Characterization of the L4-L5-S1 motion segment using the stepwise reduction method
The two aims of this study were to generate data for a more accurate calibration of finite element models including the L5–S1 segment, and to find mechanical differences between the L4–L5 and L5–S1 segments. Then, the range of motion (ROM) and facet forces for the L4–S1 segment were measured using t...
- Autores:
-
Jaramillo Suárez, Héctor Enrique
Puttlitz, Christian M.
García Álvarez, José Jaime
Mcgilvray, Kirk
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11047
- Palabra clave:
- Biomecánica
Movimiento de rotación
Mecánica humana
Biomechanics
Rotational motion
Human mechanics
L4–L5–S1 segment
Stepwise reduction method
Range of motion
Contact forces
- Rights
- openAccess
- License
- Derechos Reservados - Elsevier Ltd
id |
REPOUAO2_0162aa63b58864c0f1db9b2547c6b94d |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11047 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Characterization of the L4-L5-S1 motion segment using the stepwise reduction method |
title |
Characterization of the L4-L5-S1 motion segment using the stepwise reduction method |
spellingShingle |
Characterization of the L4-L5-S1 motion segment using the stepwise reduction method Biomecánica Movimiento de rotación Mecánica humana Biomechanics Rotational motion Human mechanics L4–L5–S1 segment Stepwise reduction method Range of motion Contact forces |
title_short |
Characterization of the L4-L5-S1 motion segment using the stepwise reduction method |
title_full |
Characterization of the L4-L5-S1 motion segment using the stepwise reduction method |
title_fullStr |
Characterization of the L4-L5-S1 motion segment using the stepwise reduction method |
title_full_unstemmed |
Characterization of the L4-L5-S1 motion segment using the stepwise reduction method |
title_sort |
Characterization of the L4-L5-S1 motion segment using the stepwise reduction method |
dc.creator.fl_str_mv |
Jaramillo Suárez, Héctor Enrique Puttlitz, Christian M. García Álvarez, José Jaime Mcgilvray, Kirk |
dc.contributor.author.none.fl_str_mv |
Jaramillo Suárez, Héctor Enrique Puttlitz, Christian M. García Álvarez, José Jaime Mcgilvray, Kirk |
dc.subject.armarc.spa.fl_str_mv |
Biomecánica Movimiento de rotación Mecánica humana |
topic |
Biomecánica Movimiento de rotación Mecánica humana Biomechanics Rotational motion Human mechanics L4–L5–S1 segment Stepwise reduction method Range of motion Contact forces |
dc.subject.armarc.eng.fl_str_mv |
Biomechanics Rotational motion Human mechanics |
dc.subject.proposal.eng.fl_str_mv |
L4–L5–S1 segment Stepwise reduction method Range of motion Contact forces |
description |
The two aims of this study were to generate data for a more accurate calibration of finite element models including the L5–S1 segment, and to find mechanical differences between the L4–L5 and L5–S1 segments. Then, the range of motion (ROM) and facet forces for the L4–S1 segment were measured using the stepwise reduction method. This consists of sequentially testing and reducing each segment in nine stages by cutting the ligaments, facet capsules, and removing the nucleus. Five L4–S1 human segments (median: 65 years, range: 53–84 years, SD=11.0 years) were loaded under a maximum pure moment of 8 N m. The ROM was measured using stereo-photogrammetry via tracking of three markers and the facet contact forces (CF) were measured using a Tekscan system. The ROM for the L4–L5 segment and all stages showed good agreement with published data. The major differences in ROM between the L4–L5 and L5–S1 segments were found for lateral bending and all stages, for which the L4–L5 ROM was about 1.5–3 times higher than that of the L5–S1 segment, consistent with L5–S1 facet CF about 1.3 to 4 times higher than those measured for the L4–L5 segment. For the other movements and few stages, the L4–L5 ROM was significantly lower that of the L5–S1 segment. ROM and CF provide important baseline data for more accurate calibration of FE models and to understand the role that their structures play in lower lumbar spine mechanics |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2019-09-04T21:47:12Z |
dc.date.available.none.fl_str_mv |
2019-09-04T21:47:12Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1873-2380 (en línea) 0021-9290 (impresa) |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11047 |
dc.identifier.doi.eng.fl_str_mv |
https://doi.org/10.1016/j.jbiomech.2016.02.050 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
repositorio Educativo Digital UAO |
identifier_str_mv |
1873-2380 (en línea) 0021-9290 (impresa) Universidad Autónoma de Occidente repositorio Educativo Digital UAO |
url |
http://hdl.handle.net/10614/11047 https://doi.org/10.1016/j.jbiomech.2016.02.050 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
1254 |
dc.relation.citationissue.none.fl_str_mv |
7 |
dc.relation.citationstartpage.none.fl_str_mv |
1248 |
dc.relation.citationvolume.none.fl_str_mv |
49 |
dc.relation.cites.spa.fl_str_mv |
Jaramillo, H. E., Puttlitz, C. M., McGilvray, K., & García, J. J. (2016). Characterization of the L4–L5–S1 motion segment using the stepwise reduction method. Journal of biomechanics, 49(7), pp. 1248-1254 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of biomechanics |
dc.relation.references.spa.fl_str_mv |
Adams, M.A., Hutton, W.C., 1981. The relevance of torsion to the mechanical derangement of the lumbar spine. Spine 6, 241–248 Adams, M.A., Hutton, W.C., Stott, J.R.R., 1980. The resistance to flexion of the lumbar intervertebral joint. Spine 5, 245–253 Adams, Michael A., Bogduk, Nikolai, Burton, Kim, Dolan, Patricia, 2012. The Biomechanics of Back Pain, 3rd ed. Churchill Livingstone, Edinburgh Bogduk, N., 1995. Clinical Anatomy of the Lumbar Spine & Sacrum (WWW Document). ⟨http://www.lavoisier.fr/livre/notice.asp?id¼OKKW2RAORR6OWX⟩ (accessed 8.14.12) Devin Leahy, P., Puttlitz, C.M., 2012. The effects of ligamentous injury in the human lower cervical spine. J. Biomech. 45, 2668–2672. http://dx.doi.org/10.1016/j. jbiomech.2012.08.012 Goel, V.K., Clausen, J.D., 1998. Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine 23, 684–691 Griffith, J.F., Wang, Y.-X.J., Antonio, G.E., Choi, K.C., Yu, A., Ahuja, A.T., Leung, P.C., 2007. Modified pfirrmann grading system for lumbar intervertebral disc degeneration. Spine 32, E708–E712. http://dx.doi.org/10.1097/BRS.0b013e31815a59a0 Guan, Y., Yoganandan, N., Moore, J., Pintar, F.A., Zhang, J., Maiman, D.J., Laud, P., 2007. Moment–rotation responses of the human lumbosacral spinal column. J. Biomech. 40, 1975–1980. http://dx.doi.org/10.1016/j.jbiomech.2006.09.027 Harris, M., Morberg, P., Bruce, W.J., Walsh, W., 1999. An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. J. Biomech. 32, 951–958. http://dx.doi.org/ 10.1016/S0021-9290(99)00072-X Heuer, F., Schmidt, H., Wilke, H.-J., 2008. Stepwise reduction of functional spinal structures increase disc bulge and surface strains. J. Biomech. 41, 1953–1960. http://dx.doi.org/10.1016/j.jbiomech.2008.03.023 Heuer, F., Schmidt, H., Claes, L., Wilke, H.-J., 2007a. Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure. J. Biomech. 40, 795–803. http://dx.doi.org/10.1016/j.jbiomech.2006.03.016 Heuer, F., Schmidt, H., Klezl, Z., Claes, L., Wilke, H.-J., 2007b. Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J. Biomech. 40, 271–280. http://dx.doi.org/10.1016/j.jbiomech.2006.01.007 Panjabi, M.M., Oxland, T.R., Yamamoto, I., Crisco, J.J., 1994. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load–displacement curves. J. Bone Jt. Surg. – Ser. A 76, 413–424 Panjabi, M., 1989. How does posture affect coupling in the lumbar spine? Spine 14, 1002–1011 (WWW Document) (accessed 8.15.12), http://journals.lww.com/spine journal/Fulltext/1989/09000/How_Does_Posture_Affect_Coupling_in_the_Lumbar.15. aspx Pfirrmann, C.W., Metzdorf, A., Zanetti, M., Hodler, J., Boos, N., 2001. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26, 1873–1878 Pintar, F.A., Yoganandan, N., Myers, T., Elhagediab, A., Sances Jr., A., 1992. Biomechanical properties of human lumbar spine ligaments. J. Biomech. 25, 1351–1356. http://dx.doi.org/10.1016/0021-9290(92)90290-H. Posner, I., White, A.A., Edwards, W.T., Hayes, W.C., 1982. A biomechanical analysis of the clinical stability of the lumbar and lumbosacral spine. Spine 7, 374–389 Saleem, S., Aslam, H.M., Rehmani, M.A.K., Raees, A., Alvi, A.A., Ashraf, J., 2013. Lumbar disc degenerative disease: disc degeneration symptoms and magnetic resonance image findings. Asian Spine J. 7, 322–334. http://dx.doi.org/10.4184/ asj.2013.7.4.322 Schmidt, H., Heuer, F., Drumm, J., Klezl, Z., Claes, L., Wilke, H.-J., 2007. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin. Biomech. 22, 377–384. http://dx.doi.org/ 10.1016/j.clinbiomech.2006.11.008 Shao, Z., Rompe, G., Schiltenwolf, M., 2002. Radiographic changes in the lumbar intervertebral discs and lumbar vertebrae with age. Spine 27, 263–268 Shirazi-Adl, A., 1994. Nonlinear stress analysis of the whole lumbar spine in torsion —mechanics of facet articulation. J. Biomech. 27, 289–299. http://dx.doi.org/ 10.1016/0021-9290(94)90005-1 Tencer, A.F., Ahmed, A.M., Burke, D.L., 1982. Some static mechanical properties of the lumbar intervertebral joint, intact and injured. J. Biomech. Eng. 104, 193–201 Van Schaik, J.P.J., Verbiest, H., Van Schaik, F.D.J., 1985. The orientation of laminae and facet joints in the lower lumbar spine. Spine 10, 59–63 Wilson, D.C., Niosi, C.A., Zhu, Q.A., Oxland, T.R., Wilson, D.R., 2006. Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine. J. Biomech. 39, 348–353. http://dx.doi.org/10.1016/j.jbiomech.2004.12.011 Wilson, D.R., Apreleva, M.V., Eichler, M.J., Harrold, F.R., 2003. Accuracy and repeatability of a pressure measurement system in the patellofemoral joint. J. Biomech. 36, 1909–1915. http://dx.doi.org/10.1016/S0021-9290(03)00105-2 Yamamoto, I., Panjabi, M., Crisco, T., Oxland, T., 1989. Three-dimensional movements of the whole lumbar spine. J. Biomech. 22, 1103. http://dx.doi.org/ 10.1016/0021-9290(89)90523-X |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Elsevier Ltd |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Elsevier Ltd https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
7 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Elsevier Ltd |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/aec2180a-717c-4b3b-8fe4-2e7a49e95c06/download https://red.uao.edu.co/bitstreams/db5a6ab9-a361-4e62-a90a-90ca0b4ba6e2/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259939921625088 |
spelling |
Jaramillo Suárez, Héctor Enriquevirtual::2372-1Puttlitz, Christian M.cb3497001c1cdd32c772930fb0ab0106García Álvarez, José Jaime56b4754cf01bc1970626b07be8e549b9Mcgilvray, Kirk1c1724fba1d83787cfb1b10f21071dfc2019-09-04T21:47:12Z2019-09-04T21:47:12Z20161873-2380 (en línea)0021-9290 (impresa)http://hdl.handle.net/10614/11047https://doi.org/10.1016/j.jbiomech.2016.02.050Universidad Autónoma de Occidenterepositorio Educativo Digital UAOThe two aims of this study were to generate data for a more accurate calibration of finite element models including the L5–S1 segment, and to find mechanical differences between the L4–L5 and L5–S1 segments. Then, the range of motion (ROM) and facet forces for the L4–S1 segment were measured using the stepwise reduction method. This consists of sequentially testing and reducing each segment in nine stages by cutting the ligaments, facet capsules, and removing the nucleus. Five L4–S1 human segments (median: 65 years, range: 53–84 years, SD=11.0 years) were loaded under a maximum pure moment of 8 N m. The ROM was measured using stereo-photogrammetry via tracking of three markers and the facet contact forces (CF) were measured using a Tekscan system. The ROM for the L4–L5 segment and all stages showed good agreement with published data. The major differences in ROM between the L4–L5 and L5–S1 segments were found for lateral bending and all stages, for which the L4–L5 ROM was about 1.5–3 times higher than that of the L5–S1 segment, consistent with L5–S1 facet CF about 1.3 to 4 times higher than those measured for the L4–L5 segment. For the other movements and few stages, the L4–L5 ROM was significantly lower that of the L5–S1 segment. ROM and CF provide important baseline data for more accurate calibration of FE models and to understand the role that their structures play in lower lumbar spine mechanicsapplication/pdf7 páginasapplication/pdfengElsevier LtdDerechos Reservados - Elsevier Ltdhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Characterization of the L4-L5-S1 motion segment using the stepwise reduction methodArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85BiomecánicaMovimiento de rotaciónMecánica humanaBiomechanicsRotational motionHuman mechanicsL4–L5–S1 segmentStepwise reduction methodRange of motionContact forces12547124849Jaramillo, H. E., Puttlitz, C. M., McGilvray, K., & García, J. J. (2016). Characterization of the L4–L5–S1 motion segment using the stepwise reduction method. Journal of biomechanics, 49(7), pp. 1248-1254Journal of biomechanicsAdams, M.A., Hutton, W.C., 1981. The relevance of torsion to the mechanical derangement of the lumbar spine. Spine 6, 241–248Adams, M.A., Hutton, W.C., Stott, J.R.R., 1980. The resistance to flexion of the lumbar intervertebral joint. Spine 5, 245–253Adams, Michael A., Bogduk, Nikolai, Burton, Kim, Dolan, Patricia, 2012. The Biomechanics of Back Pain, 3rd ed. Churchill Livingstone, EdinburghBogduk, N., 1995. Clinical Anatomy of the Lumbar Spine & Sacrum (WWW Document). ⟨http://www.lavoisier.fr/livre/notice.asp?id¼OKKW2RAORR6OWX⟩ (accessed 8.14.12)Devin Leahy, P., Puttlitz, C.M., 2012. The effects of ligamentous injury in the human lower cervical spine. J. Biomech. 45, 2668–2672. http://dx.doi.org/10.1016/j. jbiomech.2012.08.012Goel, V.K., Clausen, J.D., 1998. Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine 23, 684–691Griffith, J.F., Wang, Y.-X.J., Antonio, G.E., Choi, K.C., Yu, A., Ahuja, A.T., Leung, P.C., 2007. Modified pfirrmann grading system for lumbar intervertebral disc degeneration. Spine 32, E708–E712. http://dx.doi.org/10.1097/BRS.0b013e31815a59a0Guan, Y., Yoganandan, N., Moore, J., Pintar, F.A., Zhang, J., Maiman, D.J., Laud, P., 2007. Moment–rotation responses of the human lumbosacral spinal column. J. Biomech. 40, 1975–1980. http://dx.doi.org/10.1016/j.jbiomech.2006.09.027Harris, M., Morberg, P., Bruce, W.J., Walsh, W., 1999. An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. J. Biomech. 32, 951–958. http://dx.doi.org/ 10.1016/S0021-9290(99)00072-XHeuer, F., Schmidt, H., Wilke, H.-J., 2008. Stepwise reduction of functional spinal structures increase disc bulge and surface strains. J. Biomech. 41, 1953–1960. http://dx.doi.org/10.1016/j.jbiomech.2008.03.023Heuer, F., Schmidt, H., Claes, L., Wilke, H.-J., 2007a. Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure. J. Biomech. 40, 795–803. http://dx.doi.org/10.1016/j.jbiomech.2006.03.016Heuer, F., Schmidt, H., Klezl, Z., Claes, L., Wilke, H.-J., 2007b. Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J. Biomech. 40, 271–280. http://dx.doi.org/10.1016/j.jbiomech.2006.01.007Panjabi, M.M., Oxland, T.R., Yamamoto, I., Crisco, J.J., 1994. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load–displacement curves. J. Bone Jt. Surg. – Ser. A 76, 413–424Panjabi, M., 1989. How does posture affect coupling in the lumbar spine? Spine 14, 1002–1011 (WWW Document) (accessed 8.15.12), http://journals.lww.com/spine journal/Fulltext/1989/09000/How_Does_Posture_Affect_Coupling_in_the_Lumbar.15. aspxPfirrmann, C.W., Metzdorf, A., Zanetti, M., Hodler, J., Boos, N., 2001. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26, 1873–1878Pintar, F.A., Yoganandan, N., Myers, T., Elhagediab, A., Sances Jr., A., 1992. Biomechanical properties of human lumbar spine ligaments. J. Biomech. 25, 1351–1356. http://dx.doi.org/10.1016/0021-9290(92)90290-H.Posner, I., White, A.A., Edwards, W.T., Hayes, W.C., 1982. A biomechanical analysis of the clinical stability of the lumbar and lumbosacral spine. Spine 7, 374–389Saleem, S., Aslam, H.M., Rehmani, M.A.K., Raees, A., Alvi, A.A., Ashraf, J., 2013. Lumbar disc degenerative disease: disc degeneration symptoms and magnetic resonance image findings. Asian Spine J. 7, 322–334. http://dx.doi.org/10.4184/ asj.2013.7.4.322Schmidt, H., Heuer, F., Drumm, J., Klezl, Z., Claes, L., Wilke, H.-J., 2007. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin. Biomech. 22, 377–384. http://dx.doi.org/ 10.1016/j.clinbiomech.2006.11.008Shao, Z., Rompe, G., Schiltenwolf, M., 2002. Radiographic changes in the lumbar intervertebral discs and lumbar vertebrae with age. Spine 27, 263–268Shirazi-Adl, A., 1994. Nonlinear stress analysis of the whole lumbar spine in torsion —mechanics of facet articulation. J. Biomech. 27, 289–299. http://dx.doi.org/ 10.1016/0021-9290(94)90005-1Tencer, A.F., Ahmed, A.M., Burke, D.L., 1982. Some static mechanical properties of the lumbar intervertebral joint, intact and injured. J. Biomech. Eng. 104, 193–201Van Schaik, J.P.J., Verbiest, H., Van Schaik, F.D.J., 1985. The orientation of laminae and facet joints in the lower lumbar spine. Spine 10, 59–63Wilson, D.C., Niosi, C.A., Zhu, Q.A., Oxland, T.R., Wilson, D.R., 2006. Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine. J. Biomech. 39, 348–353. http://dx.doi.org/10.1016/j.jbiomech.2004.12.011Wilson, D.R., Apreleva, M.V., Eichler, M.J., Harrold, F.R., 2003. Accuracy and repeatability of a pressure measurement system in the patellofemoral joint. J. Biomech. 36, 1909–1915. http://dx.doi.org/10.1016/S0021-9290(03)00105-2Yamamoto, I., Panjabi, M., Crisco, T., Oxland, T., 1989. Three-dimensional movements of the whole lumbar spine. J. Biomech. 22, 1103. http://dx.doi.org/ 10.1016/0021-9290(89)90523-XPublicationada2f35e-57bd-4bbb-91d3-e197573bfab8virtual::2372-1ada2f35e-57bd-4bbb-91d3-e197573bfab8virtual::2372-1https://scholar.google.com.co/citations?user=GEzrsjQAAAAJ&hl=esvirtual::2372-10000-0002-7324-9478virtual::2372-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000144967virtual::2372-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/aec2180a-717c-4b3b-8fe4-2e7a49e95c06/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/db5a6ab9-a361-4e62-a90a-90ca0b4ba6e2/download20b5ba22b1117f71589c7318baa2c560MD5310614/11047oai:red.uao.edu.co:10614/110472024-05-10 10:46:06.396https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Elsevier Ltdmetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |