The Notions of Center, Commutator and Inner Isomorphism for Groupoids
In this paper we introduce some algebraic properties of subgroupoids and normal subgroupoids. we define other things, we define the normalizer of a wide subgroupoid H of a groupoid G and show that, as in the case of groups, this normalizer is the greatest wide subgroupoid of G in which H is normal....
- Autores:
-
Ávila, Jesús
Marín, Víctor
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/17661
- Acceso en línea:
- http://hdl.handle.net/10784/17661
- Palabra clave:
- Groupoid
Normal subgroupoid
Normalizer
Center
Commutator
Inner isomorphisms
Grupoide
Subgrupoide normal
Normalizador
Centro
Conmutador
Isomorfismo interno
- Rights
- License
- Copyright © 2020 Jesús Ávila, Víctor Marín
id |
REPOEAFIT2_f7cad2b2a69314332ce5bc689496a533 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/17661 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2020-06-192020-09-04T16:41:30Z2020-06-192020-09-04T16:41:30Z1794-9165http://hdl.handle.net/10784/17661In this paper we introduce some algebraic properties of subgroupoids and normal subgroupoids. we define other things, we define the normalizer of a wide subgroupoid H of a groupoid G and show that, as in the case of groups, this normalizer is the greatest wide subgroupoid of G in which H is normal. Furthermore, we provide definitions of the center Z(G) and the commutator G' of the groupoid G and prove that both of them are normal subgroupoids. We give the notions of inner and partial isomorphism of G and show that the groupoid I(G) given by the set of all the inner isomorphisms of G is a normal subgroupoid of A(G), the set of all the partial isomorphisms of G. Moreover, we prove that I(G) is isomorphic to the quotient groupoid G/Z(G), which extends to groupoids the corresponding well-known result for groups.En este artículo se introduce algunas propiedades algebraicas de los subgrupoides y subgrupoides normales. Definimos el normalizador de un subgrupoide amplio H de un grupoide G y mostramos que, como en el caso de grupos, este normalizador es el mayor subgrupoide amplio de G en el cual H es normal. Además, damos las definiciones de centro Z(G) y conmutador G' del grupoide G y probamos que los dos son subgrupoides normales. También damos las nociones de isomorfismo interno e isomorfismo parcial de G y mostramos que el grupoide I(G) dado por el conjunto de todos los isomorfismos internos de G es un subgrupoide normal de A(G), el conjunto de todos los isomorfismos parciales de G. Además, probamos que I(G) es isomorfo al grupoide cociente G/Z(G), lo cual extiende a grupoides un resultado bien conocido para grupos.application/pdfengUniversidad EAFIThttps://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6260https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6260Copyright © 2020 Jesús Ávila, Víctor MarínAcceso abiertohttp://purl.org/coar/access_right/c_abf2Ingeniería y Ciencia, Vol. 16, Núm. 31 (2020)The Notions of Center, Commutator and Inner Isomorphism for GroupoidsLas nociones de centro, conmutador e isomorfismo interno para grupoidesarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1GroupoidNormal subgroupoidNormalizerCenterCommutatorInner isomorphismsGrupoideSubgrupoide normalNormalizadorCentroConmutadorIsomorfismo internoÁvila, JesúsMarín, VíctorUniversidad del TolimaIngeniería y Ciencia1631726THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/e6a44025-a59a-4af2-af75-854e31bd5140/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINALdocument - 2020-09-21T084438.564.pdfdocument - 2020-09-21T084438.564.pdfTexto completo PDFapplication/pdf547968https://repository.eafit.edu.co/bitstreams/b11fc212-a6ce-49c5-a1fd-24aa75ddfd5e/downloada7be6092b4d6933e6a2b364777d69a2dMD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html375https://repository.eafit.edu.co/bitstreams/40eebd2b-13b4-4afb-8a00-87afc73118ee/download2bcf57753e5243c40e66f7ab4a8c3562MD5310784/17661oai:repository.eafit.edu.co:10784/176612020-09-21 08:46:46.672open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
The Notions of Center, Commutator and Inner Isomorphism for Groupoids |
dc.title.spa.fl_str_mv |
Las nociones de centro, conmutador e isomorfismo interno para grupoides |
title |
The Notions of Center, Commutator and Inner Isomorphism for Groupoids |
spellingShingle |
The Notions of Center, Commutator and Inner Isomorphism for Groupoids Groupoid Normal subgroupoid Normalizer Center Commutator Inner isomorphisms Grupoide Subgrupoide normal Normalizador Centro Conmutador Isomorfismo interno |
title_short |
The Notions of Center, Commutator and Inner Isomorphism for Groupoids |
title_full |
The Notions of Center, Commutator and Inner Isomorphism for Groupoids |
title_fullStr |
The Notions of Center, Commutator and Inner Isomorphism for Groupoids |
title_full_unstemmed |
The Notions of Center, Commutator and Inner Isomorphism for Groupoids |
title_sort |
The Notions of Center, Commutator and Inner Isomorphism for Groupoids |
dc.creator.fl_str_mv |
Ávila, Jesús Marín, Víctor |
dc.contributor.author.spa.fl_str_mv |
Ávila, Jesús Marín, Víctor |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad del Tolima |
dc.subject.keyword.eng.fl_str_mv |
Groupoid Normal subgroupoid Normalizer Center Commutator Inner isomorphisms |
topic |
Groupoid Normal subgroupoid Normalizer Center Commutator Inner isomorphisms Grupoide Subgrupoide normal Normalizador Centro Conmutador Isomorfismo interno |
dc.subject.keyword.spa.fl_str_mv |
Grupoide Subgrupoide normal Normalizador Centro Conmutador Isomorfismo interno |
description |
In this paper we introduce some algebraic properties of subgroupoids and normal subgroupoids. we define other things, we define the normalizer of a wide subgroupoid H of a groupoid G and show that, as in the case of groups, this normalizer is the greatest wide subgroupoid of G in which H is normal. Furthermore, we provide definitions of the center Z(G) and the commutator G' of the groupoid G and prove that both of them are normal subgroupoids. We give the notions of inner and partial isomorphism of G and show that the groupoid I(G) given by the set of all the inner isomorphisms of G is a normal subgroupoid of A(G), the set of all the partial isomorphisms of G. Moreover, we prove that I(G) is isomorphic to the quotient groupoid G/Z(G), which extends to groupoids the corresponding well-known result for groups. |
publishDate |
2020 |
dc.date.available.none.fl_str_mv |
2020-09-04T16:41:30Z |
dc.date.issued.none.fl_str_mv |
2020-06-19 |
dc.date.accessioned.none.fl_str_mv |
2020-09-04T16:41:30Z |
dc.date.none.fl_str_mv |
2020-06-19 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-9165 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/17661 |
identifier_str_mv |
1794-9165 |
url |
http://hdl.handle.net/10784/17661 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6260 |
dc.relation.uri.none.fl_str_mv |
https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6260 |
dc.rights.eng.fl_str_mv |
Copyright © 2020 Jesús Ávila, Víctor Marín |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright © 2020 Jesús Ávila, Víctor Marín Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia, Vol. 16, Núm. 31 (2020) |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/e6a44025-a59a-4af2-af75-854e31bd5140/download https://repository.eafit.edu.co/bitstreams/b11fc212-a6ce-49c5-a1fd-24aa75ddfd5e/download https://repository.eafit.edu.co/bitstreams/40eebd2b-13b4-4afb-8a00-87afc73118ee/download |
bitstream.checksum.fl_str_mv |
da9b21a5c7e00c7f1127cef8e97035e0 a7be6092b4d6933e6a2b364777d69a2d 2bcf57753e5243c40e66f7ab4a8c3562 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110222066647040 |