The Notions of Center, Commutator and Inner Isomorphism for Groupoids

In this paper we introduce some algebraic properties of subgroupoids and normal subgroupoids. we define other things, we define the normalizer of a wide subgroupoid H of a groupoid G and show that, as in the case of groups, this normalizer is the greatest wide subgroupoid of G in which H is normal....

Full description

Autores:
Ávila, Jesús
Marín, Víctor
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/17661
Acceso en línea:
http://hdl.handle.net/10784/17661
Palabra clave:
Groupoid
Normal subgroupoid
Normalizer
Center
Commutator
Inner isomorphisms
Grupoide
Subgrupoide normal
Normalizador
Centro
Conmutador
Isomorfismo interno
Rights
License
Copyright © 2020 Jesús Ávila, Víctor Marín
id REPOEAFIT2_f7cad2b2a69314332ce5bc689496a533
oai_identifier_str oai:repository.eafit.edu.co:10784/17661
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2020-06-192020-09-04T16:41:30Z2020-06-192020-09-04T16:41:30Z1794-9165http://hdl.handle.net/10784/17661In this paper we introduce some algebraic properties of subgroupoids and normal subgroupoids. we define other things, we define the normalizer of a wide subgroupoid H of a groupoid G and show that, as in the case of groups, this normalizer is the greatest wide subgroupoid of G in which H is normal. Furthermore, we provide definitions of the center Z(G) and the commutator G' of the groupoid G and prove that both of them are normal subgroupoids. We give the notions of inner and partial isomorphism of G and show that the groupoid I(G) given by the set of all the inner isomorphisms of G is a normal subgroupoid of A(G), the set of all the partial isomorphisms of G. Moreover, we prove that I(G) is isomorphic to the quotient groupoid G/Z(G), which extends to groupoids the corresponding well-known result for groups.En este artículo se introduce algunas propiedades algebraicas de los subgrupoides y subgrupoides normales. Definimos el normalizador de un subgrupoide amplio H de un grupoide G y mostramos que, como en el caso de grupos, este normalizador es el mayor subgrupoide amplio de G en el cual H es normal. Además, damos las definiciones de centro Z(G) y conmutador G' del grupoide G y probamos que los dos son subgrupoides normales. También damos las nociones de isomorfismo interno e isomorfismo parcial de G y mostramos que el grupoide I(G) dado por el conjunto de todos los isomorfismos internos de G es un subgrupoide normal de A(G), el conjunto de todos los isomorfismos parciales de G. Además, probamos que I(G) es isomorfo al grupoide cociente G/Z(G), lo cual extiende a grupoides un resultado bien conocido para grupos.application/pdfengUniversidad EAFIThttps://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6260https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6260Copyright © 2020 Jesús Ávila, Víctor MarínAcceso abiertohttp://purl.org/coar/access_right/c_abf2Ingeniería y Ciencia, Vol. 16, Núm. 31 (2020)The Notions of Center, Commutator and Inner Isomorphism for GroupoidsLas nociones de centro, conmutador e isomorfismo interno para grupoidesarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1GroupoidNormal subgroupoidNormalizerCenterCommutatorInner isomorphismsGrupoideSubgrupoide normalNormalizadorCentroConmutadorIsomorfismo internoÁvila, JesúsMarín, VíctorUniversidad del TolimaIngeniería y Ciencia1631726THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/e6a44025-a59a-4af2-af75-854e31bd5140/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINALdocument - 2020-09-21T084438.564.pdfdocument - 2020-09-21T084438.564.pdfTexto completo PDFapplication/pdf547968https://repository.eafit.edu.co/bitstreams/b11fc212-a6ce-49c5-a1fd-24aa75ddfd5e/downloada7be6092b4d6933e6a2b364777d69a2dMD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html375https://repository.eafit.edu.co/bitstreams/40eebd2b-13b4-4afb-8a00-87afc73118ee/download2bcf57753e5243c40e66f7ab4a8c3562MD5310784/17661oai:repository.eafit.edu.co:10784/176612020-09-21 08:46:46.672open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv The Notions of Center, Commutator and Inner Isomorphism for Groupoids
dc.title.spa.fl_str_mv Las nociones de centro, conmutador e isomorfismo interno para grupoides
title The Notions of Center, Commutator and Inner Isomorphism for Groupoids
spellingShingle The Notions of Center, Commutator and Inner Isomorphism for Groupoids
Groupoid
Normal subgroupoid
Normalizer
Center
Commutator
Inner isomorphisms
Grupoide
Subgrupoide normal
Normalizador
Centro
Conmutador
Isomorfismo interno
title_short The Notions of Center, Commutator and Inner Isomorphism for Groupoids
title_full The Notions of Center, Commutator and Inner Isomorphism for Groupoids
title_fullStr The Notions of Center, Commutator and Inner Isomorphism for Groupoids
title_full_unstemmed The Notions of Center, Commutator and Inner Isomorphism for Groupoids
title_sort The Notions of Center, Commutator and Inner Isomorphism for Groupoids
dc.creator.fl_str_mv Ávila, Jesús
Marín, Víctor
dc.contributor.author.spa.fl_str_mv Ávila, Jesús
Marín, Víctor
dc.contributor.affiliation.spa.fl_str_mv Universidad del Tolima
dc.subject.keyword.eng.fl_str_mv Groupoid
Normal subgroupoid
Normalizer
Center
Commutator
Inner isomorphisms
topic Groupoid
Normal subgroupoid
Normalizer
Center
Commutator
Inner isomorphisms
Grupoide
Subgrupoide normal
Normalizador
Centro
Conmutador
Isomorfismo interno
dc.subject.keyword.spa.fl_str_mv Grupoide
Subgrupoide normal
Normalizador
Centro
Conmutador
Isomorfismo interno
description In this paper we introduce some algebraic properties of subgroupoids and normal subgroupoids. we define other things, we define the normalizer of a wide subgroupoid H of a groupoid G and show that, as in the case of groups, this normalizer is the greatest wide subgroupoid of G in which H is normal. Furthermore, we provide definitions of the center Z(G) and the commutator G' of the groupoid G and prove that both of them are normal subgroupoids. We give the notions of inner and partial isomorphism of G and show that the groupoid I(G) given by the set of all the inner isomorphisms of G is a normal subgroupoid of A(G), the set of all the partial isomorphisms of G. Moreover, we prove that I(G) is isomorphic to the quotient groupoid G/Z(G), which extends to groupoids the corresponding well-known result for groups.
publishDate 2020
dc.date.available.none.fl_str_mv 2020-09-04T16:41:30Z
dc.date.issued.none.fl_str_mv 2020-06-19
dc.date.accessioned.none.fl_str_mv 2020-09-04T16:41:30Z
dc.date.none.fl_str_mv 2020-06-19
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/17661
identifier_str_mv 1794-9165
url http://hdl.handle.net/10784/17661
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6260
dc.relation.uri.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6260
dc.rights.eng.fl_str_mv Copyright © 2020 Jesús Ávila, Víctor Marín
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright © 2020 Jesús Ávila, Víctor Marín
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia, Vol. 16, Núm. 31 (2020)
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/e6a44025-a59a-4af2-af75-854e31bd5140/download
https://repository.eafit.edu.co/bitstreams/b11fc212-a6ce-49c5-a1fd-24aa75ddfd5e/download
https://repository.eafit.edu.co/bitstreams/40eebd2b-13b4-4afb-8a00-87afc73118ee/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
a7be6092b4d6933e6a2b364777d69a2d
2bcf57753e5243c40e66f7ab4a8c3562
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110222066647040