A Guide to Study Iron Oxide Magnetic Nanoparticles with Biomedical Applications. Part II

In this second part, the magnetic nanoparticles characterization is studied, doing special emphasys in the properties interpretation in order to define the nanosystems applications. In the case of the iron oxide magnetic nanoparticles, the influence of its properties in the heat dissipation under ra...

Full description

Autores:
Coral, Diego F.
Mera, Jenny A.
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/13186
Acceso en línea:
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4921
http://hdl.handle.net/10784/13186
Palabra clave:
Cancer
Heat dissipation
Magnetic hyperthermia
Magnetic nanoparticles
Iron oxides
Cáncer
Disipación de calor
Dipertermia magnética
Nanopartículas magnéticas
Oxidos de hierro
Rights
License
Copyright (c) 2017 Diego F Coral, Jenny A Mera
id REPOEAFIT2_f673cb64826aba90fe1bdb5d8b77b3a3
oai_identifier_str oai:repository.eafit.edu.co:10784/13186
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv A Guide to Study Iron Oxide Magnetic Nanoparticles with Biomedical Applications. Part II
dc.title.spa.fl_str_mv Una Guía para el estudio de nanopartículas magnéticas de óxidos de hierro con aplicaciones biomédicas. Parte II
title A Guide to Study Iron Oxide Magnetic Nanoparticles with Biomedical Applications. Part II
spellingShingle A Guide to Study Iron Oxide Magnetic Nanoparticles with Biomedical Applications. Part II
Cancer
Heat dissipation
Magnetic hyperthermia
Magnetic nanoparticles
Iron oxides
Cáncer
Disipación de calor
Dipertermia magnética
Nanopartículas magnéticas
Oxidos de hierro
title_short A Guide to Study Iron Oxide Magnetic Nanoparticles with Biomedical Applications. Part II
title_full A Guide to Study Iron Oxide Magnetic Nanoparticles with Biomedical Applications. Part II
title_fullStr A Guide to Study Iron Oxide Magnetic Nanoparticles with Biomedical Applications. Part II
title_full_unstemmed A Guide to Study Iron Oxide Magnetic Nanoparticles with Biomedical Applications. Part II
title_sort A Guide to Study Iron Oxide Magnetic Nanoparticles with Biomedical Applications. Part II
dc.creator.fl_str_mv Coral, Diego F.
Mera, Jenny A.
dc.contributor.author.none.fl_str_mv Coral, Diego F.
Mera, Jenny A.
dc.contributor.affiliation.spa.fl_str_mv Institución Universitaria CESMAG
dc.subject.keyword.eng.fl_str_mv Cancer
Heat dissipation
Magnetic hyperthermia
Magnetic nanoparticles
Iron oxides
topic Cancer
Heat dissipation
Magnetic hyperthermia
Magnetic nanoparticles
Iron oxides
Cáncer
Disipación de calor
Dipertermia magnética
Nanopartículas magnéticas
Oxidos de hierro
dc.subject.keyword.spa.fl_str_mv Cáncer
Disipación de calor
Dipertermia magnética
Nanopartículas magnéticas
Oxidos de hierro
description In this second part, the magnetic nanoparticles characterization is studied, doing special emphasys in the properties interpretation in order to define the nanosystems applications. In the case of the iron oxide magnetic nanoparticles, the influence of its properties in the heat dissipation under radiofrequency fields is analyzed, this answer is usefull in the cancer treatment by magnetic hyperthermia. In the magnetic hyperthermia treatment, particles absorb energy from a radio frequency magnetic field and dissipate it as heat. For in-vivo test and human assays, frequency ranges between 50 and 1000 kHz and field amplitudes ranges between 5 and 150 kHz are usually used. The main properties, such as magnetization, interactions between particles and particles structuring are studied using experimental data, computational simulations and suitable models for each case studied in the part I of this article. Finally, a correlation between these properties with heat dissipation, measured by calorimetric methods, which is the merit parameter to quantify the electromagnetic energy transduction into heat, is pointed out.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-11-07
dc.date.available.none.fl_str_mv 2018-11-16T16:28:59Z
dc.date.accessioned.none.fl_str_mv 2018-11-16T16:28:59Z
dc.date.none.fl_str_mv 2017-11-07
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
article
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4921
http://hdl.handle.net/10784/13186
dc.identifier.doi.none.fl_str_mv 10.17230/ingciencia.13.26.8
identifier_str_mv 2256-4314
1794-9165
10.17230/ingciencia.13.26.8
url http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4921
http://hdl.handle.net/10784/13186
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4921
dc.rights.eng.fl_str_mv Copyright (c) 2017 Diego F Coral, Jenny A Mera
Attribution 4.0 International (CC BY 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2017 Diego F Coral, Jenny A Mera
Attribution 4.0 International (CC BY 4.0)
http://creativecommons.org/licenses/by/4.0
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.eng.fl_str_mv Ingeniería y Ciencia; Vol 13 No 26 (2017); 207-232
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 13 No 26 (2017); 207-232
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/3dc1d02e-6f73-425c-bba2-3ac5546805e5/download
https://repository.eafit.edu.co/bitstreams/32f4924c-cb38-4d04-9032-a649b4831c0a/download
https://repository.eafit.edu.co/bitstreams/7cbcb97a-3bfe-4e3e-a039-03b3f8749bb2/download
bitstream.checksum.fl_str_mv 7dcb6465331e59befc267f335db8c67d
7f0aec9ca65a2e11055e1bebbe37bf35
da9b21a5c7e00c7f1127cef8e97035e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1818102387559104512
spelling 2017-11-072018-11-16T16:28:59Z2017-11-072018-11-16T16:28:59Z2256-43141794-9165http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4921http://hdl.handle.net/10784/1318610.17230/ingciencia.13.26.8In this second part, the magnetic nanoparticles characterization is studied, doing special emphasys in the properties interpretation in order to define the nanosystems applications. In the case of the iron oxide magnetic nanoparticles, the influence of its properties in the heat dissipation under radiofrequency fields is analyzed, this answer is usefull in the cancer treatment by magnetic hyperthermia. In the magnetic hyperthermia treatment, particles absorb energy from a radio frequency magnetic field and dissipate it as heat. For in-vivo test and human assays, frequency ranges between 50 and 1000 kHz and field amplitudes ranges between 5 and 150 kHz are usually used. The main properties, such as magnetization, interactions between particles and particles structuring are studied using experimental data, computational simulations and suitable models for each case studied in the part I of this article. Finally, a correlation between these properties with heat dissipation, measured by calorimetric methods, which is the merit parameter to quantify the electromagnetic energy transduction into heat, is pointed out.En esta segunda parte del artículo, se abordará el tema de la caracterización de nanopartículas magnéticas, haciendo énfasis en la interpretación de estas propiedades para definir la aplicación biomédica de los nanosistemas en estudio. Para el caso de nanopartículas de óxidos de hierro, se analizará como estas propiedades influyen en la disipación de calor de las nanopartículas cuando son sometidas a campos de radiofrecuencia, respuesta útil en el tratamiento del cáncer por hipertermia magética. En la hipertermia magnética, las partículas absorben energía de un campo de radio frecuencia y la disipan en forma de calor, los rangos de frecuencia típicamente usados para pruebas in-vivo y en humanos están entre 50 y 1000 kHz y amplitudes entre 5 y 50 kA/m. Las propiedades de interés como magnetización, interacciones entre partículas y su ordenamiento, se estudian a partir de simulaciones computacionales y datos experimentales utilizando modelos de análisis adecuados para cada caso, ya planteados en la primera parte de este artículo. Finalmente se hace una correlación de estas propiedades con la disipación de calor, determinada por métodos calorimétricos, la cual se considera como parámetro de mérito para cuantificar la transducción de energía electromagnética a térmica.application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4921Copyright (c) 2017 Diego F Coral, Jenny A MeraAttribution 4.0 International (CC BY 4.0)http://creativecommons.org/licenses/by/4.0Acceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 13 No 26 (2017); 207-232Ingeniería y Ciencia; Vol 13 No 26 (2017); 207-232A Guide to Study Iron Oxide Magnetic Nanoparticles with Biomedical Applications. Part IIUna Guía para el estudio de nanopartículas magnéticas de óxidos de hierro con aplicaciones biomédicas. Parte IIinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionarticlepublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1CancerHeat dissipationMagnetic hyperthermiaMagnetic nanoparticlesIron oxidesCáncerDisipación de calorDipertermia magnéticaNanopartículas magnéticasOxidos de hierroCoral, Diego F.b6f4c641-ecd4-48ef-8645-c6fc5cd6b24c-1Mera, Jenny A.34516984-e8a8-40a5-8a8e-8b3c190f32a0-1Institución Universitaria CESMAGIngeniería y Ciencia1326207232ing.ciencORIGINAL8.pdf8.pdfTexto completo PDFapplication/pdf10443441https://repository.eafit.edu.co/bitstreams/3dc1d02e-6f73-425c-bba2-3ac5546805e5/download7dcb6465331e59befc267f335db8c67dMD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/32f4924c-cb38-4d04-9032-a649b4831c0a/download7f0aec9ca65a2e11055e1bebbe37bf35MD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/7cbcb97a-3bfe-4e3e-a039-03b3f8749bb2/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5110784/13186oai:repository.eafit.edu.co:10784/131862024-12-04 11:47:32.156http://creativecommons.org/licenses/by/4.0Copyright (c) 2017 Diego F Coral, Jenny A Meraopen.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co