Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
A new method for calculating nuclear reactivity based on the Discrete Fourier Transform (DFT) – with two filters: a first-order delay low-pass filter and a Savitzky-Golay filter – is presented. The reactivity is calculated from an integrodifferential equation known as the inverse point kinetic equat...
- Autores:
-
Suescún-Díaz, Daniel
Lozano Parada, Jaime Humberto
Rasero, Diego
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11498
- Palabra clave:
- Reactivity
Nuclear power plant
Nuclear reactor
Numerical simulation
Mathematical physics
Física matemática
Reaction-diffusion equations - Numerical solutions
Ecuaciones de reacción-difusión - Soluciones numéricas
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_01ac04d3f08f0894bd7d7fdc5e08435c |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11498 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method |
title |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method |
spellingShingle |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method Reactivity Nuclear power plant Nuclear reactor Numerical simulation Mathematical physics Física matemática Reaction-diffusion equations - Numerical solutions Ecuaciones de reacción-difusión - Soluciones numéricas |
title_short |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method |
title_full |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method |
title_fullStr |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method |
title_full_unstemmed |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method |
title_sort |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method |
dc.creator.fl_str_mv |
Suescún-Díaz, Daniel Lozano Parada, Jaime Humberto Rasero, Diego |
dc.contributor.author.spa.fl_str_mv |
Suescún-Díaz, Daniel Lozano Parada, Jaime Humberto Rasero, Diego |
dc.subject.eng.fl_str_mv |
Reactivity Nuclear power plant Nuclear reactor Numerical simulation |
topic |
Reactivity Nuclear power plant Nuclear reactor Numerical simulation Mathematical physics Física matemática Reaction-diffusion equations - Numerical solutions Ecuaciones de reacción-difusión - Soluciones numéricas |
dc.subject.lemb.eng.fl_str_mv |
Mathematical physics |
dc.subject.lemb.spa.fl_str_mv |
Física matemática |
dc.subject.armarc.eng.fl_str_mv |
Reaction-diffusion equations - Numerical solutions |
dc.subject.armarc.spa.fl_str_mv |
Ecuaciones de reacción-difusión - Soluciones numéricas |
description |
A new method for calculating nuclear reactivity based on the Discrete Fourier Transform (DFT) – with two filters: a first-order delay low-pass filter and a Savitzky-Golay filter – is presented. The reactivity is calculated from an integrodifferential equation known as the inverse point kinetic equation, which contains the history of neutron population density. The new method can be understood as a convolution between the neutron population density signal and the response to the characteristic impulse of a linear system. The proposed method is based on the discrete Fourier transform (DFT) that performs a circular convolution. The fast Fourier transform algorithm (FFT) with the zero-padding technique is implemented to reduce the computational cost |
publishDate |
2019 |
dc.date.accessioned.spa.fl_str_mv |
2019-11-14T16:48:20Z |
dc.date.available.spa.fl_str_mv |
2019-11-14T16:48:20Z |
dc.date.issued.spa.fl_str_mv |
2019-05-05 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.eng.fl_str_mv |
Suescún-Díaz, D., Lozano-Parada, J. H., & Rasero-Causil, D. A. (2019). Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method. Journal of Nuclear Science and Technology, 56(7), 608-616 |
dc.identifier.issn.spa.fl_str_mv |
1881-1248 (en línea) 0022-3131 (impresa) |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/10614/11498 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1080/00223131.2019.1611502 |
identifier_str_mv |
Suescún-Díaz, D., Lozano-Parada, J. H., & Rasero-Causil, D. A. (2019). Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method. Journal of Nuclear Science and Technology, 56(7), 608-616 1881-1248 (en línea) 0022-3131 (impresa) |
url |
http://hdl.handle.net/10614/11498 https://doi.org/10.1080/00223131.2019.1611502 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Nuclear Science and Technology, volumen 56, issue 7, páginas 608-616, (july, 2019) |
dc.relation.references.none.fl_str_mv |
(1987) Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol.,;77:247–254 Ansari, S.A. Development of On-Line Reactivity Meter for Nuclear Reactors (1991) IEEE Transactions on Nuclear Science, 38 (4), pp. 946-952. Cited 31 times. doi: 10.1109/23.83857 Binney, Stephen E., Bakir, Alla J.M. Design and development of a personal-computer-based reactivity meter for a research reactor (1989) Nuclear Technology, 85 (1), pp. 12-21. Cited 18 times. doi: 10.13182/NT89-A34223 Hoogenboom, J.E., van der Sluijs, A.R. Neutron source strength determination for on-line reactivity measurements (1988) Annals of Nuclear Energy, 15 (12), pp. 553-559. Cited 38 times. doi: 10.1016/0306-4549(88)90059-X Tamura, S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain (Open Access) (2003) Journal of Nuclear Science and Technology, 40 (3), pp. 153-157. Cited 25 times. doi: 10.1080/18811248.2003.9715345 Suescún Díaz, D., Senra Martinez, A., Carvalho Da Silva, F. Calculation of reactivity using a finite impulse response filter (2008) Annals of Nuclear Energy, 35 (3), pp. 472-477. Cited 13 times. doi: 10.1016/j.anucene.2007.07.002 Suescún Díaz, D., Senra Martinez, A. Finite differences with exponential filtering in the calculation of reactivity (2010) Kerntechnik, 75 (4), pp. 210-213. Cited 7 times Malmir, H., Vosoughi, N. On-line reactivity calculation using Lagrange method (2013) Annals of Nuclear Energy, 62, pp. 463-467. Cited 9 times. doi: 10.1016/j.anucene.2013.07.006 Suescún-Díaz, D., Bonilla-Londoño, H.F., Figueroa-Jimenez, J.H. Savitzky–Golay filter for reactivity calculation (2016) Journal of Nuclear Science and Technology, 53 (7), pp. 944-950. Cited 3 times. http://www.tandfonline.com/loi/tnst20 doi: 10.1080/00223131.2015.1082949 Suescún-Díaz, D., Causil, D.A.R., Figueroa-Jimenez, J.H. Adams-bashforth-moulton method with savitzky-golay filter to reduce reactivity fluctuations (2017) Kerntechnik, 82 (6), pp. 674-677. http://www.hanser-elibrary.com/doi/pdf/10.3139/124.110842 doi: 10.3139/124.110842 Duderstadt, J.J., Hamilton, L.J. (1976) Nuclear reactor analysis. Cited 1336 times. New York (NY): Wiley Palma, D.A.P., Martinez, A.S., Gonçalves, A.C. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor (2009) Annals of Nuclear Energy, 36 (9), pp. 1469-1471. Cited 15 times. doi: 10.1016/j.anucene.2009.06.016 Haykin, S., Veen, B.V. (1999) Signal and system. Cited 309 times. New York (NY): Wiley Diniz, R.P.S., Da Silva, B.E.A., Netto, L.S. (2010) Digital signal processing: system analysis and design. Cited 195 times. Cambridge: Cambridge University Press Kitano, A., Itagaki, M., Narita, M. Memorial-index-based inverse kinetics method for continuous measurement of reactivity and source strength (2000) Journal of Nuclear Science and Technology, 37 (1), pp. 53-59. Cited 11 times. Doi: 10.1080/18811248.2000.9714866 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
Páginas 608-616 |
dc.coverage.spatial.spa.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Taylor and Francis |
institution |
Universidad Autónoma de Occidente |
dc.source.bibliographiccitation.spa.fl_str_mv |
(1987) Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol.,;77:247–254 Ansari, S.A. Development of On-Line Reactivity Meter for Nuclear Reactors (1991) IEEE Transactions on Nuclear Science, 38 (4), pp. 946-952. Cited 31 times. doi: 10.1109/23.83857 Binney, Stephen E., Bakir, Alla J.M. Design and development of a personal-computer-based reactivity meter for a research reactor (1989) Nuclear Technology, 85 (1), pp. 12-21. Cited 18 times. doi: 10.13182/NT89-A34223 Hoogenboom, J.E., van der Sluijs, A.R. Neutron source strength determination for on-line reactivity measurements (1988) Annals of Nuclear Energy, 15 (12), pp. 553-559. Cited 38 times. doi: 10.1016/0306-4549(88)90059-X Tamura, S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain (Open Access) (2003) Journal of Nuclear Science and Technology, 40 (3), pp. 153-157. Cited 25 times. doi: 10.1080/18811248.2003.9715345 Suescún Díaz, D., Senra Martinez, A., Carvalho Da Silva, F. Calculation of reactivity using a finite impulse response filter (2008) Annals of Nuclear Energy, 35 (3), pp. 472-477. Cited 13 times. doi: 10.1016/j.anucene.2007.07.002 Suescún Díaz, D., Senra Martinez, A. Finite differences with exponential filtering in the calculation of reactivity (2010) Kerntechnik, 75 (4), pp. 210-213. Cited 7 times Malmir, H., Vosoughi, N. On-line reactivity calculation using Lagrange method (2013) Annals of Nuclear Energy, 62, pp. 463-467. Cited 9 times. doi: 10.1016/j.anucene.2013.07.006 Suescún-Díaz, D., Bonilla-Londoño, H.F., Figueroa-Jimenez, J.H. Savitzky–Golay filter for reactivity calculation (2016) Journal of Nuclear Science and Technology, 53 (7), pp. 944-950. Cited 3 times. http://www.tandfonline.com/loi/tnst20 doi: 10.1080/00223131.2015.1082949 Suescún-Díaz, D., Causil, D.A.R., Figueroa-Jimenez, J.H. Adams-bashforth-moulton method with savitzky-golay filter to reduce reactivity fluctuations (2017) Kerntechnik, 82 (6), pp. 674-677. http://www.hanser-elibrary.com/doi/pdf/10.3139/124.110842 doi: 10.3139/124.110842 Duderstadt, J.J., Hamilton, L.J. (1976) Nuclear reactor analysis. Cited 1336 times. New York (NY): Wiley Palma, D.A.P., Martinez, A.S., Gonçalves, A.C. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor (2009) Annals of Nuclear Energy, 36 (9), pp. 1469-1471. Cited 15 times. doi: 10.1016/j.anucene.2009.06.016 Haykin, S., Veen, B.V. (1999) Signal and system. Cited 309 times. New York (NY): Wiley Diniz, R.P.S., Da Silva, B.E.A., Netto, L.S. (2010) Digital signal processing: system analysis and design. Cited 195 times. Cambridge: Cambridge University Press Kitano, A., Itagaki, M., Narita, M. Memorial-index-based inverse kinetics method for continuous measurement of reactivity and source strength (2000) Journal of Nuclear Science and Technology, 37 (1), pp. 53-59. Cited 11 times. Doi: 10.1080/18811248.2000.9714866 |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/86d8966e-bd05-445c-aed3-e010960684d3/download https://dspace7-uao.metacatalogo.com/bitstreams/e5ee3f37-67c5-4619-82d0-ace7520be4e5/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1828229957932810240 |
spelling |
Suescún-Díaz, Daniel29eca95d98db655eeb1ef3f95c2c66e9Lozano Parada, Jaime Humberto5e37d5ded4625c6929b3fb6a8753c350Rasero, Diego86c039a30c118baf0a30fff759f3096eUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-14T16:48:20Z2019-11-14T16:48:20Z2019-05-05Suescún-Díaz, D., Lozano-Parada, J. H., & Rasero-Causil, D. A. (2019). Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method. Journal of Nuclear Science and Technology, 56(7), 608-6161881-1248 (en línea)0022-3131 (impresa)http://hdl.handle.net/10614/11498https://doi.org/10.1080/00223131.2019.1611502A new method for calculating nuclear reactivity based on the Discrete Fourier Transform (DFT) – with two filters: a first-order delay low-pass filter and a Savitzky-Golay filter – is presented. The reactivity is calculated from an integrodifferential equation known as the inverse point kinetic equation, which contains the history of neutron population density. The new method can be understood as a convolution between the neutron population density signal and the response to the characteristic impulse of a linear system. The proposed method is based on the discrete Fourier transform (DFT) that performs a circular convolution. The fast Fourier transform algorithm (FFT) with the zero-padding technique is implemented to reduce the computational costapplication/pdfPáginas 608-616engTaylor and FrancisJournal of Nuclear Science and Technology, volumen 56, issue 7, páginas 608-616, (july, 2019)(1987) Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol.,;77:247–254Ansari, S.A. Development of On-Line Reactivity Meter for Nuclear Reactors (1991) IEEE Transactions on Nuclear Science, 38 (4), pp. 946-952. Cited 31 times. doi: 10.1109/23.83857Binney, Stephen E., Bakir, Alla J.M. Design and development of a personal-computer-based reactivity meter for a research reactor (1989) Nuclear Technology, 85 (1), pp. 12-21. Cited 18 times. doi: 10.13182/NT89-A34223Hoogenboom, J.E., van der Sluijs, A.R. Neutron source strength determination for on-line reactivity measurements (1988) Annals of Nuclear Energy, 15 (12), pp. 553-559. Cited 38 times. doi: 10.1016/0306-4549(88)90059-XTamura, S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain (Open Access) (2003) Journal of Nuclear Science and Technology, 40 (3), pp. 153-157. Cited 25 times. doi: 10.1080/18811248.2003.9715345Suescún Díaz, D., Senra Martinez, A., Carvalho Da Silva, F. Calculation of reactivity using a finite impulse response filter (2008) Annals of Nuclear Energy, 35 (3), pp. 472-477. Cited 13 times. doi: 10.1016/j.anucene.2007.07.002Suescún Díaz, D., Senra Martinez, A. Finite differences with exponential filtering in the calculation of reactivity (2010) Kerntechnik, 75 (4), pp. 210-213. Cited 7 timesMalmir, H., Vosoughi, N. On-line reactivity calculation using Lagrange method (2013) Annals of Nuclear Energy, 62, pp. 463-467. Cited 9 times. doi: 10.1016/j.anucene.2013.07.006Suescún-Díaz, D., Bonilla-Londoño, H.F., Figueroa-Jimenez, J.H. Savitzky–Golay filter for reactivity calculation (2016) Journal of Nuclear Science and Technology, 53 (7), pp. 944-950. Cited 3 times. http://www.tandfonline.com/loi/tnst20 doi: 10.1080/00223131.2015.1082949Suescún-Díaz, D., Causil, D.A.R., Figueroa-Jimenez, J.H. Adams-bashforth-moulton method with savitzky-golay filter to reduce reactivity fluctuations (2017) Kerntechnik, 82 (6), pp. 674-677. http://www.hanser-elibrary.com/doi/pdf/10.3139/124.110842 doi: 10.3139/124.110842Duderstadt, J.J., Hamilton, L.J. (1976) Nuclear reactor analysis. Cited 1336 times. New York (NY): WileyPalma, D.A.P., Martinez, A.S., Gonçalves, A.C. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor (2009) Annals of Nuclear Energy, 36 (9), pp. 1469-1471. Cited 15 times. doi: 10.1016/j.anucene.2009.06.016Haykin, S., Veen, B.V. (1999) Signal and system. Cited 309 times. New York (NY): WileyDiniz, R.P.S., Da Silva, B.E.A., Netto, L.S. (2010) Digital signal processing: system analysis and design. Cited 195 times. Cambridge: Cambridge University PressKitano, A., Itagaki, M., Narita, M. Memorial-index-based inverse kinetics method for continuous measurement of reactivity and source strength (2000) Journal of Nuclear Science and Technology, 37 (1), pp. 53-59. Cited 11 times. Doi: 10.1080/18811248.2000.9714866Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2ReactivityNuclear power plantNuclear reactorNumerical simulationMathematical physicsFísica matemáticaReaction-diffusion equations - Numerical solutionsEcuaciones de reacción-difusión - Soluciones numéricasNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform methodArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85(1987) Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol.,;77:247–254Ansari, S.A. Development of On-Line Reactivity Meter for Nuclear Reactors (1991) IEEE Transactions on Nuclear Science, 38 (4), pp. 946-952. Cited 31 times. doi: 10.1109/23.83857Binney, Stephen E., Bakir, Alla J.M. Design and development of a personal-computer-based reactivity meter for a research reactor (1989) Nuclear Technology, 85 (1), pp. 12-21. Cited 18 times. doi: 10.13182/NT89-A34223Hoogenboom, J.E., van der Sluijs, A.R. Neutron source strength determination for on-line reactivity measurements (1988) Annals of Nuclear Energy, 15 (12), pp. 553-559. Cited 38 times. doi: 10.1016/0306-4549(88)90059-XTamura, S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain (Open Access) (2003) Journal of Nuclear Science and Technology, 40 (3), pp. 153-157. Cited 25 times. doi: 10.1080/18811248.2003.9715345Suescún Díaz, D., Senra Martinez, A., Carvalho Da Silva, F. Calculation of reactivity using a finite impulse response filter (2008) Annals of Nuclear Energy, 35 (3), pp. 472-477. Cited 13 times. doi: 10.1016/j.anucene.2007.07.002Suescún Díaz, D., Senra Martinez, A. Finite differences with exponential filtering in the calculation of reactivity (2010) Kerntechnik, 75 (4), pp. 210-213. Cited 7 timesMalmir, H., Vosoughi, N. On-line reactivity calculation using Lagrange method (2013) Annals of Nuclear Energy, 62, pp. 463-467. Cited 9 times. doi: 10.1016/j.anucene.2013.07.006Suescún-Díaz, D., Bonilla-Londoño, H.F., Figueroa-Jimenez, J.H. Savitzky–Golay filter for reactivity calculation (2016) Journal of Nuclear Science and Technology, 53 (7), pp. 944-950. Cited 3 times. http://www.tandfonline.com/loi/tnst20 doi: 10.1080/00223131.2015.1082949Suescún-Díaz, D., Causil, D.A.R., Figueroa-Jimenez, J.H. Adams-bashforth-moulton method with savitzky-golay filter to reduce reactivity fluctuations (2017) Kerntechnik, 82 (6), pp. 674-677. http://www.hanser-elibrary.com/doi/pdf/10.3139/124.110842 doi: 10.3139/124.110842Duderstadt, J.J., Hamilton, L.J. (1976) Nuclear reactor analysis. Cited 1336 times. New York (NY): WileyPalma, D.A.P., Martinez, A.S., Gonçalves, A.C. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor (2009) Annals of Nuclear Energy, 36 (9), pp. 1469-1471. Cited 15 times. doi: 10.1016/j.anucene.2009.06.016Haykin, S., Veen, B.V. (1999) Signal and system. Cited 309 times. New York (NY): WileyDiniz, R.P.S., Da Silva, B.E.A., Netto, L.S. (2010) Digital signal processing: system analysis and design. Cited 195 times. Cambridge: Cambridge University PressKitano, A., Itagaki, M., Narita, M. Memorial-index-based inverse kinetics method for continuous measurement of reactivity and source strength (2000) Journal of Nuclear Science and Technology, 37 (1), pp. 53-59. Cited 11 times. Doi: 10.1080/18811248.2000.9714866PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/86d8966e-bd05-445c-aed3-e010960684d3/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/e5ee3f37-67c5-4619-82d0-ace7520be4e5/download20b5ba22b1117f71589c7318baa2c560MD5310614/11498oai:dspace7-uao.metacatalogo.com:10614/114982024-01-19 15:53:00.838https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |