Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method

A new method for calculating nuclear reactivity based on the Discrete Fourier Transform (DFT) – with two filters: a first-order delay low-pass filter and a Savitzky-Golay filter – is presented. The reactivity is calculated from an integrodifferential equation known as the inverse point kinetic equat...

Full description

Autores:
Suescún-Díaz, Daniel
Lozano Parada, Jaime Humberto
Rasero, Diego
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11498
Acceso en línea:
http://hdl.handle.net/10614/11498
https://doi.org/10.1080/00223131.2019.1611502
Palabra clave:
Reactivity
Nuclear power plant
Nuclear reactor
Numerical simulation
Mathematical physics
Física matemática
Reaction-diffusion equations - Numerical solutions
Ecuaciones de reacción-difusión - Soluciones numéricas
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_01ac04d3f08f0894bd7d7fdc5e08435c
oai_identifier_str oai:red.uao.edu.co:10614/11498
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
title Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
spellingShingle Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
Reactivity
Nuclear power plant
Nuclear reactor
Numerical simulation
Mathematical physics
Física matemática
Reaction-diffusion equations - Numerical solutions
Ecuaciones de reacción-difusión - Soluciones numéricas
title_short Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
title_full Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
title_fullStr Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
title_full_unstemmed Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
title_sort Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
dc.creator.fl_str_mv Suescún-Díaz, Daniel
Lozano Parada, Jaime Humberto
Rasero, Diego
dc.contributor.author.spa.fl_str_mv Suescún-Díaz, Daniel
Lozano Parada, Jaime Humberto
Rasero, Diego
dc.subject.eng.fl_str_mv Reactivity
Nuclear power plant
Nuclear reactor
Numerical simulation
topic Reactivity
Nuclear power plant
Nuclear reactor
Numerical simulation
Mathematical physics
Física matemática
Reaction-diffusion equations - Numerical solutions
Ecuaciones de reacción-difusión - Soluciones numéricas
dc.subject.lemb.eng.fl_str_mv Mathematical physics
dc.subject.lemb.spa.fl_str_mv Física matemática
dc.subject.armarc.eng.fl_str_mv Reaction-diffusion equations - Numerical solutions
dc.subject.armarc.spa.fl_str_mv Ecuaciones de reacción-difusión - Soluciones numéricas
description A new method for calculating nuclear reactivity based on the Discrete Fourier Transform (DFT) – with two filters: a first-order delay low-pass filter and a Savitzky-Golay filter – is presented. The reactivity is calculated from an integrodifferential equation known as the inverse point kinetic equation, which contains the history of neutron population density. The new method can be understood as a convolution between the neutron population density signal and the response to the characteristic impulse of a linear system. The proposed method is based on the discrete Fourier transform (DFT) that performs a circular convolution. The fast Fourier transform algorithm (FFT) with the zero-padding technique is implemented to reduce the computational cost
publishDate 2019
dc.date.accessioned.spa.fl_str_mv 2019-11-14T16:48:20Z
dc.date.available.spa.fl_str_mv 2019-11-14T16:48:20Z
dc.date.issued.spa.fl_str_mv 2019-05-05
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.eng.fl_str_mv Suescún-Díaz, D., Lozano-Parada, J. H., & Rasero-Causil, D. A. (2019). Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method. Journal of Nuclear Science and Technology, 56(7), 608-616
dc.identifier.issn.spa.fl_str_mv 1881-1248 (en línea)
0022-3131 (impresa)
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/10614/11498
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1080/00223131.2019.1611502
identifier_str_mv Suescún-Díaz, D., Lozano-Parada, J. H., & Rasero-Causil, D. A. (2019). Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method. Journal of Nuclear Science and Technology, 56(7), 608-616
1881-1248 (en línea)
0022-3131 (impresa)
url http://hdl.handle.net/10614/11498
https://doi.org/10.1080/00223131.2019.1611502
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Nuclear Science and Technology, volumen 56, issue 7, páginas 608-616, (july, 2019)
dc.relation.references.none.fl_str_mv (1987) Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol.,;77:247–254
Ansari, S.A. Development of On-Line Reactivity Meter for Nuclear Reactors (1991) IEEE Transactions on Nuclear Science, 38 (4), pp. 946-952. Cited 31 times. doi: 10.1109/23.83857
Binney, Stephen E., Bakir, Alla J.M. Design and development of a personal-computer-based reactivity meter for a research reactor (1989) Nuclear Technology, 85 (1), pp. 12-21. Cited 18 times. doi: 10.13182/NT89-A34223
Hoogenboom, J.E., van der Sluijs, A.R. Neutron source strength determination for on-line reactivity measurements (1988) Annals of Nuclear Energy, 15 (12), pp. 553-559. Cited 38 times. doi: 10.1016/0306-4549(88)90059-X
Tamura, S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain (Open Access) (2003) Journal of Nuclear Science and Technology, 40 (3), pp. 153-157. Cited 25 times. doi: 10.1080/18811248.2003.9715345
Suescún Díaz, D., Senra Martinez, A., Carvalho Da Silva, F. Calculation of reactivity using a finite impulse response filter (2008) Annals of Nuclear Energy, 35 (3), pp. 472-477. Cited 13 times. doi: 10.1016/j.anucene.2007.07.002
Suescún Díaz, D., Senra Martinez, A. Finite differences with exponential filtering in the calculation of reactivity (2010) Kerntechnik, 75 (4), pp. 210-213. Cited 7 times
Malmir, H., Vosoughi, N. On-line reactivity calculation using Lagrange method (2013) Annals of Nuclear Energy, 62, pp. 463-467. Cited 9 times. doi: 10.1016/j.anucene.2013.07.006
Suescún-Díaz, D., Bonilla-Londoño, H.F., Figueroa-Jimenez, J.H. Savitzky–Golay filter for reactivity calculation (2016) Journal of Nuclear Science and Technology, 53 (7), pp. 944-950. Cited 3 times. http://www.tandfonline.com/loi/tnst20 doi: 10.1080/00223131.2015.1082949
Suescún-Díaz, D., Causil, D.A.R., Figueroa-Jimenez, J.H. Adams-bashforth-moulton method with savitzky-golay filter to reduce reactivity fluctuations (2017) Kerntechnik, 82 (6), pp. 674-677. http://www.hanser-elibrary.com/doi/pdf/10.3139/124.110842 doi: 10.3139/124.110842
Duderstadt, J.J., Hamilton, L.J. (1976) Nuclear reactor analysis. Cited 1336 times. New York (NY): Wiley
Palma, D.A.P., Martinez, A.S., Gonçalves, A.C. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor (2009) Annals of Nuclear Energy, 36 (9), pp. 1469-1471. Cited 15 times. doi: 10.1016/j.anucene.2009.06.016
Haykin, S., Veen, B.V. (1999) Signal and system. Cited 309 times. New York (NY): Wiley
Diniz, R.P.S., Da Silva, B.E.A., Netto, L.S. (2010) Digital signal processing: system analysis and design. Cited 195 times. Cambridge: Cambridge University Press
Kitano, A., Itagaki, M., Narita, M. Memorial-index-based inverse kinetics method for continuous measurement of reactivity and source strength (2000) Journal of Nuclear Science and Technology, 37 (1), pp. 53-59. Cited 11 times. Doi: 10.1080/18811248.2000.9714866
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv Páginas 608-616
dc.coverage.spatial.spa.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Taylor and Francis
institution Universidad Autónoma de Occidente
dc.source.bibliographiccitation.spa.fl_str_mv (1987) Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol.,;77:247–254
Ansari, S.A. Development of On-Line Reactivity Meter for Nuclear Reactors (1991) IEEE Transactions on Nuclear Science, 38 (4), pp. 946-952. Cited 31 times. doi: 10.1109/23.83857
Binney, Stephen E., Bakir, Alla J.M. Design and development of a personal-computer-based reactivity meter for a research reactor (1989) Nuclear Technology, 85 (1), pp. 12-21. Cited 18 times. doi: 10.13182/NT89-A34223
Hoogenboom, J.E., van der Sluijs, A.R. Neutron source strength determination for on-line reactivity measurements (1988) Annals of Nuclear Energy, 15 (12), pp. 553-559. Cited 38 times. doi: 10.1016/0306-4549(88)90059-X
Tamura, S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain (Open Access) (2003) Journal of Nuclear Science and Technology, 40 (3), pp. 153-157. Cited 25 times. doi: 10.1080/18811248.2003.9715345
Suescún Díaz, D., Senra Martinez, A., Carvalho Da Silva, F. Calculation of reactivity using a finite impulse response filter (2008) Annals of Nuclear Energy, 35 (3), pp. 472-477. Cited 13 times. doi: 10.1016/j.anucene.2007.07.002
Suescún Díaz, D., Senra Martinez, A. Finite differences with exponential filtering in the calculation of reactivity (2010) Kerntechnik, 75 (4), pp. 210-213. Cited 7 times
Malmir, H., Vosoughi, N. On-line reactivity calculation using Lagrange method (2013) Annals of Nuclear Energy, 62, pp. 463-467. Cited 9 times. doi: 10.1016/j.anucene.2013.07.006
Suescún-Díaz, D., Bonilla-Londoño, H.F., Figueroa-Jimenez, J.H. Savitzky–Golay filter for reactivity calculation (2016) Journal of Nuclear Science and Technology, 53 (7), pp. 944-950. Cited 3 times. http://www.tandfonline.com/loi/tnst20 doi: 10.1080/00223131.2015.1082949
Suescún-Díaz, D., Causil, D.A.R., Figueroa-Jimenez, J.H. Adams-bashforth-moulton method with savitzky-golay filter to reduce reactivity fluctuations (2017) Kerntechnik, 82 (6), pp. 674-677. http://www.hanser-elibrary.com/doi/pdf/10.3139/124.110842 doi: 10.3139/124.110842
Duderstadt, J.J., Hamilton, L.J. (1976) Nuclear reactor analysis. Cited 1336 times. New York (NY): Wiley
Palma, D.A.P., Martinez, A.S., Gonçalves, A.C. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor (2009) Annals of Nuclear Energy, 36 (9), pp. 1469-1471. Cited 15 times. doi: 10.1016/j.anucene.2009.06.016
Haykin, S., Veen, B.V. (1999) Signal and system. Cited 309 times. New York (NY): Wiley
Diniz, R.P.S., Da Silva, B.E.A., Netto, L.S. (2010) Digital signal processing: system analysis and design. Cited 195 times. Cambridge: Cambridge University Press
Kitano, A., Itagaki, M., Narita, M. Memorial-index-based inverse kinetics method for continuous measurement of reactivity and source strength (2000) Journal of Nuclear Science and Technology, 37 (1), pp. 53-59. Cited 11 times. Doi: 10.1080/18811248.2000.9714866
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/86d8966e-bd05-445c-aed3-e010960684d3/download
https://dspace7-uao.metacatalogo.com/bitstreams/e5ee3f37-67c5-4619-82d0-ace7520be4e5/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1808478712068308992
spelling Suescún-Díaz, Daniel29eca95d98db655eeb1ef3f95c2c66e9Lozano Parada, Jaime Humberto5e37d5ded4625c6929b3fb6a8753c350Rasero, Diego86c039a30c118baf0a30fff759f3096eUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-14T16:48:20Z2019-11-14T16:48:20Z2019-05-05Suescún-Díaz, D., Lozano-Parada, J. H., & Rasero-Causil, D. A. (2019). Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method. Journal of Nuclear Science and Technology, 56(7), 608-6161881-1248 (en línea)0022-3131 (impresa)http://hdl.handle.net/10614/11498https://doi.org/10.1080/00223131.2019.1611502A new method for calculating nuclear reactivity based on the Discrete Fourier Transform (DFT) – with two filters: a first-order delay low-pass filter and a Savitzky-Golay filter – is presented. The reactivity is calculated from an integrodifferential equation known as the inverse point kinetic equation, which contains the history of neutron population density. The new method can be understood as a convolution between the neutron population density signal and the response to the characteristic impulse of a linear system. The proposed method is based on the discrete Fourier transform (DFT) that performs a circular convolution. The fast Fourier transform algorithm (FFT) with the zero-padding technique is implemented to reduce the computational costapplication/pdfPáginas 608-616engTaylor and FrancisJournal of Nuclear Science and Technology, volumen 56, issue 7, páginas 608-616, (july, 2019)(1987) Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol.,;77:247–254Ansari, S.A. Development of On-Line Reactivity Meter for Nuclear Reactors (1991) IEEE Transactions on Nuclear Science, 38 (4), pp. 946-952. Cited 31 times. doi: 10.1109/23.83857Binney, Stephen E., Bakir, Alla J.M. Design and development of a personal-computer-based reactivity meter for a research reactor (1989) Nuclear Technology, 85 (1), pp. 12-21. Cited 18 times. doi: 10.13182/NT89-A34223Hoogenboom, J.E., van der Sluijs, A.R. Neutron source strength determination for on-line reactivity measurements (1988) Annals of Nuclear Energy, 15 (12), pp. 553-559. Cited 38 times. doi: 10.1016/0306-4549(88)90059-XTamura, S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain (Open Access) (2003) Journal of Nuclear Science and Technology, 40 (3), pp. 153-157. Cited 25 times. doi: 10.1080/18811248.2003.9715345Suescún Díaz, D., Senra Martinez, A., Carvalho Da Silva, F. Calculation of reactivity using a finite impulse response filter (2008) Annals of Nuclear Energy, 35 (3), pp. 472-477. Cited 13 times. doi: 10.1016/j.anucene.2007.07.002Suescún Díaz, D., Senra Martinez, A. Finite differences with exponential filtering in the calculation of reactivity (2010) Kerntechnik, 75 (4), pp. 210-213. Cited 7 timesMalmir, H., Vosoughi, N. On-line reactivity calculation using Lagrange method (2013) Annals of Nuclear Energy, 62, pp. 463-467. Cited 9 times. doi: 10.1016/j.anucene.2013.07.006Suescún-Díaz, D., Bonilla-Londoño, H.F., Figueroa-Jimenez, J.H. Savitzky–Golay filter for reactivity calculation (2016) Journal of Nuclear Science and Technology, 53 (7), pp. 944-950. Cited 3 times. http://www.tandfonline.com/loi/tnst20 doi: 10.1080/00223131.2015.1082949Suescún-Díaz, D., Causil, D.A.R., Figueroa-Jimenez, J.H. Adams-bashforth-moulton method with savitzky-golay filter to reduce reactivity fluctuations (2017) Kerntechnik, 82 (6), pp. 674-677. http://www.hanser-elibrary.com/doi/pdf/10.3139/124.110842 doi: 10.3139/124.110842Duderstadt, J.J., Hamilton, L.J. (1976) Nuclear reactor analysis. Cited 1336 times. New York (NY): WileyPalma, D.A.P., Martinez, A.S., Gonçalves, A.C. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor (2009) Annals of Nuclear Energy, 36 (9), pp. 1469-1471. Cited 15 times. doi: 10.1016/j.anucene.2009.06.016Haykin, S., Veen, B.V. (1999) Signal and system. Cited 309 times. New York (NY): WileyDiniz, R.P.S., Da Silva, B.E.A., Netto, L.S. (2010) Digital signal processing: system analysis and design. Cited 195 times. Cambridge: Cambridge University PressKitano, A., Itagaki, M., Narita, M. Memorial-index-based inverse kinetics method for continuous measurement of reactivity and source strength (2000) Journal of Nuclear Science and Technology, 37 (1), pp. 53-59. Cited 11 times. Doi: 10.1080/18811248.2000.9714866Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2ReactivityNuclear power plantNuclear reactorNumerical simulationMathematical physicsFísica matemáticaReaction-diffusion equations - Numerical solutionsEcuaciones de reacción-difusión - Soluciones numéricasNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform methodArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85(1987) Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol.,;77:247–254Ansari, S.A. Development of On-Line Reactivity Meter for Nuclear Reactors (1991) IEEE Transactions on Nuclear Science, 38 (4), pp. 946-952. Cited 31 times. doi: 10.1109/23.83857Binney, Stephen E., Bakir, Alla J.M. Design and development of a personal-computer-based reactivity meter for a research reactor (1989) Nuclear Technology, 85 (1), pp. 12-21. Cited 18 times. doi: 10.13182/NT89-A34223Hoogenboom, J.E., van der Sluijs, A.R. Neutron source strength determination for on-line reactivity measurements (1988) Annals of Nuclear Energy, 15 (12), pp. 553-559. Cited 38 times. doi: 10.1016/0306-4549(88)90059-XTamura, S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain (Open Access) (2003) Journal of Nuclear Science and Technology, 40 (3), pp. 153-157. Cited 25 times. doi: 10.1080/18811248.2003.9715345Suescún Díaz, D., Senra Martinez, A., Carvalho Da Silva, F. Calculation of reactivity using a finite impulse response filter (2008) Annals of Nuclear Energy, 35 (3), pp. 472-477. Cited 13 times. doi: 10.1016/j.anucene.2007.07.002Suescún Díaz, D., Senra Martinez, A. Finite differences with exponential filtering in the calculation of reactivity (2010) Kerntechnik, 75 (4), pp. 210-213. Cited 7 timesMalmir, H., Vosoughi, N. On-line reactivity calculation using Lagrange method (2013) Annals of Nuclear Energy, 62, pp. 463-467. Cited 9 times. doi: 10.1016/j.anucene.2013.07.006Suescún-Díaz, D., Bonilla-Londoño, H.F., Figueroa-Jimenez, J.H. Savitzky–Golay filter for reactivity calculation (2016) Journal of Nuclear Science and Technology, 53 (7), pp. 944-950. Cited 3 times. http://www.tandfonline.com/loi/tnst20 doi: 10.1080/00223131.2015.1082949Suescún-Díaz, D., Causil, D.A.R., Figueroa-Jimenez, J.H. Adams-bashforth-moulton method with savitzky-golay filter to reduce reactivity fluctuations (2017) Kerntechnik, 82 (6), pp. 674-677. http://www.hanser-elibrary.com/doi/pdf/10.3139/124.110842 doi: 10.3139/124.110842Duderstadt, J.J., Hamilton, L.J. (1976) Nuclear reactor analysis. Cited 1336 times. New York (NY): WileyPalma, D.A.P., Martinez, A.S., Gonçalves, A.C. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor (2009) Annals of Nuclear Energy, 36 (9), pp. 1469-1471. Cited 15 times. doi: 10.1016/j.anucene.2009.06.016Haykin, S., Veen, B.V. (1999) Signal and system. Cited 309 times. New York (NY): WileyDiniz, R.P.S., Da Silva, B.E.A., Netto, L.S. (2010) Digital signal processing: system analysis and design. Cited 195 times. Cambridge: Cambridge University PressKitano, A., Itagaki, M., Narita, M. Memorial-index-based inverse kinetics method for continuous measurement of reactivity and source strength (2000) Journal of Nuclear Science and Technology, 37 (1), pp. 53-59. Cited 11 times. Doi: 10.1080/18811248.2000.9714866PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/86d8966e-bd05-445c-aed3-e010960684d3/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/e5ee3f37-67c5-4619-82d0-ace7520be4e5/download20b5ba22b1117f71589c7318baa2c560MD5310614/11498oai:dspace7-uao.metacatalogo.com:10614/114982024-01-19 15:53:00.838https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K