vidr. (2020), https://doi.org/10.1016/j.bsecv.2020.11.009. [14] J. D´avalos, A. Bonilla, M.A. Villaquir´an-Caicedo, R.M. de Guti´errez, J.M. Rinc´on, Preparation of glass–ceramic materials from coal ash and rice husk ash: Microstructural, physical and mechanical properties, Bol. La Soc. Espa˜nola Cer´amica y Vidr. 60 (3) (2021) 183–193, https://doi.org/10.1016/j. bsecv.2020.02.002. [15] T.-C. Ling, C.-S. Poon, Feasible use of recycled CRT funnel glass as heavy weight fine aggregate in barite concrete, J. Clean. Prod. 33 (2012) 42–49, https://doi.org/ 10.1016/j.jclepro.2012.05.003. [16] J. Lu, H. Zheng, S. Yang, P. He, C.S. Poon, Co-utilization of waste glass cullet and glass powder in precast concrete products, Constr. Build. Mater. 223 (2019) 210–220, https://doi.org/10.1016/j.conbuildmat.2019.06.231. [17] C. Kibert, Sustainable Construction - Green Building Design and Delivery, Fourth, Wiley & Sons Inc, New Jersey, 2016. [18] A.B. Kamdi, Transparent Concrete As a Green Material for Building, Int. J. Struct. Civ. Engg. Res. 2 (2013) 172–175, www.ijscer.com. [19] H. Baoguo, Z. Liqing, O. Jinping, Light-Transmitting Concrete, in: Smart Multifunct. Concr. Towar. Sustain. Infrastructures, Springer Nature, Dalian, China, 2017: pp. 1–409. https://doi.org/10.1007/978-981-10-4349-9. [20] D.M. Shah, A Study on Transparent Concrete, Int. Res. J. Eng. Technol. 5 (2018) 1071–1073. [21] M. Zieli´nska, A. Ciesielski, Analysis of Transparent Concrete as an Innovative Material Used in Civil Engineering, IOP Conf. Ser. Mater. Sci. Eng. 245 (2017) 1–7, https://doi.org/10.1088/1757-899X/245/2/022071. [22] B. Kim, Light Transmitting Lightweight Concrete with Transparent Plastic Bar, Open Civ. Eng. J. 11 (1) (2017) 615–626, https://doi.org/10.2174/ 1874149501711010615. [23] J. Sasidharan, A. Naga Sai Teja, K. Sakthivel, D. Manickavel, S. Mohan Kumar, Translucent Concrete, Int. J. Eng. Res. Technol. 6 (2017) 782–786, http://www. ijert.org. [24] ASTM C109/ C109M, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using Cube Specimens), Chem. Anal. (2010) 1–9. https://doi. org/10.1520/C0109. [25] ASTM C128-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, Annu. B. ASTM Stand. i (2015) 1–5. https://doi. org/10.1520/C0128-15.2. [26] ASTM C230, Standard Specification for Flow Table for Use in Tests of Hydraulic Cement 1, Annu. B. ASTM Stand. (2010) 4–9. https://doi.org/10.1520/C0230. [27] ASTM, ASTM C642- Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, (2013) 1–3. [28] ASTM C144, Standard Specification for Aggregate for Masonry Mortar, Annu. B. ASTM Stand. i (2017) 1–5. [29] L.A. Quintero Ortiz, J. Herrera, L. Corzo, J. García, Relationship Between Compressive Strength and Porosity of Concrete Evaluated From Ultrasonic Parameters, Rev. ION. 24 (2011) 69–76. http://www.scielo.org.co/scielo.php?sc ript=sci_abstract&pid=S0120-100X2011000100009. [30] M.Z. Guo, Z. Tu, C.S. Poon, C. Shi, Improvement of properties of architectural mortars prepared with 100% recycled glass by CO2 curing, Constr. Build. Mater. 179 (2018) 138–150, https://doi.org/10.1016/j.conbuildmat.2018.05.188. [31] T.C. Ling, C.S. Poon, Use of recycled CRT funnel glass as fine aggregate in drymixed concrete paving blocks, J. Clean. Prod. 68 (2014) 209–215, https://doi.org/ 10.1016/j.jclepro.2013.12.084. [32] J.X. Lu, Z.H. Duan, C.S. Poon, Combined use of waste glass powder and cullet in architectural mortar, Cem. Concr. Compos. 82 (2017) 34–44, https://doi.org/ 10.1016/j.cemconcomp.2017.05.011. [33] Z. Chen, J.S. Li, C.S. Poon, Combined use of sewage sludge ash and recycled glass cullet for the production of concrete blocks, J. Clean. Prod. 171 (2018) 1447–1459, https://doi.org/10.1016/j.jclepro.2017.10.140. [34] J.-X. Lu, P. Shen, H. Zheng, B. Zhan, H.A. Ali, P. He, C.S. Poon, Synergetic recycling of waste glass and recycled aggregates in cement mortars: Physical, durability and microstructure performance, Cem. Concr. Compos. 113 (2020) 103632, https:// doi.org/10.1016/j.cemconcomp.2020.103632. [35] N. Tamanna, R. Tuladhar, N. Sivakugan, Performance of recycled waste glass sand as partial replacement of sand in concrete, Constr. Build. Mater. 239 (2020) 117804, https://doi.org/10.1016/j.conbuildmat.2019.117804. [36] J.X. Lu, Z.H. Duan, C.S. Poon, Fresh properties of cement pastes or mortars incorporating waste glass powder and cullet, Constr. Build. Mater. 131 (2017) 793–799, https://doi.org/10.1016/j.conbuildmat.2016.11.011. [37] K.H. Tan, H. Du, Use of waste glass as sand in mortar: Part i - Fresh, mechanical and durability properties, Cem. Concr. Compos. 35 (1) (2013) 109–117, https://doi. org/10.1016/j.cemconcomp.2012.08.028. [38] J. Lu, C. Sun, Improvement of early-age properties for glass-cement mortar by adding nanosilica, Cem. Concr. Compos. 89 (2018) 18–30, https://doi.org/ 10.1016/j.cemconcomp.2018.02.010. [39] P. Lertwattanaruk, J. Choksiriwanna, The physical and thermal properties of adobe brick containing bagasse for earth construction, Built. 1 (2011) 53–62, https://doi. org/10.14456/built.2011.5. [40] G. Pe˜na Rodríguez, J.Y. Pe˜na Quintero, M.A. G´omez Tovar, Determinaci´on Experimental de la Conductividad T´ermica Efectiva en Bloques Extinguidos de Arcilla Roja, Cienc. En Desarro. 5 (2015) 15–20, https://doi.org/10.19053/ 01217488.3227. [41] V. Flores-Al´es, A. Pérez-Argallo, J.A. Pulido Arcas, C. Rubio-Bellido, Effect on the Thermal Properties of Mortar Blocks by Using Recycled Glass and Its Application for Social Dwellings, Energies. 13 (2020) 5702, https://doi.org/10.3390/ en13215702. [42] P. Sikoraa, E. Horszczaruka, K. Skoczylasa, T. Rucinska, Thermal properties of cement mortars containing waste glass aggregate and nanosilica, Procedia Eng. 196 (2017) 159–166, https://doi.org/10.1016/j.proeng.2017.07.186. [43] P. Shafigh, I. Asadi, A.R. Akhiani, N.B. Mahyuddin, M. Hashemi, Thermal properties of cement mortar with different mix proportions, Mater. Construcci´on. 70 (2020) 1–12, https://doi.org/10.3989/mc.2020.09219. [44] A. Pilipenko, S. Bazhenova, A. Kryukova, M. Khapov, Decorative light transmitting concrete based on crushed concrete fines, IOP Conf. Ser. Mater. Sci. Eng. 365 (2018) 1–7, https://doi.org/10.1088/1757-899X/365/3/032046. [45] A.A. Momin, R.B. Kadiranaikar, S. Jagirdar, M. Arshad, A. Inamdar, Study on Light Transmittance of Concrete Using Optical Fibers and Glass Rods., in: Int. Conf. Adv. Eng. Technol. IOSR J. Mech. Civ. Eng., 2014: pp. 2278–1684. www.iosrjournals. org. [46] K. Awadhesh, A. Rahul, Experimental study on light transmitting concrete, Int. J. Innov. Sci. Eng. Technol. 4 (2017) 201–210. [47] D. Poornima, T. Shailaja, P. Pooja, H.G. Santosh, B. Sachidananda, M.P. Rashmi, An Experimental Study on Light Transmitting Concrete, Int. Res. J. Eng. Technol. 6 (2019) 7207–7212. [48] A. Tahwia, A. Abdel-raheem, N. Abdel-Aziz, M. Amin, Light transmitance performance of sustainable translucent self-compacting concrete, Build. Eng. 38 (2021), 102178, https://doi.org/10.1016/j.jobe.2021.102178. [49] Y. Li, J. Li, H. Guo, Preparation and study of light transmitting properties of sulfoaluminate cement-based materials, Mater. Des. 83 (2015) 185–192, https:// doi.org/10.1016/j.matdes.2015.06.021. [50] Y. Li, J. Li, Y. Wan, Z. Xu, Experimental study of light transmitting cement-based material (LTCM), Constr. Build. Mater. 96 (2015) 319–325, https://doi.org/ 10.1016/j.conbuildmat.2015.08.055. [51] T.dos.S. Henriques, D.C. Dal Molin, ˆA.B. Masuero, Study of the influence of sorted polymeric optical fibers (POFs) in samples of a light-transmitting cement-based material (LTCM), Constr. Build. Mater. 161 (2018) 305–315, https://doi.org/ 10.1016/j.conbuildmat.2017.11.137. [52] D. Snoeck, J. Debo, N. De Belie, Translucent self-healing cementitious materials using glass fibers and superabsorbent polymers, Dev. Built Environ. 3 (2020) 100012, https://doi.org/10.1016/j.dibe.2020.100012 |
dc.rights.spa.fl_str_mv |
Derechos Reservados Elsevier, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados Elsevier, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Elsevier |
dc.source.eng.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0950061821023990 |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/9b88bc88-13ce-4a39-91c8-728498418f3c/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260107638210560 |
spelling |
Arias Erazo, Jonatan5698db85399e2e216f16e68ca2deda72Villaquirán-Caicedo, Mónica A.0397512d049f6396a988e6371c35313aGoyes, Clarad0442b47804f0f9c1df7ed6c8c2b18f82022-05-27T13:42:35Z2022-05-27T13:42:35Z20219500618https://hdl.handle.net/10614/13919Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/In this research, recycling of 100% glass waste was evaluated for the manufacture of self-compacting mortars for applications in translucent building systems. The glass waste (WG) was ground and used as a fine aggregate in mortar mixtures with cement:WG proportion of 1:1.5, 1:1,75 and 1:2.0 with different water/cement (W/C) ratios. Properties such as fluidity, compressive strength, density, porosity, absorption, thermal properties, and characterization of the microstructure by SEM were analyzed. The results showed that as the WG content increases from 1:1.5 to 1:2.0 the compressive strength of the mortar decreases a maximum of 2.8% in samples with W/C:0.47, and this is due to the formation of microcracks and porosities, which cause the formation of a weakened and sparse interfacial zone which could be identified in the SEM tests. Nevertheless, the compressive strengths were between 20.6 MPa − 32.07 MPa, water absorption for mortars was between 12,92–14,74% and porosities from 23.02% to 25.93%. The thermal conductivity of the mortars was between 0.64 and 0.71 W/m.K. Additionally, the results of the spectrophotometry test for light transmission and the simulation in MATLAB allowed to obtain the brightness in the samples, it was possible to observe that the brightness varies according to the shape of the openings of the blocks, being the A design which allowed a greater passage of light (16%), and the materials developed could be classified as green building materials.11 páginasapplication/pdfengElsevierDerechos Reservados Elsevier, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S0950061821023990Ecological light transmiting concrete made from glass waste and acrylic sheetsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Residuos de vidrio - ReciclajeGlass waste - RecyclingRecycled glass aggregateMortarsTranslucent concrete111304Arias Erazo, J., Villaquirán Caicedo, M.A., Goyes López, C. E. (2021). Ecological light transmiting concrete made from glass waste and acrylic sheets. Construction and Building Materials. Vol. 304, pp. 1-11. https://www.sciencedirect.com/science/article/pii/S0950061821023990Construction and building materials[1] European Commission, Construction and Demolition Wastes 2019 https://ec. europa.eu/environment/waste/construction_demolition.htm.[2] G. Kumar, S. Shrivastava, R.C. Gupta, Paver blocks manufactured from construction & demolition waste, Mater. Today Proc. 27 (2020) 311–317, https:// doi.org/10.1016/j.matpr.2019.11.039.[3] I.F. S´aez del Bosque, P. Van den Heede, N. De Belie, M.I. S´anchez de Rojas, C. Medina, Carbonation of concrete with construction and demolition waste based recycled aggregates and cement with recycled content, Constr. Build. Mater. 234 (2020), 117336, https://doi.org/10.1016/j.conbuildmat.2019.117336.[4] Y.F. Silva, D.A. Lange, S. Delvasto, Effect of incorporation of masonry residue on the properties of self-compacting concretes, Constr. Build. Mater. 196 (2019) 277–283, https://doi.org/10.1016/j.conbuildmat.2018.11.132.[5] Y.F. Silva, R.A. Robayo, P.E. Mattey, S. Delvasto, Properties of self-compacting concrete on fresh and hardened with residue of masonry and recycled concrete, Constr. Build. Mater. 124 (2016) 639–644, https://doi.org/10.1016/j. conbuildmat.2016.07.057.[6] G. Zou, J. Zhang, X. Liu, Y. Lin, H. Yu, Design and performance of emulsified asphalt mixtures containing construction and demolition waste, Constr. Build. Mater. 239 (2020), 117846, https://doi.org/10.1016/j.conbuildmat.2019.117846.[7] X. Jianzhuang, Recycled Aggregate Concrete Structures, Springer N, Springer Nature, Shanghai (2018), https://doi.org/10.1007/978-3-662-53987-3.[8] S. Waite, P. Cox, T. Tudor, Strategies for local authorities to achieve the EU 2020 50% recycling, reuse and composting target: A case study of England, Resour. Conserv. Recycl. 105 (2015) 18–28, https://doi.org/10.1016/j. resconrec.2015.09.017.[9] European Commission, Commission Regulation (EU) No 1179/2012 . Establishing criteria determining when glass cullet ceases to be waste under Directive 2008/98/ EC of the European Parliament and of the Council, Off. J. Eur. Union. (2012) L337/ 31-L337/36.[10] Ministerio del Medio Ambiente de Colombia., Resoluci´on 0472, 2017. https:// www.minambiente.gov.co/images/normativa/app/resoluciones/3a- RESOLUCION-472-DE-2017.pdf.[11] O. Rubio, Creaci´on de una empresa de reciclaje de vidrio Mundo Cristal, EAN, 2012. https://repository.ean.edu.co/bitstream/handle/10882/6020/Rubioosbaldo2013.pdf;jsessionid=1353523E3B8E7AB1B9349AC15DA39319? sequence=11.[12] Twenergy, Colombia apuesta por el reciclaje de vidrio, Twenergy. (2019). https:// twenergy.com/ecologia-y-reciclaje/reciclaje/colombia-apuesta-por-el-reciclaje-devidrio- 618/#:~:text=La labor de las plantas,m´as de 100 referencias distintas.[13] E. Montoya-Quesada, M.A. Villaquir´an-Caicedo, R.M. de Guti´errez, New glassceramic from ternary-quaternary mixtures based on Colombian industrial wastes: Blast furnace slag, cupper slag, fly ash and glass cullet, Bol. La Soc. Esp. Ceram. y Vidr. (2020), https://doi.org/10.1016/j.bsecv.2020.11.009.[14] J. D´avalos, A. Bonilla, M.A. Villaquir´an-Caicedo, R.M. de Guti´errez, J.M. Rinc´on, Preparation of glass–ceramic materials from coal ash and rice husk ash: Microstructural, physical and mechanical properties, Bol. La Soc. Espa˜nola Cer´amica y Vidr. 60 (3) (2021) 183–193, https://doi.org/10.1016/j. bsecv.2020.02.002.[15] T.-C. Ling, C.-S. Poon, Feasible use of recycled CRT funnel glass as heavy weight fine aggregate in barite concrete, J. Clean. Prod. 33 (2012) 42–49, https://doi.org/ 10.1016/j.jclepro.2012.05.003.[16] J. Lu, H. Zheng, S. Yang, P. He, C.S. Poon, Co-utilization of waste glass cullet and glass powder in precast concrete products, Constr. Build. Mater. 223 (2019) 210–220, https://doi.org/10.1016/j.conbuildmat.2019.06.231.[17] C. Kibert, Sustainable Construction - Green Building Design and Delivery, Fourth, Wiley & Sons Inc, New Jersey, 2016.