Characterization of the L4-L5-S1 motion segment using the stepwise reduction method

The two aims of this study were to generate data for a more accurate calibration of finite element models including the L5–S1 segment, and to find mechanical differences between the L4–L5 and L5–S1 segments. Then, the range of motion (ROM) and facet forces for the L4–S1 segment were measured using t...

Full description

Autores:
Jaramillo Suárez, Héctor Enrique
Puttlitz, Christian M.
García Álvarez, José Jaime
Mcgilvray, Kirk
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11047
Acceso en línea:
http://hdl.handle.net/10614/11047
https://doi.org/10.1016/j.jbiomech.2016.02.050
Palabra clave:
Biomecánica
Movimiento de rotación
Mecánica humana
Biomechanics
Rotational motion
Human mechanics
L4–L5–S1 segment
Stepwise reduction method
Range of motion
Contact forces
Rights
openAccess
License
Derechos Reservados - Elsevier Ltd
id REPOUAO2_0162aa63b58864c0f1db9b2547c6b94d
oai_identifier_str oai:red.uao.edu.co:10614/11047
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Characterization of the L4-L5-S1 motion segment using the stepwise reduction method
title Characterization of the L4-L5-S1 motion segment using the stepwise reduction method
spellingShingle Characterization of the L4-L5-S1 motion segment using the stepwise reduction method
Biomecánica
Movimiento de rotación
Mecánica humana
Biomechanics
Rotational motion
Human mechanics
L4–L5–S1 segment
Stepwise reduction method
Range of motion
Contact forces
title_short Characterization of the L4-L5-S1 motion segment using the stepwise reduction method
title_full Characterization of the L4-L5-S1 motion segment using the stepwise reduction method
title_fullStr Characterization of the L4-L5-S1 motion segment using the stepwise reduction method
title_full_unstemmed Characterization of the L4-L5-S1 motion segment using the stepwise reduction method
title_sort Characterization of the L4-L5-S1 motion segment using the stepwise reduction method
dc.creator.fl_str_mv Jaramillo Suárez, Héctor Enrique
Puttlitz, Christian M.
García Álvarez, José Jaime
Mcgilvray, Kirk
dc.contributor.author.none.fl_str_mv Jaramillo Suárez, Héctor Enrique
Puttlitz, Christian M.
García Álvarez, José Jaime
Mcgilvray, Kirk
dc.subject.armarc.spa.fl_str_mv Biomecánica
Movimiento de rotación
Mecánica humana
topic Biomecánica
Movimiento de rotación
Mecánica humana
Biomechanics
Rotational motion
Human mechanics
L4–L5–S1 segment
Stepwise reduction method
Range of motion
Contact forces
dc.subject.armarc.eng.fl_str_mv Biomechanics
Rotational motion
Human mechanics
dc.subject.proposal.eng.fl_str_mv L4–L5–S1 segment
Stepwise reduction method
Range of motion
Contact forces
description The two aims of this study were to generate data for a more accurate calibration of finite element models including the L5–S1 segment, and to find mechanical differences between the L4–L5 and L5–S1 segments. Then, the range of motion (ROM) and facet forces for the L4–S1 segment were measured using the stepwise reduction method. This consists of sequentially testing and reducing each segment in nine stages by cutting the ligaments, facet capsules, and removing the nucleus. Five L4–S1 human segments (median: 65 years, range: 53–84 years, SD=11.0 years) were loaded under a maximum pure moment of 8 N m. The ROM was measured using stereo-photogrammetry via tracking of three markers and the facet contact forces (CF) were measured using a Tekscan system. The ROM for the L4–L5 segment and all stages showed good agreement with published data. The major differences in ROM between the L4–L5 and L5–S1 segments were found for lateral bending and all stages, for which the L4–L5 ROM was about 1.5–3 times higher than that of the L5–S1 segment, consistent with L5–S1 facet CF about 1.3 to 4 times higher than those measured for the L4–L5 segment. For the other movements and few stages, the L4–L5 ROM was significantly lower that of the L5–S1 segment. ROM and CF provide important baseline data for more accurate calibration of FE models and to understand the role that their structures play in lower lumbar spine mechanics
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2019-09-04T21:47:12Z
dc.date.available.none.fl_str_mv 2019-09-04T21:47:12Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1873-2380 (en línea)
0021-9290 (impresa)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11047
dc.identifier.doi.eng.fl_str_mv https://doi.org/10.1016/j.jbiomech.2016.02.050
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv repositorio Educativo Digital UAO
identifier_str_mv 1873-2380 (en línea)
0021-9290 (impresa)
Universidad Autónoma de Occidente
repositorio Educativo Digital UAO
url http://hdl.handle.net/10614/11047
https://doi.org/10.1016/j.jbiomech.2016.02.050
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 1254
dc.relation.citationissue.none.fl_str_mv 7
dc.relation.citationstartpage.none.fl_str_mv 1248
dc.relation.citationvolume.none.fl_str_mv 49
dc.relation.cites.spa.fl_str_mv Jaramillo, H. E., Puttlitz, C. M., McGilvray, K., & García, J. J. (2016). Characterization of the L4–L5–S1 motion segment using the stepwise reduction method. Journal of biomechanics, 49(7), pp. 1248-1254
dc.relation.ispartofjournal.spa.fl_str_mv Journal of biomechanics
dc.relation.references.spa.fl_str_mv Adams, M.A., Hutton, W.C., 1981. The relevance of torsion to the mechanical derangement of the lumbar spine. Spine 6, 241–248
Adams, M.A., Hutton, W.C., Stott, J.R.R., 1980. The resistance to flexion of the lumbar intervertebral joint. Spine 5, 245–253
Adams, Michael A., Bogduk, Nikolai, Burton, Kim, Dolan, Patricia, 2012. The Biomechanics of Back Pain, 3rd ed. Churchill Livingstone, Edinburgh
Bogduk, N., 1995. Clinical Anatomy of the Lumbar Spine & Sacrum (WWW Document). ⟨http://www.lavoisier.fr/livre/notice.asp?id¼OKKW2RAORR6OWX⟩ (accessed 8.14.12)
Devin Leahy, P., Puttlitz, C.M., 2012. The effects of ligamentous injury in the human lower cervical spine. J. Biomech. 45, 2668–2672. http://dx.doi.org/10.1016/j. jbiomech.2012.08.012
Goel, V.K., Clausen, J.D., 1998. Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine 23, 684–691
Griffith, J.F., Wang, Y.-X.J., Antonio, G.E., Choi, K.C., Yu, A., Ahuja, A.T., Leung, P.C., 2007. Modified pfirrmann grading system for lumbar intervertebral disc degeneration. Spine 32, E708–E712. http://dx.doi.org/10.1097/BRS.0b013e31815a59a0
Guan, Y., Yoganandan, N., Moore, J., Pintar, F.A., Zhang, J., Maiman, D.J., Laud, P., 2007. Moment–rotation responses of the human lumbosacral spinal column. J. Biomech. 40, 1975–1980. http://dx.doi.org/10.1016/j.jbiomech.2006.09.027
Harris, M., Morberg, P., Bruce, W.J., Walsh, W., 1999. An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. J. Biomech. 32, 951–958. http://dx.doi.org/ 10.1016/S0021-9290(99)00072-X
Heuer, F., Schmidt, H., Wilke, H.-J., 2008. Stepwise reduction of functional spinal structures increase disc bulge and surface strains. J. Biomech. 41, 1953–1960. http://dx.doi.org/10.1016/j.jbiomech.2008.03.023
Heuer, F., Schmidt, H., Claes, L., Wilke, H.-J., 2007a. Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure. J. Biomech. 40, 795–803. http://dx.doi.org/10.1016/j.jbiomech.2006.03.016
Heuer, F., Schmidt, H., Klezl, Z., Claes, L., Wilke, H.-J., 2007b. Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J. Biomech. 40, 271–280. http://dx.doi.org/10.1016/j.jbiomech.2006.01.007
Panjabi, M.M., Oxland, T.R., Yamamoto, I., Crisco, J.J., 1994. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load–displacement curves. J. Bone Jt. Surg. – Ser. A 76, 413–424
Panjabi, M., 1989. How does posture affect coupling in the lumbar spine? Spine 14, 1002–1011 (WWW Document) (accessed 8.15.12), http://journals.lww.com/spine journal/Fulltext/1989/09000/How_Does_Posture_Affect_Coupling_in_the_Lumbar.15. aspx
Pfirrmann, C.W., Metzdorf, A., Zanetti, M., Hodler, J., Boos, N., 2001. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26, 1873–1878
Pintar, F.A., Yoganandan, N., Myers, T., Elhagediab, A., Sances Jr., A., 1992. Biomechanical properties of human lumbar spine ligaments. J. Biomech. 25, 1351–1356. http://dx.doi.org/10.1016/0021-9290(92)90290-H.
Posner, I., White, A.A., Edwards, W.T., Hayes, W.C., 1982. A biomechanical analysis of the clinical stability of the lumbar and lumbosacral spine. Spine 7, 374–389
Saleem, S., Aslam, H.M., Rehmani, M.A.K., Raees, A., Alvi, A.A., Ashraf, J., 2013. Lumbar disc degenerative disease: disc degeneration symptoms and magnetic resonance image findings. Asian Spine J. 7, 322–334. http://dx.doi.org/10.4184/ asj.2013.7.4.322
Schmidt, H., Heuer, F., Drumm, J., Klezl, Z., Claes, L., Wilke, H.-J., 2007. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin. Biomech. 22, 377–384. http://dx.doi.org/ 10.1016/j.clinbiomech.2006.11.008
Shao, Z., Rompe, G., Schiltenwolf, M., 2002. Radiographic changes in the lumbar intervertebral discs and lumbar vertebrae with age. Spine 27, 263–268
Shirazi-Adl, A., 1994. Nonlinear stress analysis of the whole lumbar spine in torsion —mechanics of facet articulation. J. Biomech. 27, 289–299. http://dx.doi.org/ 10.1016/0021-9290(94)90005-1
Tencer, A.F., Ahmed, A.M., Burke, D.L., 1982. Some static mechanical properties of the lumbar intervertebral joint, intact and injured. J. Biomech. Eng. 104, 193–201
Van Schaik, J.P.J., Verbiest, H., Van Schaik, F.D.J., 1985. The orientation of laminae and facet joints in the lower lumbar spine. Spine 10, 59–63
Wilson, D.C., Niosi, C.A., Zhu, Q.A., Oxland, T.R., Wilson, D.R., 2006. Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine. J. Biomech. 39, 348–353. http://dx.doi.org/10.1016/j.jbiomech.2004.12.011
Wilson, D.R., Apreleva, M.V., Eichler, M.J., Harrold, F.R., 2003. Accuracy and repeatability of a pressure measurement system in the patellofemoral joint. J. Biomech. 36, 1909–1915. http://dx.doi.org/10.1016/S0021-9290(03)00105-2
Yamamoto, I., Panjabi, M., Crisco, T., Oxland, T., 1989. Three-dimensional movements of the whole lumbar spine. J. Biomech. 22, 1103. http://dx.doi.org/ 10.1016/0021-9290(89)90523-X
dc.rights.spa.fl_str_mv Derechos Reservados - Elsevier Ltd
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Elsevier Ltd
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 7 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Elsevier Ltd
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/aec2180a-717c-4b3b-8fe4-2e7a49e95c06/download
https://red.uao.edu.co/bitstreams/db5a6ab9-a361-4e62-a90a-90ca0b4ba6e2/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259939921625088
spelling Jaramillo Suárez, Héctor Enriquevirtual::2372-1Puttlitz, Christian M.cb3497001c1cdd32c772930fb0ab0106García Álvarez, José Jaime56b4754cf01bc1970626b07be8e549b9Mcgilvray, Kirk1c1724fba1d83787cfb1b10f21071dfc2019-09-04T21:47:12Z2019-09-04T21:47:12Z20161873-2380 (en línea)0021-9290 (impresa)http://hdl.handle.net/10614/11047https://doi.org/10.1016/j.jbiomech.2016.02.050Universidad Autónoma de Occidenterepositorio Educativo Digital UAOThe two aims of this study were to generate data for a more accurate calibration of finite element models including the L5–S1 segment, and to find mechanical differences between the L4–L5 and L5–S1 segments. Then, the range of motion (ROM) and facet forces for the L4–S1 segment were measured using the stepwise reduction method. This consists of sequentially testing and reducing each segment in nine stages by cutting the ligaments, facet capsules, and removing the nucleus. Five L4–S1 human segments (median: 65 years, range: 53–84 years, SD=11.0 years) were loaded under a maximum pure moment of 8 N m. The ROM was measured using stereo-photogrammetry via tracking of three markers and the facet contact forces (CF) were measured using a Tekscan system. The ROM for the L4–L5 segment and all stages showed good agreement with published data. The major differences in ROM between the L4–L5 and L5–S1 segments were found for lateral bending and all stages, for which the L4–L5 ROM was about 1.5–3 times higher than that of the L5–S1 segment, consistent with L5–S1 facet CF about 1.3 to 4 times higher than those measured for the L4–L5 segment. For the other movements and few stages, the L4–L5 ROM was significantly lower that of the L5–S1 segment. ROM and CF provide important baseline data for more accurate calibration of FE models and to understand the role that their structures play in lower lumbar spine mechanicsapplication/pdf7 páginasapplication/pdfengElsevier LtdDerechos Reservados - Elsevier Ltdhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Characterization of the L4-L5-S1 motion segment using the stepwise reduction methodArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85BiomecánicaMovimiento de rotaciónMecánica humanaBiomechanicsRotational motionHuman mechanicsL4–L5–S1 segmentStepwise reduction methodRange of motionContact forces12547124849Jaramillo, H. E., Puttlitz, C. M., McGilvray, K., & García, J. J. (2016). Characterization of the L4–L5–S1 motion segment using the stepwise reduction method. Journal of biomechanics, 49(7), pp. 1248-1254Journal of biomechanicsAdams, M.A., Hutton, W.C., 1981. The relevance of torsion to the mechanical derangement of the lumbar spine. Spine 6, 241–248Adams, M.A., Hutton, W.C., Stott, J.R.R., 1980. The resistance to flexion of the lumbar intervertebral joint. Spine 5, 245–253Adams, Michael A., Bogduk, Nikolai, Burton, Kim, Dolan, Patricia, 2012. The Biomechanics of Back Pain, 3rd ed. Churchill Livingstone, EdinburghBogduk, N., 1995. Clinical Anatomy of the Lumbar Spine & Sacrum (WWW Document). ⟨http://www.lavoisier.fr/livre/notice.asp?id¼OKKW2RAORR6OWX⟩ (accessed 8.14.12)Devin Leahy, P., Puttlitz, C.M., 2012. The effects of ligamentous injury in the human lower cervical spine. J. Biomech. 45, 2668–2672. http://dx.doi.org/10.1016/j. jbiomech.2012.08.012Goel, V.K., Clausen, J.D., 1998. Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine 23, 684–691Griffith, J.F., Wang, Y.-X.J., Antonio, G.E., Choi, K.C., Yu, A., Ahuja, A.T., Leung, P.C., 2007. Modified pfirrmann grading system for lumbar intervertebral disc degeneration. Spine 32, E708–E712. http://dx.doi.org/10.1097/BRS.0b013e31815a59a0Guan, Y., Yoganandan, N., Moore, J., Pintar, F.A., Zhang, J., Maiman, D.J., Laud, P., 2007. Moment–rotation responses of the human lumbosacral spinal column. J. Biomech. 40, 1975–1980. http://dx.doi.org/10.1016/j.jbiomech.2006.09.027Harris, M., Morberg, P., Bruce, W.J., Walsh, W., 1999. An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. J. Biomech. 32, 951–958. http://dx.doi.org/ 10.1016/S0021-9290(99)00072-XHeuer, F., Schmidt, H., Wilke, H.-J., 2008. Stepwise reduction of functional spinal structures increase disc bulge and surface strains. J. Biomech. 41, 1953–1960. http://dx.doi.org/10.1016/j.jbiomech.2008.03.023Heuer, F., Schmidt, H., Claes, L., Wilke, H.-J., 2007a. Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure. J. Biomech. 40, 795–803. http://dx.doi.org/10.1016/j.jbiomech.2006.03.016Heuer, F., Schmidt, H., Klezl, Z., Claes, L., Wilke, H.-J., 2007b. Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J. Biomech. 40, 271–280. http://dx.doi.org/10.1016/j.jbiomech.2006.01.007Panjabi, M.M., Oxland, T.R., Yamamoto, I., Crisco, J.J., 1994. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load–displacement curves. J. Bone Jt. Surg. – Ser. A 76, 413–424Panjabi, M., 1989. How does posture affect coupling in the lumbar spine? Spine 14, 1002–1011 (WWW Document) (accessed 8.15.12), http://journals.lww.com/spine journal/Fulltext/1989/09000/How_Does_Posture_Affect_Coupling_in_the_Lumbar.15. aspxPfirrmann, C.W., Metzdorf, A., Zanetti, M., Hodler, J., Boos, N., 2001. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26, 1873–1878Pintar, F.A., Yoganandan, N., Myers, T., Elhagediab, A., Sances Jr., A., 1992. Biomechanical properties of human lumbar spine ligaments. J. Biomech. 25, 1351–1356. http://dx.doi.org/10.1016/0021-9290(92)90290-H.Posner, I., White, A.A., Edwards, W.T., Hayes, W.C., 1982. A biomechanical analysis of the clinical stability of the lumbar and lumbosacral spine. Spine 7, 374–389Saleem, S., Aslam, H.M., Rehmani, M.A.K., Raees, A., Alvi, A.A., Ashraf, J., 2013. Lumbar disc degenerative disease: disc degeneration symptoms and magnetic resonance image findings. Asian Spine J. 7, 322–334. http://dx.doi.org/10.4184/ asj.2013.7.4.322Schmidt, H., Heuer, F., Drumm, J., Klezl, Z., Claes, L., Wilke, H.-J., 2007. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin. Biomech. 22, 377–384. http://dx.doi.org/ 10.1016/j.clinbiomech.2006.11.008Shao, Z., Rompe, G., Schiltenwolf, M., 2002. Radiographic changes in the lumbar intervertebral discs and lumbar vertebrae with age. Spine 27, 263–268Shirazi-Adl, A., 1994. Nonlinear stress analysis of the whole lumbar spine in torsion —mechanics of facet articulation. J. Biomech. 27, 289–299. http://dx.doi.org/ 10.1016/0021-9290(94)90005-1Tencer, A.F., Ahmed, A.M., Burke, D.L., 1982. Some static mechanical properties of the lumbar intervertebral joint, intact and injured. J. Biomech. Eng. 104, 193–201Van Schaik, J.P.J., Verbiest, H., Van Schaik, F.D.J., 1985. The orientation of laminae and facet joints in the lower lumbar spine. Spine 10, 59–63Wilson, D.C., Niosi, C.A., Zhu, Q.A., Oxland, T.R., Wilson, D.R., 2006. Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine. J. Biomech. 39, 348–353. http://dx.doi.org/10.1016/j.jbiomech.2004.12.011Wilson, D.R., Apreleva, M.V., Eichler, M.J., Harrold, F.R., 2003. Accuracy and repeatability of a pressure measurement system in the patellofemoral joint. J. Biomech. 36, 1909–1915. http://dx.doi.org/10.1016/S0021-9290(03)00105-2Yamamoto, I., Panjabi, M., Crisco, T., Oxland, T., 1989. Three-dimensional movements of the whole lumbar spine. J. Biomech. 22, 1103. http://dx.doi.org/ 10.1016/0021-9290(89)90523-XPublicationada2f35e-57bd-4bbb-91d3-e197573bfab8virtual::2372-1ada2f35e-57bd-4bbb-91d3-e197573bfab8virtual::2372-1https://scholar.google.com.co/citations?user=GEzrsjQAAAAJ&hl=esvirtual::2372-10000-0002-7324-9478virtual::2372-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000144967virtual::2372-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/aec2180a-717c-4b3b-8fe4-2e7a49e95c06/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/db5a6ab9-a361-4e62-a90a-90ca0b4ba6e2/download20b5ba22b1117f71589c7318baa2c560MD5310614/11047oai:red.uao.edu.co:10614/110472024-05-10 10:46:06.396https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Elsevier Ltdmetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K