Design of computer experiments applied to modeling of compliant mechanisms for real-time control

This article discusses the use of design of computer experiments (DOCE) (i.e., experiments run with a computer model to find how a set of inputs affects a set of outputs) to obtain a force–displacement meta-model (i.e., a mathematical equation that summarizes and aids in analyz-ing the input–output...

Full description

Autores:
Acosta, Diego A.
Restrepo, David
Durango, Sebastián
Ruíz, Óscar E.
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/9677
Acceso en línea:
http://hdl.handle.net/10784/9677
Palabra clave:
MÉTODO DE ELEMENTOS FINITOS
DISEÑO CON AYUDA DE COMPUTADOR
TOLERANCIA (INGENIERÍA)
DISEÑO EXPERIMENTAL
ECUACIONES
DISTRIBUCIÓN (TEORÍA DE PROBABILIDADES)
FUNCIONES
NANOTECNOLOGÍA
FUNCIONES CON VALORES VECTORIALES
Finite element method
Computer-aided Design
Tolerance (Engineering)
Experimental design
Equations
Distribution (probability theory)
Functions
Nanotechnology
Vector valued functions
Finite element method
Computer-aided Design
Tolerance (Engineering)
Experimental design
Equations
Distribution (probability theory)
Functions
Nanotechnology
Vector valued functions
FEA (Finite Element Analysis)
Sistemas CAD/CAM
Rights
License
Acceso abierto
id REPOEAFIT2_fa2b89b404b48b34a25dd7c4656cb0c1
oai_identifier_str oai:repository.eafit.edu.co:10784/9677
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling 2016-11-18T22:10:07Z2013-072016-11-18T22:10:07Z0177-0667http://hdl.handle.net/10784/967710.1007/s00366-012-0268-8This article discusses the use of design of computer experiments (DOCE) (i.e., experiments run with a computer model to find how a set of inputs affects a set of outputs) to obtain a force–displacement meta-model (i.e., a mathematical equation that summarizes and aids in analyz-ing the input–output data of a DOCE) of compliant mechanisms (CMs) -- The procedure discussed produces a force–displacement meta-model, or closed analytic vector function, that aims to control CMs in real-time -- In our work, the factorial and space-filling DOCE meta-model of CMs is supported by finite element analysis (FEA) -- The protocol discussed is used to model the HexFlex mechanism functioning under quasi-static conditions -- The HexFlex is a parallel CM for nano-manipulation that allows six degrees of freedom (x, y, z, hx, hy, hz) of its moving platform -- In the multi-linear model fit of the HexFlex, the products or inter-actions proved to be negligible, yielding a linear model (i.e.,linear in the inputs) for the operating range -- The accuracy of the meta-model was calculated by conducting a set of computer experiments with random uniform distribution of the input forces -- Three error criteria were recorded comparing the meta-model prediction with respect to the results of the FEA experiments by determining: (1) maximum of the absolute value of the error, (2) relative error, and (3) root mean square error -- The maximum errors of our model are lower than high-precision manufacturing tolerances and are also lower than those reported by other researchers who have tried to fit meta-models to the HexFlex mechanismapplication/pdfengSpringer LondonEngineering with Computers, Volume 29, Issue 3, pp 329-343http://link.springer.com/article/10.1007/s00366-012-0268-8Acceso abiertohttp://purl.org/coar/access_right/c_abf2Design of computer experiments applied to modeling of compliant mechanisms for real-time controlinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1MÉTODO DE ELEMENTOS FINITOSDISEÑO CON AYUDA DE COMPUTADORTOLERANCIA (INGENIERÍA)DISEÑO EXPERIMENTALECUACIONESDISTRIBUCIÓN (TEORÍA DE PROBABILIDADES)FUNCIONESNANOTECNOLOGÍAFUNCIONES CON VALORES VECTORIALESFinite element methodComputer-aided DesignTolerance (Engineering)Experimental designEquationsDistribution (probability theory)FunctionsNanotechnologyVector valued functionsFinite element methodComputer-aided DesignTolerance (Engineering)Experimental designEquationsDistribution (probability theory)FunctionsNanotechnologyVector valued functionsFEA (Finite Element Analysis)Sistemas CAD/CAMUniversidad EAFIT. Departamento de Ingeniería MecánicaAcosta, Diego A.0929739e-0609-4ce6-95ab-ce8c521415b1-1Restrepo, Davida8a565f8-34be-4d4a-a0ae-c2516ca029d2-1Durango, Sebastiánc8e29be0-424c-40a2-963e-2653013c8c05-1Ruíz, Óscar E.79da89a9-56e7-4e32-9960-e465497e926e-1Laboratorio CAD/CAM/CAEEngineering with ComputersEngineering with Computers293329343LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/8463559d-96fe-4b47-a4b1-5b1c36e3d8cd/download76025f86b095439b7ac65b367055d40cMD51ORIGINALdraft_Des_Comp_Journal_Eng_w_Comp.pdfdraft_Des_Comp_Journal_Eng_w_Comp.pdfapplication/pdf470246https://repository.eafit.edu.co/bitstreams/bbb5de57-d0b4-44ff-904b-f14e910ad11e/download0e77d1bf16953b7210259b0869705d9dMD5210784/9677oai:repository.eafit.edu.co:10784/96772024-12-04 11:49:34.708open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Design of computer experiments applied to modeling of compliant mechanisms for real-time control
title Design of computer experiments applied to modeling of compliant mechanisms for real-time control
spellingShingle Design of computer experiments applied to modeling of compliant mechanisms for real-time control
MÉTODO DE ELEMENTOS FINITOS
DISEÑO CON AYUDA DE COMPUTADOR
TOLERANCIA (INGENIERÍA)
DISEÑO EXPERIMENTAL
ECUACIONES
DISTRIBUCIÓN (TEORÍA DE PROBABILIDADES)
FUNCIONES
NANOTECNOLOGÍA
FUNCIONES CON VALORES VECTORIALES
Finite element method
Computer-aided Design
Tolerance (Engineering)
Experimental design
Equations
Distribution (probability theory)
Functions
Nanotechnology
Vector valued functions
Finite element method
Computer-aided Design
Tolerance (Engineering)
Experimental design
Equations
Distribution (probability theory)
Functions
Nanotechnology
Vector valued functions
FEA (Finite Element Analysis)
Sistemas CAD/CAM
title_short Design of computer experiments applied to modeling of compliant mechanisms for real-time control
title_full Design of computer experiments applied to modeling of compliant mechanisms for real-time control
title_fullStr Design of computer experiments applied to modeling of compliant mechanisms for real-time control
title_full_unstemmed Design of computer experiments applied to modeling of compliant mechanisms for real-time control
title_sort Design of computer experiments applied to modeling of compliant mechanisms for real-time control
dc.creator.fl_str_mv Acosta, Diego A.
Restrepo, David
Durango, Sebastián
Ruíz, Óscar E.
dc.contributor.department.spa.fl_str_mv Universidad EAFIT. Departamento de Ingeniería Mecánica
dc.contributor.author.none.fl_str_mv Acosta, Diego A.
Restrepo, David
Durango, Sebastián
Ruíz, Óscar E.
dc.contributor.researchgroup.spa.fl_str_mv Laboratorio CAD/CAM/CAE
dc.subject.lemb.spa.fl_str_mv MÉTODO DE ELEMENTOS FINITOS
DISEÑO CON AYUDA DE COMPUTADOR
TOLERANCIA (INGENIERÍA)
DISEÑO EXPERIMENTAL
ECUACIONES
DISTRIBUCIÓN (TEORÍA DE PROBABILIDADES)
FUNCIONES
NANOTECNOLOGÍA
FUNCIONES CON VALORES VECTORIALES
topic MÉTODO DE ELEMENTOS FINITOS
DISEÑO CON AYUDA DE COMPUTADOR
TOLERANCIA (INGENIERÍA)
DISEÑO EXPERIMENTAL
ECUACIONES
DISTRIBUCIÓN (TEORÍA DE PROBABILIDADES)
FUNCIONES
NANOTECNOLOGÍA
FUNCIONES CON VALORES VECTORIALES
Finite element method
Computer-aided Design
Tolerance (Engineering)
Experimental design
Equations
Distribution (probability theory)
Functions
Nanotechnology
Vector valued functions
Finite element method
Computer-aided Design
Tolerance (Engineering)
Experimental design
Equations
Distribution (probability theory)
Functions
Nanotechnology
Vector valued functions
FEA (Finite Element Analysis)
Sistemas CAD/CAM
dc.subject.keyword.spa.fl_str_mv Finite element method
Computer-aided Design
Tolerance (Engineering)
Experimental design
Equations
Distribution (probability theory)
Functions
Nanotechnology
Vector valued functions
dc.subject.keyword.eng.fl_str_mv Finite element method
Computer-aided Design
Tolerance (Engineering)
Experimental design
Equations
Distribution (probability theory)
Functions
Nanotechnology
Vector valued functions
dc.subject.keyword..keywor.fl_str_mv FEA (Finite Element Analysis)
Sistemas CAD/CAM
description This article discusses the use of design of computer experiments (DOCE) (i.e., experiments run with a computer model to find how a set of inputs affects a set of outputs) to obtain a force–displacement meta-model (i.e., a mathematical equation that summarizes and aids in analyz-ing the input–output data of a DOCE) of compliant mechanisms (CMs) -- The procedure discussed produces a force–displacement meta-model, or closed analytic vector function, that aims to control CMs in real-time -- In our work, the factorial and space-filling DOCE meta-model of CMs is supported by finite element analysis (FEA) -- The protocol discussed is used to model the HexFlex mechanism functioning under quasi-static conditions -- The HexFlex is a parallel CM for nano-manipulation that allows six degrees of freedom (x, y, z, hx, hy, hz) of its moving platform -- In the multi-linear model fit of the HexFlex, the products or inter-actions proved to be negligible, yielding a linear model (i.e.,linear in the inputs) for the operating range -- The accuracy of the meta-model was calculated by conducting a set of computer experiments with random uniform distribution of the input forces -- Three error criteria were recorded comparing the meta-model prediction with respect to the results of the FEA experiments by determining: (1) maximum of the absolute value of the error, (2) relative error, and (3) root mean square error -- The maximum errors of our model are lower than high-precision manufacturing tolerances and are also lower than those reported by other researchers who have tried to fit meta-models to the HexFlex mechanism
publishDate 2013
dc.date.issued.none.fl_str_mv 2013-07
dc.date.available.none.fl_str_mv 2016-11-18T22:10:07Z
dc.date.accessioned.none.fl_str_mv 2016-11-18T22:10:07Z
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0177-0667
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/9677
dc.identifier.doi.none.fl_str_mv 10.1007/s00366-012-0268-8
identifier_str_mv 0177-0667
10.1007/s00366-012-0268-8
url http://hdl.handle.net/10784/9677
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv Engineering with Computers, Volume 29, Issue 3, pp 329-343
dc.relation.uri.none.fl_str_mv http://link.springer.com/article/10.1007/s00366-012-0268-8
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer London
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/8463559d-96fe-4b47-a4b1-5b1c36e3d8cd/download
https://repository.eafit.edu.co/bitstreams/bbb5de57-d0b4-44ff-904b-f14e910ad11e/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
0e77d1bf16953b7210259b0869705d9d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1818102423272554496