[18] A.B. Kamdi, Transparent Concrete As a Green Material for Building, Int. J. Struct. Civ. Engg. Res. 2 (2013) 172–175, www.ijscer.com.[19] H. Baoguo, Z. Liqing, O. Jinping, Light-Transmitting Concrete, in: Smart Multifunct. Concr. Towar. Sustain. Infrastructures, Springer Nature, Dalian, China, 2017: pp. 1–409. https://doi.org/10.1007/978-981-10-4349-9.[20] D.M. Shah, A Study on Transparent Concrete, Int. Res. J. Eng. Technol. 5 (2018) 1071–1073.[21] M. Zieli´nska, A. Ciesielski, Analysis of Transparent Concrete as an Innovative Material Used in Civil Engineering, IOP Conf. Ser. Mater. Sci. Eng. 245 (2017) 1–7, https://doi.org/10.1088/1757-899X/245/2/022071.[22] B. Kim, Light Transmitting Lightweight Concrete with Transparent Plastic Bar, Open Civ. Eng. J. 11 (1) (2017) 615–626, https://doi.org/10.2174/ 1874149501711010615.[23] J. Sasidharan, A. Naga Sai Teja, K. Sakthivel, D. Manickavel, S. Mohan Kumar, Translucent Concrete, Int. J. Eng. Res. Technol. 6 (2017) 782–786, http://www. ijert.org.[24] ASTM C109/ C109M, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using Cube Specimens), Chem. Anal. (2010) 1–9. https://doi. org/10.1520/C0109.[25] ASTM C128-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, Annu. B. ASTM Stand. i (2015) 1–5. https://doi. org/10.1520/C0128-15.2.[26] ASTM C230, Standard Specification for Flow Table for Use in Tests of Hydraulic Cement 1, Annu. B. ASTM Stand. (2010) 4–9. https://doi.org/10.1520/C0230.[27] ASTM, ASTM C642- Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, (2013) 1–3.[28] ASTM C144, Standard Specification for Aggregate for Masonry Mortar, Annu. B. ASTM Stand. i (2017) 1–5.[29] L.A. Quintero Ortiz, J. Herrera, L. Corzo, J. García, Relationship Between Compressive Strength and Porosity of Concrete Evaluated From Ultrasonic Parameters, Rev. ION. 24 (2011) 69–76. http://www.scielo.org.co/scielo.php?sc ript=sci_abstract&pid=S0120-100X2011000100009.[30] M.Z. Guo, Z. Tu, C.S. Poon, C. Shi, Improvement of properties of architectural mortars prepared with 100% recycled glass by CO2 curing, Constr. Build. Mater. 179 (2018) 138–150, https://doi.org/10.1016/j.conbuildmat.2018.05.188.[31] T.C. Ling, C.S. Poon, Use of recycled CRT funnel glass as fine aggregate in drymixed concrete paving blocks, J. Clean. Prod. 68 (2014) 209–215, https://doi.org/ 10.1016/j.jclepro.2013.12.084.[32] J.X. Lu, Z.H. Duan, C.S. Poon, Combined use of waste glass powder and cullet in architectural mortar, Cem. Concr. Compos. 82 (2017) 34–44, https://doi.org/ 10.1016/j.cemconcomp.2017.05.011.[33] Z. Chen, J.S. Li, C.S. Poon, Combined use of sewage sludge ash and recycled glass cullet for the production of concrete blocks, J. Clean. Prod. 171 (2018) 1447–1459, https://doi.org/10.1016/j.jclepro.2017.10.140.[34] J.-X. Lu, P. Shen, H. Zheng, B. Zhan, H.A. Ali, P. He, C.S. Poon, Synergetic recycling of waste glass and recycled aggregates in cement mortars: Physical, durability and microstructure performance, Cem. Concr. Compos. 113 (2020) 103632, https:// doi.org/10.1016/j.cemconcomp.2020.103632.[35] N. Tamanna, R. Tuladhar, N. Sivakugan, Performance of recycled waste glass sand as partial replacement of sand in concrete, Constr. Build. Mater. 239 (2020) 117804, https://doi.org/10.1016/j.conbuildmat.2019.117804.[36] J.X. Lu, Z.H. Duan, C.S. Poon, Fresh properties of cement pastes or mortars incorporating waste glass powder and cullet, Constr. Build. Mater. 131 (2017) 793–799, https://doi.org/10.1016/j.conbuildmat.2016.11.011.[37] K.H. Tan, H. Du, Use of waste glass as sand in mortar: Part i - Fresh, mechanical and durability properties, Cem. Concr. Compos. 35 (1) (2013) 109–117, https://doi. org/10.1016/j.cemconcomp.2012.08.028.[38] J. Lu, C. Sun, Improvement of early-age properties for glass-cement mortar by adding nanosilica, Cem. Concr. Compos. 89 (2018) 18–30, https://doi.org/ 10.1016/j.cemconcomp.2018.02.010.[39] P. Lertwattanaruk, J. Choksiriwanna, The physical and thermal properties of adobe brick containing bagasse for earth construction, Built. 1 (2011) 53–62, https://doi. org/10.14456/built.2011.5.[40] G. Pe˜na Rodríguez, J.Y. Pe˜na Quintero, M.A. G´omez Tovar, Determinaci´on Experimental de la Conductividad T´ermica Efectiva en Bloques Extinguidos de Arcilla Roja, Cienc. En Desarro. 5 (2015) 15–20, https://doi.org/10.19053/ 01217488.3227.[41] V. Flores-Al´es, A. Pérez-Argallo, J.A. Pulido Arcas, C. Rubio-Bellido, Effect on the Thermal Properties of Mortar Blocks by Using Recycled Glass and Its Application for Social Dwellings, Energies. 13 (2020) 5702, https://doi.org/10.3390/ en13215702.[42] P. Sikoraa, E. Horszczaruka, K. Skoczylasa, T. Rucinska, Thermal properties of cement mortars containing waste glass aggregate and nanosilica, Procedia Eng. 196 (2017) 159–166, https://doi.org/10.1016/j.proeng.2017.07.186.[43] P. Shafigh, I. Asadi, A.R. Akhiani, N.B. Mahyuddin, M. Hashemi, Thermal properties of cement mortar with different mix proportions, Mater. Construcci´on. 70 (2020) 1–12, https://doi.org/10.3989/mc.2020.09219.[44] A. Pilipenko, S. Bazhenova, A. Kryukova, M. Khapov, Decorative light transmitting concrete based on crushed concrete fines, IOP Conf. Ser. Mater. Sci. Eng. 365 (2018) 1–7, https://doi.org/10.1088/1757-899X/365/3/032046.[45] A.A. Momin, R.B. Kadiranaikar, S. Jagirdar, M. Arshad, A. Inamdar, Study on Light Transmittance of Concrete Using Optical Fibers and Glass Rods., in: Int. Conf. Adv. Eng. Technol. IOSR J. Mech. Civ. Eng., 2014: pp. 2278–1684. www.iosrjournals. org.[46] K. Awadhesh, A. Rahul, Experimental study on light transmitting concrete, Int. J. Innov. Sci. Eng. Technol. 4 (2017) 201–210.[47] D. Poornima, T. Shailaja, P. Pooja, H.G. Santosh, B. Sachidananda, M.P. Rashmi, An Experimental Study on Light Transmitting Concrete, Int. Res. J. Eng. Technol. 6 (2019) 7207–7212.[48] A. Tahwia, A. Abdel-raheem, N. Abdel-Aziz, M. Amin, Light transmitance performance of sustainable translucent self-compacting concrete, Build. Eng. 38 (2021), 102178, https://doi.org/10.1016/j.jobe.2021.102178.[49] Y. Li, J. Li, H. Guo, Preparation and study of light transmitting properties of sulfoaluminate cement-based materials, Mater. Des. 83 (2015) 185–192, https:// doi.org/10.1016/j.matdes.2015.06.021.[50] Y. Li, J. Li, Y. Wan, Z. Xu, Experimental study of light transmitting cement-based material (LTCM), Constr. Build. Mater. 96 (2015) 319–325, https://doi.org/ 10.1016/j.conbuildmat.2015.08.055.[51] T.dos.S. Henriques, D.C. Dal Molin, ˆA.B. Masuero, Study of the influence of sorted polymeric optical fibers (POFs) in samples of a light-transmitting cement-based material (LTCM), Constr. Build. Mater. 161 (2018) 305–315, https://doi.org/ 10.1016/j.conbuildmat.2017.11.137.[52] D. Snoeck, J. Debo, N. De Belie, Translucent self-healing cementitious materials using glass fibers and superabsorbent polymers, Dev. Built Environ. 3 (2020) 100012, https://doi.org/10.1016/j.dibe.2020.100012Comunidad generalPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/9b88bc88-13ce-4a39-91c8-728498418f3c/download20b5ba22b1117f71589c7318baa2c560MD5210614/13919oai:dspace7-uao.metacatalogo.com:10614/139192024-01-19 17:02:58.893https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados Elsevier, 2021metadata.onlyhttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |